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Abstract: Copulas are a quite flexible and useful tool for modeling the dependence structure between
two or more variables or components of bivariate and multivariate vectors, in particular, to predict
losses in insurance and finance. In this article, we use the VineCopula package in R to study the
dependence structure of some well-known real-life insurance data and identify the best bivariate
copula in each case. Associated structural properties of these bivariate copulas are also discussed
with a major focus on their tail dependence structure. This study shows that certain types of
Archimedean copula with the heavy tail dependence property are a reasonable framework to start
in terms modeling insurance claim data both in the bivariate as well as in the case of multivariate
domains as appropriate.

Keywords: bivariate copula; measures of association; dependence modeling; Kendall’s τ; Blomqvist’s β

1. Introduction

Modeling insurance data via copula is not new in the literature. For example, Alexeev
et al. (2021) studied dependence among insurance claims arising from different lines of
business via copula. Shi et al. (2016) discussed a multilevel modeling of insurance claims
using copula. Pfeifer and Neslehova (2003) discussed at length in a survey paper the role
of copula in modeling dependence in finance and insurance. In exploring dependence
structures related to insurance (from any business domain, such as healthcare sector,
travel industry, etc.) one pertinent aspect is the assessment of various types of risk (for
example, portfolio risk) arising out of each of these domains. There is no denying of the
fact that without the proper assessment of risk, insurance coverage to public and private
property/organization (as the case may be) as well as for individuals associated cannot be
evaluated effectively. Consequently, in the literature, there are several instances of using
bivariate and/or multivariate copula and studying their tail dependence behavior. For a
detailed study on copula and associated bivariate (as well as multivariate) dependence
based on copula theory, see the books by Joe (1997) and Nelsen (2006). A non-exhaustive
list of such references may be cited as follows. Mensi et al. (2017) has discussed via a
wavelet-based copula approach the dependence structure across oil, wheat, and corn.
The authors have established time varying asymmetric tail dependence (at different time
zones) between the pair of cereals as well as between oil and the two cereals. Naeem et al.
(2021) studied the asymmetric and extreme tail dependence between five energy markets
and green bonds using a time-varying optimal copula. This serves as a motivation for the
current work. In this article, we focus on studying the dependence structure between two
components resulting from insurance claim datasets. Specifically, we consider Australian
automobile insurance data and the Swedish motor insurance data. There is little or no
evidence of studying automobile insurance data that are asymmetric in nature via copula.
This is another motivation to carry out this work. These datasets are selected from a wide
collection of CAS datasets available in R. Here, we consider a copula-based modeling of
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insurance claims data, especially the tail dependence and through a specific selection criteria
in R, popularly known as the VineCopula package, to select the best fitted copula in each of
these datasets. This paper investigates dependence among insurance claims arising from
the auto industry with datasets selected from two different countries. Interestingly, for the
first dataset, the Australian automobile insurance data, we examine the dependence among
(pairwise) four different variables; each such comparison is useful in the context of claims
assessed from the insured as well as the insurer. The details are provided in each model
description in Section 3. For a detailed study on the use of copula, see Shi et al. (2016) and the
references cited therein. The second dataset is taken from two different countries on motor
insurance claims. In this case, we study the tail dependence between claims submitted
and the number of insured motorists. When modeling dependency between components
of insurance claims using copula, we aim to select copulas that are capable of generating
upper- and or lower-tail dependence, that is, when several components of the insurance
claims have a strong tendency to exhibit extreme losses simultaneously. We expect that the
outcomes of this study provide valuable insights with regards to the nature of dependence
and satisfy one of the primary objectives of the general insurance providers aiming at
assessing total risk of an aggregate portfolio of losses when components of insurance are
correlated. General insurance (for example, property–casualty) protects individuals and
organizations from financial losses due to property damage or legal liabilities, in our case,
due to auto accident. Consequently, it allows policyholders to exchange the risk of a large
loss for the certainty of smaller periodic payments of premiums. Next, insurers allocates
the bulk of premium dollars into investment and claims payments. As it is for an insurer
to manage its investment portfolio, it is equally important for the insurer to manage its
claim portfolio. It is the counterpart of asset management for the claims on the insurer’s
book. Claim management is the analytics of insurance costs. It requires applying statistical
techniques in the analysis and interpretation of the claims data. In the data-driven industry
of general insurance, claim management provides useful insights for insurers to make
better business decisions. From the above, it is quite evident as to why a study of insurance
claims via copula is important.

In this article, we aim to model the dependence structure (in the bivariate domain)
of data arising out of financial domains, precisely, from the insurance domain via cop-
ula. Insurance data from the automobile sector are selected for these purposes that are
asymmetric in nature. We consider the application of vine copulas (in two dimensions) for
several types of insurance data which are asymmetric in nature by utilizing the Vine Copula
package in R. It appears that the resultant most appropriate bivariate copulas are members
of the C and D-vine copulas, and among them, some are Archimedean as well. A vine
copula is a copula constructed from a set of d(d−1)

2 bivariate copulas by using successive
mixing according to a tree structure on finite indexes 1, · · · , d. Depending on the types of
trees, various vine copulas can be constructed. The remainder of the paper is organized
as follows. In Section 2, we discuss some basic definitions and useful preliminaries on
copula theory. In Section 3, we discuss in details two different datasets, subsequently fitting
an appropriate bivariate copula to each of them. In Section 4, we discuss some useful
structural properties of these copulas, in particular tail dependence structures that are
pertinent in the study of insurance claims dependence structure. Finally, some concluding
remarks are made in Section 5.

2. Bivariate Copula and Its Properties

We begin this section by reviewing some basic definitions and concepts related to
copula. The utility of Sklar’s theorem is that the modeling of the marginal distributions
can be conveniently and efficiently separated from the dependence modeling in terms of
the copula. Interestingly, the major task that lies in practical applications is how to identify
this copula. For the bivariate case, a rich collection of copula families is available and
well-investigated (see, for details, Joe 1997; Nelsen 2006). Sklar’s theorem establishes the
link between multivariate distribution functions and their univariate margins. We state
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this theorem at first. Let F be the p-dimensional distribution function of the random vector
X =

(
X1, · · · , Xp

)T with marginals F1, · · · , Fp. Then, there exists a copula C such that for

all x =
(

x1, · · · , xp
)T ∈ [−∞, ∞]p,

F(x) = C
(

F1(x1), · · · , Fp(xp)
)
. (1)

Note that C is unique if F1, · · · , Fp are continuous. Conversely, if C is a copula and F1, · · · , Fp
are distribution functions, then the function F defined by (1) is a joint distribution function
with marginals F1, · · · , Fp. Precisely, C can be interpreted as the distribution function of a p-
dimensional random variable on [0, 1]p with uniform marginals. Associated densities are
denoted by a lower case c. In addition, the random variables X1, · · · , Xp are assumed to be
continuous in the following. By setting p = 2, one may easily obtain a bivariate version of
the Sklar’s theorem as a special case.

We now provide some basic properties of a copula. For details on this, see Nelsen
(1999, 2006).

Definition 1. A copula is a function C whose domain is the entire unit square with the follow-
ing properties:

1. C(u, 0) = C(0, v) = 0, for all (u, v) ∈ [0, 1].
2. C(u, 1) = C(1, u) = u, for all (u, v) ∈ [0, 1].
3. C(u1, v1) − C(u1, v2) − C(u2, v1) + C(u2, v2) ≥ 0, for all (u1, v1, u2, v2) ∈ [0, 1]. for

every u1 ≤ u2, v1 ≤ v2.

Sklar (1973) established that any bivariate distribution function, say, FXY(x, y), can be
represented as a function of its marginals, say, FX(x) and FY(y), by using a two-dimensional
copula C(., .) in the following way:

FXY(x, y) = C(FX(x), FY(y)).

If FX(x) and FY(y) are absolutely continuous, then the associated copula C is unique.
Moreover, C(u, v) is ordinarily invariant, which implies that if δ(x) and Φ(y) are strictly
increasing functions, the copula of (δ(X), Φ(Y)) is also that of (X, Y). Therefore, both the
marginals of FXY(x, y) are absolutely continuous. Then, by selection of δ(x) = FX(x) and
Φ(y) = FY(y), we can say that every copula is a distribution function whose marginals
are uniform on the interval [0, 1]. Consequently, it represents the dependence structure
between two variables by eliminating the influence of the marginals, and hence of any
monotone transformation on the marginals.

Dependence Structures

Copulas are instrumental in understanding the dependence between random variables.
With them, we can separate the underlying dependence from the marginal distributions.
It is well-known that a copula which characterizes dependence is invariant under strictly
monotone transformations; subsequently, a better global measure of dependence would also
be invariant under such transformations. Among other dependence measures, Kendall’s τ
and Spearman’s ρ are invariant under strictly increasing transformations, and, as we see in
the next, they can be expressed in terms of the associated copula.

• Kendall’s τ: Kendall’s τ measures the amount of concordance present in a bivariate
distribution. Suppose that (X, Y) and (X̃, Ỹ) are two pairs of random variables from
a joint distribution function. We say that these pairs are concordant if large values
of one tend to be associated with large values of the other and small values of one
tend to be associated with small values of the other. The pairs are called discordant
if large goes with small or vice versa. Algebraically, we have concordant pairs if(

X− X̃
)(

Y− Ỹ
)
> 0 and discordant pairs if we reverse the inequality. The formal

definition is:
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τ(X, Y) = P
{((

X− X̃
)(

Y− Ỹ
)
> 0

)}
− P

{(
(X− X̃)(Y− Ỹ) < 0

)}
,

where
(
X̃, Ỹ

)
is an independent copy of (X, Y). Let X and Y be continuous random

variables with copula C. Then, Kendall’s τ is given by

τ(X, Y) = 4
∫∫

[0,1]2
C(u, v)dC(u, v)− 1. (2)

• Spearman’s ρ: Let X and Y be continuous random variables with copula C. Then,
Spearman’s ρs is given by

ρs = 12
∫∫

[0,1]2
C(u, v)dudv− 3. (3)

Alternatively, ρs can be written as ρs = 12
∫ 1

0

∫ 1
0 [C(u, v)− uv]dudv. Moreover, as men-

tioned earlier, one can equivalently show that ρs(U, V) = ρ(F1(X), F2(Y)).

• Tail dependence property: Let X and Y be two continuous r.v.’s with X ∼ F, and
Y ∼ G. The upper-tail dependence coefficient (parameter) λU is the limit (if it exists)
of the conditional probability that Y is greater than the 100α th percentile of G given
that X is greater than the 100α th percentile of F as α approaches 1.

λU = lim
α↑1

P
(

Y > G−1(α)|X > F−1(α)
)

. (4)

If λU > 0, then X and Y are upper-tail dependent and asymptotically independent
otherwise. Similarly, the lower-tail dependence coefficient is defined as

λL = lim
α↓0

P
(

Y ≤ G−1(α)|X ≤ F−1(α)
)

. (5)

Let, C be the copula of X and Y. Then, equivalently, we can write

λU = limu↓0
C̃(u,u)

u , and λL = limu↓0
C(u,u)

u where C̃(u, u) is the corresponding joint
survival function given by

C̃(u, u) = 1− 2u + C(u, u).

• Blomqvist’s β: Suppose that X̃n and Ỹn are the medians of the samples X1, · · · , Xn and
Y1, · · · , Yn, respectively. In order to summarize information about the dependence be-
tween X and Y, Blomqvist (1950) suggested dividing the x− y plane into four regions
by drawing the lines x = X̃n and y = Ỹn and comparing the following quantities:

– n1 : the number of points lying in either the lower left quadrant or the upper right
quadrant;

– n2 : the number of points in either the upper left quadrant or the lower right
quadrant.

Consequently, the definition of βn, which is equivalently called Blomqvist’s beta, is
given by

βn =
n1 − n2

n1 + n2
= −1 + 2

n1

n1 + n2
.

If n is even, then no sample point falls on either of the lines x = X̃n and y = Ỹn, and
it follows that both n1 and n2 are even. If n is odd, however, then either one or two
sample points lie on the lines defined by the sample medians. In the case of a single
point lying on a median, Blomqvist (1950) proposed not to count the point altogether.
In the latter case, one point has to fall on each line: one of them is assigned to the
quadrant touched by the two points, and the other is not counted. This allows both n1
and n2 to remain even. The population analogue of βn is
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β = P[(X− x̃)(Y− ỹ) > 0]− P[(X− x̃)(Y− ỹ) < 0],

where x̃ and ỹ denote the population medians of X and Y, respectively. Next, on using
the facts that

–

P[(X− x̃)(Y− ỹ) > 0] = P[(X− x̃) > 0, (Y− ỹ) > 0]

+P[(X− x̃) < 0, (Y− ỹ) < 0];

and P[X > x̃, Y > ỹ] = Pr[X < x̃, Y < ỹ];
– From the fundamental Sklar’s (1959) theorem H(x, y) = C(F(x), G(y)); one

can write

β = 4C
(

1
2

,
1
2

)
− 1. (6)

As β is only a function of C, it is possible to write it in terms of α whenever C ∈ Cα,
where α is the set of parameters associated with the copula C.

• Left-Tail decreasing property and Right-Tail increasing property: Nelsen (1999)
showed that X(Y) is left-tail decreasing i.e., LTD(Y|X) and LTD(X|Y) if and only if
for all u, u′, v, v′ such that 0 < u ≤ u′ ≤ 1 and 0 < v ≤ v′ ≤ 1, if C(u,v)

uv ≥ C(u′ ,v′)
u′v′ .

Again, from Nelsen (2006), Theorem 5.2.5, X(Y) is right-tail increasing if

– RTI(Y|X) if and only if for any v ∈ (0, 1) 1−u−v+C(u,v)
1−u is nondecreasing in u.

– RTI(Y|X) if and only if for any u ∈ (0, 1) 1−u−v+C(u,v)
1−v is nondecreasing in v.

For an alternative criteria see (Nelsen 2006, p. 197, Theorem 5.2.12 and Corollary 5.2.11).
Moreover, regarding stochastically increasing, left-tail decreasing and right-tail in-
creasing properties, we provide the following equivalent conditions (see, Nelsen 2006,
p. 197, Corollary 5.2.11 and Theorem 5.2.12), which are utilized later on in determining
the dependence structure for the best fitted bivariate copula:

In the next, we discuss the stochastic increasing (SI) property for a copula beginning
with the definition given in the following result.
Result 1. Let X and Y be continuous random variables with a copula C. Then

– SI(Y|X) if and only if for any v ∈ [0, 1], C(u, v) is a concave function of u;
– SI(X|Y) if and only if for any u ∈ [0, 1], C(u, v) is a concave function of v.

Result 2. Let X and Y be continuous random variables with a copula C. Then:

– SI(Y|X), then LTD(Y|X) and RTI(Y|X),
– SI(X|Y), then LTD(X|Y) and RTI(X|Y).
Regarding the LTD (RTI) property, they are also discussed in Section 4 In the next

section, we briefly discuss the types of insurance data selected for our study and associated
goodness of fit based on a best-fitted bivariate copula for each of the scenarios considered
in this paper.

3. Application to Insurance Data
3.1. Data and Variable Selection

We particularly focus on insurance claim data that are related to auto/motor accidents.
The reason for selecting this specific domain is already established in the introduction.
All of the datasets referred to in this paper can be found in the Computational Actuarial
Science collection and are accessible through the “CASdatasets” package in R. Additionally,
we used the “VineCopula” package to find the best-fitted copula model for each pair of
variables in each dataset used. The “VineCopula” package takes the selected variables and
finds the best copula model from the families available in the package. This choice of copula
is based on test diagnostics such as AIC, BIC, and the log-likelihood value. A generic R-code
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based on the Vine Copula package which is used for selecting the best possible bivariate
copula on the different insurance datasets is provided in the Appendix A. The next section
details how the variables from each dataset were selected and the associated best-fitted
bivariate copula models.

3.1.1. Dataset 1 (Australian Automobile Claim Data)

This dataset records the number of third-party claims in a 12 month period between
1984 and 1986 in each of the 176 local government areas in New South Wales, Australia. Ad-
ditionally, the dataset includes the name of the local government, the number of third-party
claims filed, the number of people killed or injured in automobile accidents, the population
size, and the population density. Australia is historically known for its low population
density. This is due to extreme climate of the continent. With this in mind, we decided to
include the population size of each city in New South Wales as opposed to the population
density because the density is skewed by the lack of inhabitants in Australia. For this
dataset, we plan to study dependence measure among 4 different variables in pairwise
comparison structure. We argue that the selection of these pairwise comparisons are legit-
imate in nature. The Table 1 below provides a key for the abbreviations we use for each
variable throughout our study.

Table 1. Variable description.

Abbreviation Variable

ACC Number of accidents

TPC Number of third-party claims filed

K/I Number of people killed or injured in an accident

Pop Population of the area

Furthermore, in each of these bivariate modeling setups, we provide scatterplots (on
actual values as well as on a logarithmic scale) to have an initial glimpse of their dependence
structure. The scatterplot based on a log transformation of the original variable is due to the
fact that in visualizing numerical data which ranges over several magnitudes, conventional
wisdom says that a log transformation of the data can often result in a better visualization.
As such, the scatterplots in logarithmic scale are also provided to see the skewness of the
original data values. Next, we provide each pairwise model description to be considered in
our analysis.

Model 1 (AUS 1): The first pair of variables that were selected were the number of
accidents (ACC) and the population size (POP). These were chosen because we expected
more accidents to occur in regions with a higher population relatively speaking. From the
scatterplot in Figures 1 and 2, it appears that there exists a strong linear relationship between
these two variables, which is also supported by the associated Kendall’s τ and Spearman’s
ρ values in Table 2 (Column 4, 5, Row 1).
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Figure 1. Scatterplot of the Model 1 data.

Figure 2. Scatterplot of the Model 1 data (on a natural log scale).

Model 2 (AUS 2): In this model, we consider the two concomitant variables under
study, namely the number of Third-Party Claims filed (TPC) and POP. TPC happens if a
driver’s negligence results in the injury or death of another driver; the affected party or
their family have the ability to file a claim against the guilty driver’s insurance company.
We consider studying the dependence between TPC and the population of a given region
in Australia because one would expect a larger volume of third-party claims to be filed in
regions with higher populations. Needless to say, this is a good source of information for
car insurance providers. From the scatterplot in Figures 3 and 4, it appears that there exists
a strong linear relationship between these two variables, which is also supported by the
associated Kendall’s τ and Spearman’s ρ values in Table 2 (Column 4, 5, Row 2).

Model 3 (AUS 3): Next, we consider studying the dependence of a region’s population
(POP) and the number of people killed or injured in an accident (K/I). Once we discovered
that there was a strong dependence relationship between the number of third-party claims
and the population size of a region, we realized that since third-party claims are a result of
accidents with injuries involved, the number of people killed or injured could be greater in
higher-populated areas where more third-party claims are filed. From the scatterplot in
Figures 5 and 6, it appears that there exists a strong linear relationship between these two
variables, which is also supported by the associated Kendall’s τ and Spearman’s ρ values
in Table 2 (Column 4, 5, Row 3).
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Figure 3. Scatterplot of the Model 2 data.

Figure 4. Scatterplot of the Model 2 data (on a natural log scale).

Figure 5. Scatterplot of the Model 4 data.
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Figure 6. Scatterplot of the Model 4 data (on a natural log scale).

Model 4 (AUS 4): In this model, we consider studying the level of dependence
between the number of people injured or killed in an automobile accident (K/I) and the
corresponding number of third-party claims filed (TPC). As defined above in Model 2,
third-party claims are filed in the event of an accident in which other drivers suffer injury
from the negligence of another. While injury and death are not exclusive to the third party,
we found a positive trend in the scatterplot of these two variables (Figures 7 and 8). Hence,
we chose to fit a copula to these two concomitant variables.

The non-exhaustive reasons for selecting four different models are as follows:

• For multicomponent insurance claim data, instead of a single representative value
for the tail dependence measure, which would not reveal the partial dependence
structure(s), it is better to observe the tail dependence structure pairwise. This way,
one can eliminate to some extent the effect of lurking variable(s).

• Pairwise dependence measures help to identify (possibly one way or the other) which
of the two components would be the most important to influence the associated
portfolio risk.

• A class of bivariate copulas can be listed adequately for dealing with such types
asymmetric insurance data, for example, where a specific class of extreme-value
copulas or Archimedean copulas could be useful.

Figure 7. Scatterplot of the Model 4 data.
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Figure 8. Scatterplot of the Model 4 data (on a natural log scale).

3.1.2. Dataset 2 (Swedish Motor Insurance Data)

This dataset represents the insurance information of 2182 motorists collected by the
Swedish Committee on the Analysis of Risk Premium in 1977. It consists of the number
of kilometers driven by a motorist (grouped into 5 categories), the geographical zone
of a vehicle (grouped into 7 categories), the bonus variable (grouped into 7 categories),
the make of the vehicle, the number of years that a motorist has been insured, the number
of claims a motorist has filed, and the sum of the payments made by a motorist. We
excluded the geographic zone and make of the vehicle variables from our consideration
because while they are quantitatively defined, they describe qualitative variables and do
not have a defined ordering. Due to the way the kilometers’ variable was defined, we were
unable to come up with a model that showed a large amount of dependence, so the results
of that model are excluded from this paper. Instead, we chose to study the dependence
and subsequently search for the best possible bivariate copula model with the following
variables of interest:

1. X1: Insured (number of years a motorist has been insured).
2. X2: Claims (sum of claim payments).

The scatterplots in Figures 9 and 10 show a linear relationship between the variables.

Figure 9. Scatterplot of the Swedish motor data.
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Figure 10. Scatterplot of the Swedish motor data (on a natural log scale).

The Tables 2 and 3 below detail the results for each model. Note that all of these
computations were performed in R.

Table 2. Level of dependence between model variables.

Dataset/Model X1 X2 Kendall’s τ Spearman’s ρ

AUS 1 ACC Population 0.8123 0.9452

AUS 2 TPC Population 0.8078 0.9479

AUS 3 K/I Population 0.7981 0.9373

AUS 4 K/I TPC 0.8372 0.9611

Swedish Motor Policy Holder
Years

Sum of
Payments 0.7411 0.9030

Table 3. Model diagnostics and goodness of fit statistics.

Dataset/Model Best-Fitted
Copula

Parameter
Estimates AIC BIC Log

Likelihood

AUS
1/Model 1 Frank (18.42) −377.38 −374.21 189.69

AUS
2/Model 2 Frank (18.33) −376.58 −373.41 189.29

AUS
3/Model 3 Tawn 1 (5.01, 0.95) −373.11 −366.76 188.55

AUS
4/Model 4 Student t (0.96, 4.61) −442.33 −435.99 223.16

Swedish
Motor BB6 (1.59, 2.81) −4095.96 −4084.58 2049.98

Table 2 outlines the level of concordance between each pair of variables in each model.
When two variables are concordant, this means that higher values of one variable are asso-
ciated with higher values of the other and vice versa for lower values. If these coefficients
are closer to 0, this indicates low dependence or even independence. Conversely, if these
coefficients are closer to 1, it tells us that the variables are dependent upon one another.
From Table 2, we see that each pair of variables exhibits a strong level of dependence, since
the concordance coefficients are close to 1. Table 3 represents various model diagnostics
along with parameter estimates corresponding to the best-fitted bivariate copula. We expect
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the AIC and BIC to be minimal and the log likelihood to be maximal. Each copula shown
in Table 3 represents the best fit for the pair of variables that were being tested according to
the AIC, BIC, and log-likelihood criteria. The c.d.f. and p.d.f. plots corresponding to the
best-fitted bivariate copulas listed in Table 3 are also provided in the Figures 11–14.

Figure 11. Gaussian(0.8) c.d.f. and p.d.f.

Figure 12. Frank c.d.f. and p.d.f. with α = 18.42.

Figure 13. Frank c.d.f. and p.d.f. with α = 18.33.
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Figure 14. BB6 c.d.f. and p.d.f. with θ = 1.59 and δ = 2.81.

4. Structural Properties of the Fitted Bivariate Copula

This section presents the analysis of certain structural properties of the copulas. We
begin our discussion with the Tawn type-1 copula.

4.1. Tawn Type-1 Copula

We can say the following regarding Tawn type-1 copula that was found to be the
best-fitted bivariate copula for Model 3 from the dataset 1:

• The Tawn copula is a nonexchangeable extension of the Gumbel copula with three
parameters (also known as the asymmetric logistic copula).

• Tawn copula’s definition is based around so-called Pickands dependence functions, see
Franc et al. (2011) for pertinent details. Equation (4) in Franc et al. (2011) presents the
way one can compute the density in the probability space using a Pickands function M:

C(u, v) = (u, v)A(w),

with w =
log(u)

log(uv) .

• The Tawn copula’s Pickand function can be written as

M(t) = (1− ψ2)(1− t) + (1− ψ1)t +
[
(ψ1(1− t))θ + (ψ2)

θ
]1/θ

,

with t ∈ [0, 1], 0 ≤ ψ1, ψ2 ≤ 1, and θ ∈ [1, ∞). The Tawn copula is in actuality a
Gumbel copula with two additional asymmetry parameters: ψ1 and ψ2. If we set ψ1
and ψ2 equal to unity, the Gumbel copula is obtained. In the VineCopula package in R,
the Tawn type-1 copula refers to ψ1 = 1.

• For this copula, the lower-tail dependent λL = 0. The corresponding upper-tail
dependent λU = 0.8288, for the AUS3/Model 3 data for which Tawn type-1 copula
appeared to be the best fit.

4.2. Frank Copula

The Frank copula (see, Nadarajah et al. 2017) has the following form:

C(u, v) = logα

[
1 +

(αu − 1)(αv − 1)
α− 1

]
,

for α > 0. In this case, the positive dependence corresponds to 0 < α < 1, independence
corresponds to α → 1, and negative dependence corresponds to α > 1. Next, for this
bivariate copula, we can write the following:

• The associated dual of the copula is denoted by C̃(u, v) and is given by
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C̃(u, v) = u + v− C(u, v) = u + v− logα

[
1 +

(αu − 1)(αv − 1)
α− 1

]
,

• Again, the associated co-copula denoted by C∗(u, v) and is given by

C∗(u, v) = 1− C(1− u, 1− v) = 1− logα

[
1 +

(
α1−u − 1

)(
α1−v − 1

)
α− 1

]
.

For the bivariate Frank copula, we have the following:

• The Kendall’s τ will be τ = 4
[

3 log(α)(−2 log(1−α)+log(α)+2)−6Li2(α)+π2

6 log2(α)

]
− 1,

where Li2(α) is the PolyLog function (on using Mathematica).
• The Spearman’s ρ will be

ρ =∫ 1

0

v((1− α) log(α− 1)αv + (α− 1)αv log((α− 1)αv)− α log(α)(αv − 1))
log(α)(αv − 1)(αv − α)

dv− 3.

• The Blomqvist’s β expression will be

β = 4 logα

[
1 +

(
α

1
2−1
)2

α− 1

]
.

Tail dependence property of the bivariate Frank copula:
• For the upper-tail dependence (using L’Hôpital’s rule)

λU = lim
u↑1

1− 2u + logα

[
1 + (αu−1)2

α−1

]
1− u

H
= − lim

u↑1

(
− 2 +

(
1

1 + (αu−1)2

α−1

)(
2(αu − 1)(αu log α)

(α− 1) log α

))
= 0.

Therefore, Frank’s copula is upper-tail dependent. Next, we determine if it is lower-tail
dependent. Consider the limit

λL = lim
u↓0

logα

[
1 + (αu−1)2

α−1
]

u

H
= lim

u↓0

2(αu − 1)(αu)(log α)2

1 + (αu−1)2

α−1

= 0,

again, on using L’Hôpital’s rule. Consequently, the Frank copula is also lower-tail
independent. Therefore, the bivariate Frank copula is asymptotically independent.

LTD and RTI property of the bivariate Frank copula:
Consider the following:

∂2

∂u2 Cα(u, v) = − log(α)αu(αv − 1)(αv − α)

(α− αu + αu+v − αv)2 .

Therefore, ∂2

∂u2 Cα(u, v) ≤ 0 for 0 < α < 1; thus, Cα(u, v) is a concave function of u
for 0 < α < 1. It follows that if X and Y are continuous with the Frank family cop-
ula, then SI(Y|X) (and by symmetry SI(X|Y) as well). Again, from Theorem 5.2.12
(Nelsen (2006)) this implies the associated BB8 family copula also holds the LTD and
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RTI property, i.e., LTD(Y|X) and RTI(Y|X), and because of symmetry, LTD(X|Y) and
RTI(X|Y).

Furthermore, we see that both models are highly correlated in the center of their re-
spective distributions. The Table 4 below summarizes the dependence structures discussed
above and displays the generator function of this particular copula:

Table 4. Dependence of the Frank copula.

Generator Function φ(t) = − log
(

exp(−αt)−1
exp(−α)−1

)
Blomqvist β (AUS 1) 0.9348

Blomqvist β (AUS 2) 0.9329

Upper-Tail Dependence 0

Lower-Tail Dependence 0

Kendall’s τ given earlier

4.3. Bivariate t Copula

The t copula (see Embrechts et al. (2001) or Fang and Fang (2002) and the references
cited therein) can be thought of as representing the dependence structure implicit in a
multivariate t distribution. The two-dimensional unique t copula associated with a bivariate
random vector Y = (Y1, Y2)

T , is given by

Ct
δ(u, v) =

∫ t−1
δ (u)

−∞

∫ t−1
δ (v)

−∞

Γ((δ + 2)/2)

Γ(δ/2)
√
{(πδ)2|Σ|}

[
1 +

yTΣ−1y
δ

]− δ+2
2

dy1dy2,

where t−1
δ (.) denotes the quantile function of a standard univariate tδ(.) distribution.

Furthermore, Σ is the correlation matrix given by

Σ =

[
1 ρ
ρ 1

]
,

where ρ is the correlation coefficient between Y1, and Y2. The determinant of this matrix,
denoted by |Σ|, is given by |Σ| = 1− ρ2. Next, one may verify the following regarding the
dependence structure for a bivariate t copula

• Kendall’s τ will be

τ =
2
π

arcsin ρ,

for the proof, see Fang and Fang (2002).
• The tail dependence coefficient (associated with a bivariate t copula as given earlier) λ

is given by

λ = 2tδ+1

(
−
√
{δ + 1}

√
{1− ρ}√

{1 + ρ}

)
,

where tδ+1 is the univariate central student t distribution with (δ + 1) degrees of
freedom and ρ is the correlation coefficient. It is important to note that a student
t-copula may exhibit both the positive and negative tail dependence, although the
“overall” association is negative ρ < 0. Furthermore, a student t-copula with a large
value of δ tends to have a 0 tail dependence even though the correlation is 0. The t-
copula can capture the asymptotic dependence even when the variables are negatively
(inversely) associated (see, Embrechts et al. 2001). In the t-copula formula, as δ
increases, the tail dependence weakens, and thus, the probability of occurrence of
extreme values reduces.
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For illustrative purposes, we provide the following picture in Figure 15 (generated
through the https://copulatheque.shinyapps.io/copulas/ (accessed on 15 June 2022)
created by BenGraeler) showing a student t-copula with ρ = −0.3 and δ = 1, which
gives the value of Kendall’s τ = −0.19 and upper- and lower-tail dependence of
λ = 0.19.

Figure 15. Student t − copula density with δ = 2 and with Kendall’s τ = −0.19.

The estimation of a student t-copula is quite difficult. Noticeably, the marginal tails
(for bivariate and/or multivariate data distributions) of financial data are usually
heavy tailed, and hence this should be fitted by a t-distribution and not by a Gaussian
distribution. In addition, the dependence in joint extremes of bivariate and/or multi-
variate financial data suggests a dependence structure allowing for tail dependence.
Consequently, the use of t-copulas has become popular for modeling dependencies
in financial data. Some recent applications have been: analysis of nonlinear and
asymmetric dependence in the German equity market Sun et al. (2008); estimation of
large portfolio loss probabilities Chan and Kroese (2010); and risk modeling for future
cash flow Pettere and Kollo (2011). See also Dakovic and Czado (2011).
One may subsequently obtain the expressions for the upper-tail as well as lower-
tail dependence from the above. For details, see (Demarta and McNeil 2005, p. 4,
Proposition 1).

4.4. BB6 (Joe–Gumbel) Copula
The BB6 copula (see Joe 1997) has the following form:

C(u, v) = 1−
(
1− exp(−[(− log(1− uθ))δ + (− log(1− vθ))δ]

1
δ ))

1
θ , u ≥ 0, v ≤ 1, θ ≥ 1, δ ≥ 1.

where u = 1− u and v = 1− v.

https://copulatheque.shinyapps.io/copulas/
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Tail dependence property of the bivariate BB6 copula
The lower-tail and upper-tail dependence coefficients can be calculated using the same

methodology that we used for the Frank copula. For the upper-tail dependence coefficient,
we obtain the following:

λU = lim
u↑1

1− 2u + 1−
(
1− exp(−[2(− log(1− uθ))δ]))

1
θ

1− u
H
= lim

u↑1
2− 2

1
δ (1− u)θ−1 exp [2

1
δ log(1− (1− u)θ)](1− exp [2

1
δ log(1− (1− u)δ])

1
θ−1 = 2− 2

1
θδ .

Similarly, for the lower-tail dependence coefficient:

λL = lim
u↓0

1−
(
1− exp(−[2(− log(1− uθ))δ]))

1
θ

u
H
= lim

u↓0
2

1
δ (1− u)θ−1 exp [2

1
δ log(1− (1− u)θ)](1− exp [2

1
δ log(1− (1− u)δ])

1
θ−1 = 0.

Therefore, the BB6 copula is not asymptotically independent. However, from the given
expression for λU , it is quite clear that as both θ and δ are close to 1, λU is close to zero. This
would imply that the BB6 copula is asymptotically independent in such a case. Furthermore,
from the expression for λU , it appears that as the values of δ and θ increases, the value of
λU increases. This implies the fact that this copula might not be that useful to model the
dependence structure for financial data in general, as such tend to exhibit tail dependence,
especially lower-tail dependence. However, if the data suggests that the estimated values
of the parameters δ and θ are larger than one, then it may be utilized to model financial
data, such as insurance data that exhibit some amount of tail dependence.

LTD and RTI property of the bivariate Frank copula:
Consider the following:

∂2

∂u2 Cθ,δ(u, v)

=

((1− u)θ − 1
)2
(

exp

(((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

)
− 1

)2−1

×
[

A1 × A2

{
A3 + (1− u)θ × (B1 + B2 + B3)

}]
,

where

A1 = (1− u)θ−2
(
− log

(
1− (1− u)θ

))δ−2

×
[

1− exp

(
−
((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

)] 1
θ

,

A2 =

[(
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
] 1

δ−2
,

A3 =
(

θ + (1− u)θ − 1
)

log
(

1− (1− u)θ
)((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
)

×
[

exp

(((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

)
− 1

]
,

B1 = −
(
− log

(
1− (1− u)θ

))δ
((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

,
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B2 = θ

[(
− log

(
1− (1− u)θ

))δ
((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

−δ
(
− log

(
1− (1− v)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
]

× exp

(((
− log

(
1− (1− u)θ

))δ
+
(
− log

(
1− (1− v)θ

))δ
) 1

δ

)
,

B3 = (δ− 1)θ
(
− log

(
1− (1− v)θ

))δ
.

Therefore, ∂2

∂u2 Cθ,δ(u, v) ≤ 0 for θ > 1 and for any δ ≥ 1; thus, Cθ,δ(u, v) is a concave
function of u for θ > 1 and for any δ ≥ 1. It follows that if X and Y are continuous with
the BB6 family copula, then SI(Y|X) (and by symmetry SI(X|Y) as well). Again, from
Theorem 5.2.12 (Nelsen 2006, p. 197) this implies the associated BB8 family copula also
holds the LTD and RTI property, i.e., LTD(Y|X) and RTI(Y|X) and because of symmetry
LTD(X|Y) and RTI(X|Y). Note that for 0 < θ ≤ 1, it is inconclusive for this copula
family. In Table 5, below, we provide the the summary of the dependence measures for the
BB6 copula for the Swedish motor insurance data.

Table 5. Dependence structures of the BB6 copula for the Swedish motor insurance data.

Generator Function φ(t) = (− log[1 − (1 − t)θ])δ

Blomqvist Beta (General)
β = 4

(
1−

(
1− e−[(− log(1− 1

2
θ
))δ+(− log(1− 1

2
θ
))δ ]

1
δ

) 1
θ
)

Blomqvist β (Swedish Auto) 0.7397

Upper-Tail (Swedish Auto) 2− 2
1
δθ = 0.8321

Lower-Tail Dependence 0

Kendall’s τ 1 + 4
δθ

∫ 1
0 (− log(1− (1− t)θ)(1− t)(1− (1− t)−θ)dt

5. Concluding Discussion and Remarks

In this article, we considered several well-known bivariate copulas, including the
Tawn type-1, Frank, and BB6 families of copula based on the R package VineCopula for
fitting two well-known insurance datasets arising out of automobile insurance. In addition,
we also provided several useful structural properties of the selected bivariate copulas such
as the LTD and RTI property, primarily focusing on the tail dependence properties, which
are very important for studying dependence for insurance claims. This study shows that
certain types of Archimedean copula with heavy tail dependence property are a reasonable
framework to start with in terms of modeling insurance claim data, both in the bivariate as
well as in the case of multivariate domains as appropriate. The goodness-of-fit statistics are
provided in terms of AIC and BIC values as well as the log-likelihood values. As future
research, we will be focusing on datasets from other domains (such as health care data),
and we will consider the fitting to a trivariate and in higher dimensions as well based on
the vine copula methodology. We will report our findings in a separate article. The tail-
dependence coefficient has several applications, including: validation and verification
of weather and climate models in reproducing extreme events; analysis of simultaneous
extremes; probabilistic assessment of occurrences of extremes; and understanding climate
variability. For example, by deriving tail-dependence coefficients for simulations of a
numerical weather prediction model or a climate model, one can evaluate whether these
models produces dependencies as seen in the observations. These approaches are not
limited to precipitation, they also include a wide variety of earth science variables. This
study of extreme tail dependence on local, regional, and global scales can assist in planning
and policy making as well as validating numerical models, thus providing a valuable tool
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for understanding how extreme events impact society. For future policy implementation
out of this study, one may mention the following:

• Classes of extreme values of copulas (such as Tawn type-1, Frank, and BB6) are useful
in modeling dependence for insurance claim data from the automobile industry that
are asymmetric in nature.

• All the fitted bivariate copulas have one property in common, which is the nonzero
value of the upper-tail dependence measure. This implies the fact that one observes an
extremely large value for one component together with an extremely large value for the
other component, a feature which is expected for insurance claim dataset-generated
dependence structure. As a consequence, one can start with bivariate and multivariate
copulas (as the case may be) that have a nonzero value of the upper-tail dependence
measure λU when examining the dependence structure related to insurance claim
data from the automobile industry.

• As a future study, it will be interesting to see whether such a class of extreme value
copulas can be useful for insurance claims from other industries. Furthermore, for port-
folio risk assessment, the effectiveness of such classes of copulas would be the subject
matter of future research.
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Appendix A. R Package: Vine Copula

Here, we provide a generic R-code based on the Vine Copula package which is used in
the main body of the text for selecting the best possible bivariate copula of the four different
insurance datasets:

i n s t a l l . packages ( " copula " )
l i b r a r y ( " copula " )

m<−pobs ( a )
n<−pobs ( b )
i n s t a l l . packages ( " VineCopula " )
l i b r a r y ( " VineCopula " )
selectedCopula <− BiCopSelect (m, n , f a m i l y s e t = NA)
summary ( se lectedCopula )

Remark A1. In the above code, a and b are the transformed (on a log (to the base e) scale) variable
values corresponding to two components of the associated bivariate data.

The best-fitted bivariate copulas mentioned here do not possess a closed form of
expression in terms of their density function (i.e., the p.d.f.). However, in order to obtain
the p.d.f. of each of these copulas, one may use R. Next, we provide an example as to how
one can simulate from the p.d.f. of a Survival BB1 copula with specific parameter choices
in R.
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Simulate from a b i v a r i a t e r o t a t e d BB1 copula
(180 degrees ; ‘ ‘ s u r v i v a l BB1 ’ ’ )
i n s t a l l . packages ( " VineCopula " )
l i b r a r y ( " VineCopula " )

SBB1<− BiCop ( family = 17 , par =0 .63 , par2 = 1 . 0 9 )
sim<− BiCopSim ( 1 0 0 0 , SBB1 )
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