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Abstract: The paper’s primary purpose is to better monitor shocks; therefore, reliable scientific
methods should be used to predict, monitor, and implement those events. In this paper, tourism
prices are studied as an economic, I(2) and social phenomenon for better performance. The selection
of inadequacies in price time series is analysed. The state-of-the-art proposed methodology step of
nominal to real prices is based on monthly data using the cointegrated-vector-autoregressive model
(CVAR). This is the key feature selection on time-series properties in the economy and supported
software(s). An attempt at a CVAR model with five seasonally unadjusted macroeconomic variables
is developed. It introduces a meaningful, genuine and indispensable new data vector of transformed
variables, and this stepwise process is more appropriate against the wrong model specification. The
results for the period of economic crises show that the proposed model is reliable from nominal to
real prices, and the researchers implement normality to price modelling in its econometric mock-up
phase. Overall, the proposed model predicts testable events for up to 48-months.

Keywords: nominal to real price modelling; cointegrated-vector-autoregressive-model; Eurozone
experiment; time-series data; macroeconomic prices

1. Introduction

Predicting tourism industry prices are essential for both inbound and outbound tourist
destinations (Gričar and Bojnec 2019). Understanding the market functioning and economic
behaviours; the importance of prices is critical to market economies (Couix 2021; Lemieux
2020). Therefore, the study’s objective is to develop a normal distributed econometric
model for prices based on the methodology from nominal to real price modelling (Ross
2021; Chen et al. 2021). Our study is motivated to complement the applied economics
methodology using publicly available secondary data (Couix 2021).

The primary objective of this research is to develop a cointegrated vector error correc-
tion (CVAR) model following Cubadda (1999), Busetti (2006), Fisher et al. (2015), Rahul
et al. (2018) and Archontakis and Mosconi (2021) for better diagnosis and prediction in
the financial and tourism industry. We develop and discuss time series, seasonal, I(2)
and misspecification patterns for tourism inflation (Braun et al. 2013) without performing
deseasonalisation to keep the data most informative (Juselius 2009).

The identified research gap has been discussed in the literature, but more often theo-
retically and less frequently with an applied case study. Therefore, we aim to fill the gap
in the literature by demonstrating the importance of variables in aggregate values in the
economy. While volatility is high in financial time series, gross domestic product (GDP) is
treated as I(0), inflation as I(1) and prices as I(2).

The novelty and contribution of this study are to develop an econometric model
of mixture I(1) and I(2) (Fisher et al. 2015), while I(2) differentiation is rarely presented
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in scientific literature and therefore worth researching. Moreover, the research aims to
investigate hypotheses for short-term seasonal effects (Busetti 2006) in prices over the usual
business cycles (Cubadda 1999). A step-by-step presentation shows the correctness of
econometric technical processing of time series in I(1) processing, while this is mostly in
general or partially omitted in applied quantitative tourism research.

Econometric methods allow analyses for price spreads and seasonal effects to vary
in response to shocks (Alghalith 2007). Our procedure leads to a more robust model for
misspecification, which is essential to avoid spurious results. A unique contribution is
related to the two-sided effects on the economy and the possible existence of seasonal
impacts on tourism prices (Claverla and Torra 2014) in the Eurozone, focusing on Slovenia
as a case study using monthly statistical time series data.

The data vector is split into the testable period. The division of the time vector follows
the Organisation for Economic Cooperation and Development (OECD 2013), which states
that green tourism has to be started and will last for many years. Therefore, the data
vector (2000–2017) considers tourism prices as critical growth factors. During these periods,
potential shocks can be related to specific events and developments such as Slovenia
joining the European Union (EU) and adopting the euro, experiencing high food prices,
witnessing economic crises, and economic growth. The focus is on the hospitality sector
within the tourism industry, which makes up the most significant part of the tourism
industry in Slovenia.

The paper’s primary goal is to present volatilities in economics time series data to
show how they can be treated in econometrics beyond misspecification tests. The rest
of the paper is divided into four sections: literature review, the methods and data used,
presentation of the results, and discussion.

2. Literature Review

In Dash and Parida’s (2013) and Kumar and Patel’s (2021) studies, cointegration was
used to model tourism demand and forecasting. The evidence was linked to unit root tests
and structural breaks (Capelli et al. 2021; Lin and Huang 2012). In addition, Kunst and
Frances (2015) investigated seasonal time shifts in weekly time series.

Some studies (Claverla and Torra 2014) have identified continuity cycles; there have
been few research efforts aimed at analysing time series data (Qi et al. 2012) in a dynamic
regression model using a vector autoregressive model (VAR) (Kulendran and Witt 2001).
The stability of responses to price changes can be affected by different determinants in
people’s expectations and the national economic situation (Smeral 2012).

Time-varying volatility is in the direction of a dynamic regression model (Harvey 1989;
Song et al. 2009), as the model VAR (Juselius 2015; Koukouritakis et al. 2015). This can imply
stubbornness in the specification of the tourism model and allow for structural instability
(Harvey 1989; Song et al. 2009; Koukouritakis et al. 2015). The time-varying parameters
approach (Braun et al. 2013) gives more weight to the most recent data evaluating tourism
demand and price models and leads to more accurate projections than the commonly used
regression models (Kulendran and Witt 2001). This step is essential to capture structural
changes or unanticipated shocks (Juselius 2015) in econometric models of tourism (Song
et al. 2009; Claverla and Torra 2014; Kumar and Patel 2021).

The time-varying parameter approach (Qi et al. 2012) is functional when dealing with
structural changes (unexpected shocks) (Kulendran and Witt 2001; Koukouritakis et al.
2015) but does not provide robust results when testing the assumption that the value of
the elasticity varies depending on the phase of a particular business cycle (Smeral 2012) of
the economy or unexpected shock (Juselius 2015; Kumar and Patel 2021). This is crucial
for predicting conditions (Claverla and Torra 2014) typical of an economic downturn or
stagnation, with different price consequences at various stages of prosperity (Smeral 2012).
Moreover, using the recursive ordinary least squares (OLS) method shows that the assump-
tion of coefficient constancy is too restrictive (Song et al. 2009) and that macroeconomic
variables are highly dependent (Juselius 2015).
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This paper critically examines the approach of simple static regression analysis, a
commonly used statistical technique (Johansen 2012; Juselius 2015), and highlights the
validity of the underlying assumption of simple static regression analysis to draw attention
to some shortcomings where this method cannot be routinely used. This is the case when
variables are non-stationary (Kulendran and Witt 2001), either because they exhibit a
deterministic trend (Papell and Prodan 2014) or, more commonly in macro econometrics, a
stochastic trend (Juselius 2015; Huang et al. 2015).

A demonstration of the econometric model is evidenced by the econometric compo-
sition agreeing and suggesting the non-stationary variables (Johansen 2012) when imple-
menting the CVAR model, which can better express the understanding of the variation of
the time series vector (De Mello and Nell 2005). CVAR application can be highly relevant
to a better understanding of time series data. The concern about the misuse of correlation
coefficients between economic variables is also applicable in determining variables. The
CVAR thwarts the problem of trend adjustment by specifying the general VAR in terms
of an error correction that includes all deterministic components: Trend, Constant, and
Dummy Variables (Juselius 2015; Dash and Parida 2013). In a dynamic regression model
such as the VAR, a dummy variable controls for the unexpected shock but leaves the
measurement unaffected. This contrasts with a regression model where a dummy variable
usually eliminates the measure of the irregularities in time-series development (Kulendran
and Witt 2001; Juselius 2009).

Emerging and developing economies have mostly undergone a transition and have
suffered from an inflation treatment that exceeded the main constant several times. There-
fore, inflation was maximised by policy changes and minimised by external influences,
such as the emergence of integration content. A subdued inflation rate was usually seen as
costly in output losses and adjustments of tourism prices to seasonal changes. However, a
better understanding of the role of assumptions has given policymakers hope that credible
monetary and industrial policies can achieve disinflation without negatively affecting
actual economic activity in tourism (Baxa et al. 2015). The findings reveal deficiencies in
research on macroeconomic variables in tourism and economics on the appropriateness of
time series.

3. Materials and Methods

As a starting point is an illustrative example of two time-series Xt and Yt, t = 1, . . . , T,
and a substantive theory (Kulendran and Witt 2001):

Y = β·X, (1)

that X influences Y in a linear fashion formulation.
The data obtained may not be in the same relation, and there is usually no theory

behind them. Haavelmo (1943) argued that we need some deterministic proposal and
problem to solve this stochastic property in odds, which should be as elastic as possible
(Juselius 2022), which has been further developed by Johansen (2012).

We introduce:
Yt = β·Xt + εt, t = 1, . . . , T, (2)

with the error term εt in a statistical relation (Juselius 2009).
When the model deals with the hypothesis about the parameter β that β = 0, linear

regression and correlation analysis are essential. In this sense, the independent variables
affect the dependent variable in a time frame on some lag, but the independent variables
do not affect each other. First, the regression approach is used to estimate the effect of X on
Y using the following expressions (Johansen 2012):

β́ =
∑T

t=1 Xt·Yt

∑T
t=1 X2

t
, and (3)
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σ́ = T−1·∑T
t=1 (Yt − β́·Xt)

2
, (4)

by calculating the least-squares estimators and the residual error variance. These interpre-
tations are then used to perform boundary behaviour inference by analysing the t-ratio:

tβ−β0 =
(
∑T

t=1 X2
t

)1/2
· β́− β0

σ́
, (5)

with the quintiles of a standard normal distribution. The regression approach straggles well
if the estimators β́ and σ́2 are halt to their analytical observes, β and σ2 and if the boundary
behaviour distribution tβ−β0 is close to the Gaussian distribution (Johansen 2012).

Second, a widely known problem of normally distributed residuals εt is i.i.d. N
(
0, σ2)

in regression analysis that does not link empirical regression to theoretical values. There is
also the issue of stationarity and Xt is nonstochastic (Qi et al. 2012). Similarly, if (Xt, Yt),
then is i.i.d. Gaussian with variances σ2

1 , σ2
2 , and covariance σ12. The theoretical correlation

is then ρ = σ12/σ1·σ2, and the maximum likelihood estimator of ρ is ρ́. In addition to saying
it has a publicly refreshed idea not to check the model and compare the econometric model
as it fits the data, it just seems to click on the computer as a very convenient task (Johansen
2012). Testing the model with multiple indicators and plots gives the researcher a model-
based and suitable econometric approach, i.e., providing accurate results (Kulendran and
Witt 2001; Juselius 2015).

To further discuss the vulnerability of the econometric conclusions, the modelling
process is the subject of this research, while the evaluation of the systems with applied
economic results is of great importance, which increases after each negative shock. The
methods used in the applied part of the research are regression analysis, VAR CVAR models
and Granger Causality.

3.1. Regression Model

The regression model in its statistical version is performed as written in Equation (2)
where ε1, . . . , εT permutations in the commitment that they are, i.i.d. (0, σ2) and εt is
independent of X1, . . . , Xt, t = 1, . . . , T; X1, . . . , Xt are variables in their stochastic or deter-
ministic dispersion and statistical inference conforms to linear constraints (Johansen 2012):

n−1
T ∑T

t=1 X2
t

P→∑ > 0, (6)

for some sequence nT → ∞ .

Here P→ stands for convergence in expectation (Hall and Heyde 1980). Johansen (2012)
shows four results when the regression method works well.

The following approach is used when the regression approach may fail using the time
series data. When it cannot be normalised

∑T
t=1 X2

t , (7)

in a way that the limit exists as a deterministic limit, it can be called a random walk regressor.
In the case that ξ = 1, then there is a unit root, so that Xt is stochastic and non-stationary
(Kulendran and Witt 2001; Huang et al. 2015) in the sense that (Johansen 2012)

Xt = ∑t
i=1 ε2i + X0, (8)

and in this case, E(Xt | X0) = X0 and the variance Var(Xt | X0) = σ2
2 ·t, which increases to

infinity. However,
T−2 ∑T

i=1 X2
t , (9)

sets a stochastic variable and does not converge to the deterministic term. The detailed
theory involves Brownian motion (Johansen 2012), an uninterrupted stochastic operation
defined on the unit interval 0 ≤ u ≤ 1 by random walks. Two fundamental results of the



J. Risk Financial Manag. 2022, 15, 212 5 of 20

Brownian motion are stochastic variables. Convergence in modelling is normalised for this
study to product moments, which should be T2 and T, respectively. The significance is that
the stochastic implication is imposed (9), while it is based on the conditional process. The
regression coefficient satisfies:

β́
P→ µ1

µ2
, (10)

this is the ratio of the slopes of the trends. An applied analysis of the time-series data, using
models:

∆Yt = ε1t + µ1, (11)

and
∆Xt = ε2t + µ2, (12)

is to make linear assumptions for each contained variable and estimates of µ1 and µ2 to
talk freely about the information contained.

It is of utmost importance that the variables in the time series approach are entirely
uncorrelated, as they are not variables in levels, which is why a regression approach is
invalid, while in the case of correlated variables, they are distinguished by a third term,
which most likely corresponds to a time trend (Juselius 2009, 2022). It is critical to note
that in the calculus of correlations to replace E(Xt) and E(Yt) by acceptable estimates we
should not use the time series data averages.

3.2. The Cointegration and VAR Model

The random walk (De Mello and Nell 2005) and co-relations (Granger 1981) in macroe-
conomic variables are higher-order problems; hence, cointegration was introduced (Juselius
2022). Engle and Granger (1987) tested cointegration by applying regression models.
Phillips (1991) and Johansen (1988) identified the valid interpretation of the regression
model and noted the autocorrelation problem within the cointegration exercise. The tech-
nique of cointegration has become a research approach in time series econometrics and
statistical computer program packages, such as CATS for RATS (Dennis et al. 2005).

We consider two variables Xt and Yt, which are generated by the equations (Johansen 2012):

∆Yt = τ·(Yt−1 − γ·Xt−1) + ε1t, (13)

∆Xt = η·(Yt−1 − γ·Xt−1) + ε2t, (14)

for t = 1, . . . , T. The linearity in each variable is progressive. The time series contains
information from the past, but it should be noted that the levels of the variables Yt−1 and
Xt−1 all occur in the same order

Ut−1 = Yt−1 − γ·Xt−1, (15)

in each of the comparisons. The Ut−1 is the disequilibrium error and the consumption
Y = γ·X as a mean relation. Thus, the variables respond with adjustment coefficients τ
and η, respectively.

Such a model contains a stationary variable part and a random walk, generating
non-stationary variables. Interestingly, the combination in a linear sequence is stationary so
that the linear combos (1,−γ) eliminate the common trend (random walk). Thus (Xt, Yt) is
non-stationary but has a property of a collected time series variables and has a cointegrating
vector (1,−γ) and routine stochastic trend St (Granger 1981).

It is worth noting that unlike a regression of Yt as a function of Xt, the variables are
treated and modelled similarly. Thus, for example, if Yt − γ · Xt is stationary; after that,
the result is γ−1 · Yt − Xt. The normalisation procedure could therefore be provided on
non-zero coefficients on both variables.
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In cointegration, there is no causality processing, underlined by the VAR model with
two lags and constant within the n—dimensional process and Xt is developed by the
equation:

Hr : ∆Xt = α·β′·Xt−1 + Γ·∆Xt−1 + µ + εt, (16)

where the white noise process εt = xt − µt is the difference between the stipulatory mean
µt and true comprehension Xt, which usually is independent NIn(0, Ω), t = 1, . . . T, and
(α, β) are n× r matrices, r is cointegration rank, Xt−1 are past values of the variable, ∆Xt
is differenced variable, µ is a mean vector for all periods T, and Γ is a covariance matrix
(Johansen 2012). The technical process of I(1) has the relevance of avoiding obstacles in
distinguishing error specifications, such as the i.i.d. assumption of error terms and plot
analysis. Most importantly, the lag lengths should be examined to check the time series
assumption behind the model and finally to identify the cointegration rank for estimating
the model under the development interpretation. In conclusion, the beta-normalised
constraints on zero are essential (Johansen 2012; Juselius 2022).

It is essential to check the rank of α and β in time series to obtain the number of
cointegrations. The starting point is the unrestricted model VAR:

Hn : ∆Xt = Π·Xt−1 + Γ·∆Xt−1 + µ + εt, (17)

where εt i.i.d. N(0, Ω) and Π, Γ, µ, and Ω are unrestrained. The cointegrating relation is
assumed over r and is formulated as in the VAR model with two lags and a constant term:

Π = α·β′, (18)

where α and β are n × r matrices (n < r) and the r combinations β′·Xt, which define
the stationary relation of non-stationary variables (Juselius 2015). In conjunction with
maximum likelihood estimators, estimators can be computed definitively by an eigenvalue
problem, even if it is a non-linear maximisation snag for a separate rank regression or for
introducing cointegration (Johansen 1988). The latest provides estimators (α̌, β̌, Γ̌, µ̌, Ω̌),
calculated from:

− T
2

[
logdet(Ω)· − 1

2
tr{Ω−1·∑T

t−1 εt(Π, Γ, µ)·εt
(
Π, Γ, µ)′ }

]
, (19)

and the highest point Lmax (Hr). At this point, the input is a misspecification test. The
model’s boundary is perceived by a unit root test developed by the so-called Dickey-Fuller
-test (Dickey and Fuller 1981) for the uni-modelled process and the misspecification test
for the multivariate VAR model depending on one or more deterministic terms. Overall,
modelling procedures include not only the chi-squared test but also the likelihood ratio
test or the t−test statistic, where χ2( f ) in an f recognises the number of restrictions used
in a parameterisation procedure (Johansen 2012; Juselius 2015, 2022).

3.3. The CVAR Model

Shocks are a common problem in economics. Volatility in series called shocks or breaks
provide several valuable pieces of information for researchers. Such a violation pushes the
variables out of the mean or equilibrium. In comparison, high correlation matrix coefficients
affect the predictability and usefulness of time series modelling and reveal biased results.
Therefore, ordinary stochastic trends are required in bivariate cointegration, but only more
than two variables are usually needed to produce cointegration. Illustrational cointegration
is more related to multiple regression, with one significant difference. The cointegration
results are sensitive to the length of the data vector, while the regressors in regression are
sensitive only to orthogonality. The importance of such thinking in an economic modelling
process creates non-multicollinearity, while cointegration is realised in the set of variables.
(Kulendran and Witt 2001; Juselius 2015). We present the CVAR model (De Mello and Nell
2005) applied to analyse the tourism time-series (Kunst and Frances 2015) data considering
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the non-stationarity. The CVAR model circumvents the problem of misuse of correlation
coefficients between economic variables by inventing the VAR in the error-correction model
(Juselius 2009; Kulendran and Witt 2001):

∆Xt = µ0 + Π·Xt−1 + Γ·∆Xt−1 . . . + Γk−1·∆Xt−k+1 + Φ·Dt + εt, t = 1, . . . T, εt ∼ NID(0, ∑), (20)

where Φ·Dt includes each deterministic component (trend, constant, and dummies). The
hypothesis that Xt is integrated of order one ( Xt ∼ I(1)) is invented as a reduced rank
condition (18). For simplicity, only two lags are included in (Johansen 2012) the CVAR
model, which leads to:

∆Xt = µ0 + α·β′·Xt−1 + Γ1·∆Xt−1 + Φ·Dt + εt, t = 1, . . . T, εt ∼ NID(0, ∑) (21)

by converting the trending variables, Xt, into stationary differences, ∆Xt, and stationary
cointegration relations, β′·Xt, the multicollinearity is solved. One can find stationarity
between the components of the regression and correlation coefficients, which are now well
defined for given β, and standard inference (α, Γ1, ∑) holds. The model is non-linear in α
and β, but can be evaluated by the reduced rank proposed by Johansen (1988) where the β
factors are treated as the eigenvectors to a mix of an eigenvalue problem, and α is calculated
by linear regression for given β. The definitions β′·Xt define r linear relationships between
n variables.

4. Results

We use five seasonally unadjusted monthly time series price variables. The in-sample
is from January 2000 to May 2012, and the out-of-sample is from June 2012 to December
2017. The specified variables are: Slovenian prices in the hospitality industry (IPHIt),
prices in the hospitality industry in the Eurozone (IPHIEAt), Slovenian consumer prices
(CPIt), consumer prices in the Eurozone (CPIEAt), and Slovenian food and beverages
prices (IFBt) as input costs for the hospitality industry. The initial VAR methodology is
used, and the price differences are involved in the approach.

The data are obtained from the Statistical Office of the Republic of Slovenia (SORS
2021) and Eurostat (2021).

4.1. Inflation and Tourism Prices
4.1.1. Regression Analysis

Following the introduced simple static regression model in Equation (2), we would like
to find effects on the IPHIt. Hence, IPHIEAt, CPIt, CPIEAt, and IFBt are the most likely
determinants influencing the IPHIt. Calculating the static regression model in Equation (2)
with the used explanatory variables, we get the following regression results:

IPHIt = 1.527
(6.270)

·IPHIEAt − 0.139
(−1.470)

·CPIt + 0.832
(3.292)

·CPIEAt + 0.335
(5.857)

·IFBt + SD, (22)

where SD denotes seasonal dummy variables. From the t-test numbers in the brackets can
be seen the statistical significance of the regression parameters. A final step is to transform
variables with seasonal adjusting. We get:

IPHIt = 2.478
(7.246)

·IPHIEAt − 0.277
(−2.852)

·CPIt + 0.045
(0.140)

·CPIEAt + 0.288
(5.186)

·IFBt − 0.053
(0.400)

·t, (23)

where the time variable t runs from 1 to 129. High statistical significance is observed by
almost regression parameters of all variables, except for CPIEAt. The Durbin-Watson
statistic is lower than 2 (0.813), indicating the presence of autocorrelation (Kulendran
and Witt 2001). The adjusted determination coefficient is high at 0.992, and F statistic is
significant by 3005.9.

The partial autocorrelation graphs confirmed the first and twelve lags, and the auto-
correlation are at least in the first order. The residuals are not i.i.d. Results show spurious
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regression (Kulendran and Witt 2001) and cannot be normalised as a deterministic limit
as explained in Equation (7). There is a unit root, and Xt is stochastic and non-stationary
theoretically expressed as explained in Equation (8).

Time series for inflation can be considered stationary or non-stationary (Baxa et al.
2015). This statement is due to a unit root process (stochastic trend), and inflation should
instead be treated as a non-stationary variable. It is crucial to start with a shorter duration,
3 to 5 years, which leads to a non-stationary formulation, and the cyclical component can be
further studied in a more extended period, e.g., 13 years, for the example of this approach.
Nevertheless, this is tested in the forecasting OLS in Appendix H.

The distinction between short- and long-term cycles is that a long/short term cycle
can be treated as either non-stationary or stationary, depending on the time perspective of
the work (Juselius 2022; Gričar and Bojnec 2021).

Juselius (2009) shows that prices enter a two-sided inverse stochastic trend that can
be written as Pt ∼ I(2) when the inflation rate is integrated with a non-zero mean. The
order of integration is known as the number of times a series should be differentiated to
achieve stationarity (Kulendran and Witt 2001). Most research treats variables in levels or
seasonally adjusted terms and rarely examines parameters involving real variables and
their transformations. This contributes to the fact that prices are standardised in the almost
second order of integration (Gričar and Bojnec 2019). IPHIt, IPHIEAt, CPIt, CPIEAt,
and IFBt should be preceded by the I(1) analysis of the real price variables (Juselius 2009).

4.1.2. The Data Vector

An additional formulation is obtained by taking logarithms, where now new names of
variables indicate a logarithmic transformation and a symbol R indicates that the variable
was transformed from nominal to real, r indicates real t time series variable, and variables
are at least I(1); Xr

t ∼ I(1). Therefore, we decided to use the logarithms transformed
CPIEAt and IPHIEAt. We have transformed variables from nominal to real prices using
i.i.d. process checking to become stationary in I(1).

Data on time-series prices are at most Xt ∼ I(1) (Juselius 2009). We get the data
vector: [rph rp r f bp dpea dphea]Tt , t = 2000 : 1, . . . , 2012 : 5, whereas the minuscule letters
define normally distributed residuals, e.g., real or differenced variables. The transformation
procedure is in Appendix A.

To clarify precisely whether the variables are endogenous or exogenous, it is essential
to look at them from a stochastic point of view. They are tested for long-run cointegra-
tion as explained in Equations (13) and (14) using OxMetrics (CATS for RATS) software
(Tufte 1998). In the short run, seasonal effects were calculated in a dynamic error correction
model explained in Equations (20) and (21) using OxMetrics software.

4.1.3. Misspecification Test

The formal misspecification tests (Appendix A, Table A1) have confirmed that the VAR
model neither contains autocorrelations nor heteroskedasticity in the residuals. We also
assume the test of normality formed on skewness and kurtosis of the standardised estimated
errors. The null hypothesis of the normality test is not rejected (p = 0.356). Checking the
stability of the VAR model, this derives to the conclusion that there are several permanent
dummies needed for analysing structural breaks and/or shocks (Çağli and Mandaci 2013;
Lin and Huang 2012), where the most obvious one, by using the visual inspection of the
VAR model, was a shift dummy for high decreasing prices in the hospitality industry in
September 2010 (Ds109t). This dummy is foremost valid to normalise the cointegration
equations. Other permanent dummies as a one-time effect (Kulendran and Witt 2001) are:
the 11 September attack (September 2001), the euro having been circulated in its physical
form (January 2002), decreasing the hospitality industry prices in the Eurozone (October
2004), a month before Slovenia adopted the euro (December 2006), and the period of high
food prices (September and November 2007):
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∆Xt = Γ1·∆Xt−1 + α·β′·Xt−1 + φp.1·Dp019t + φp.2·Dp021t + φp.3·Dp0410t ++φp.4·Dp079t+

φp.5·Dp0711t + φp.6·Dp0612t + φs.7·Ds109t + γ0 + εt,
(24)

are involved in the CVAR model in Equation (21) but not in the cointegration relations in
Equations (25) and (26). The residuals from the estimated VAR (2) model with dummies
now contains improved properties compared to the unconstrained model, as explained in
Equation (16).

4.2. Specifying the VAR Model and Empirical Results
4.2.1. Test of Cointegration Rank, Long-Run Exclusion, and Stationarity

There are no trends in the variables’ levels, but non-zero means exist in the cointegra-
tion relations. We restrict the CVAR model that the rank of Π is r, meaning that the five
variables in the model have r cointegration relations and n− r common stochastic trends.
We estimated the CVAR model for r = 1, 2, 3, 4, 5. We consider the LR (Johansen 1988)
trace test of cointegration rank. We have found the rank of two: r = 3 (Table 1), where
p-value is 0.003. Moreover, r = 2 is at p-value 0.000, and r = 4 is at p-value of the trace
test 0.440.

Table 1. Trace test.

n-r r Eig. Value Trace Trace * Frac95 p-Value p-Value *

5 0 0.440 229.666 218.780 107.400 0.000 0.000
4 1 0.403 144.973 137186 76.200 0.000 0.000
3 2 0.286 69.634 61.086 50.335 0.000 0.003
2 3 0.095 20.550 12.231 29.670 0.331 0.850
1 4 0.041 6.049 4.741 14.125 0.331 0.440

Note: r—number of ranks, n—number of variables, * = trace test statistics and p-values based on Barlett small
sample correction, Frac95—the 95% quantile from the asymptotic tables.

We consider how to formulate tests of various hypotheses on the cointegration vectors.
In the first step, we consider the test for the long-run exclusion of a variable, i.e., a variable
that can be removed from the cointegration space. We have estimated the model with a
Ds109t and manually included the first difference with one lag, and we imposed a rank of
r = 3. We will consider the Π matrix (Table 2).

Table 2. The combined effects Π matrix.

rpht
−0.002

(−1.233)
−0.028

(−6.584) ***
0.020

(6.102) ***
0.358

(2.297) **
0.288

(1.070)
−0.002

(−4.929) ***
0.004

(3.888) ***

rpt
−0.002

(−1.256)
−0.031

(−7.129) ***
0.021

(6.374) ***
0.230

(1.459)
0.499

(1.832) **
−0.002

(−4.906) ***
0.004

(4.139) ***

r f bpt
0.003

(0.826)
−0.017

(−1.777)
0.011

(1.530)
1.119

(3.186) ***
−0.151

(−0.249)
−0.001

(−1.407)
0.000

(0.039)

dpeat−1
−0.005

(−4.268) ***
0.009

(2.966) ***
−0.004

(−1.649) **
−0.916

(−8.415) ***
−0.036

(−0.192)
0.000

(1.344)
0.002

(2.457) ***

dpheat−1
−0.005

(−6.317) ***
0.006

(3.166) ***
0.001

(1.009)
0.068

(0.991)
−0.896

(−7.592) ***
−0.001

(−3.479) ***
0.002

(4.173) ***

Notes: rpht—Slovenian hospitality industry prices, rpt—Slovenian consumer prices, r f bpt—Slovenian food and
beverages prices, dpeat−1—consumer prices in the Eurozone, and dpheat−1—prices in the hospitality industry in
the Eurozone. The values of t-statistics are in the brackets and p-values are of ** 5%, and *** 1% level of significance;
bold numbers indicate normalisation of cointegration relations.

The variable is excluded from the cointegration relations when the coefficients in the
respective column of the Π matrix are insignificant. From the Π matrix in Table 2, there are
no clear signs that any of the variables can be excluded from the cointegration relations,
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except for the rpht (Table 2). The design matrix Π for the hypothesis that the first variable
can be excluded from the cointegration relations is where s is the number of free parameters.
We restrict one of the n = 7 variables (5 variables, shift, and a constant), and we have six
free parameters.

The test of long-run exclusion (Table 3) can be performed automatically in CATS for
RATS for different choices of rank. For a rank of r = 3, none of the five variables or the
restricted level shift can be excluded from the cointegration relations, except for the rpht.
However, we have decided that the rpht the variable will stay in the model specification
because we would like to test long-term and short-term relations on this variable in a
cointegration space. Moreover, if we choose a cointegration rank of r = 1, then we can
exclude the rpht, and dpeat−1. Furthermore, the constant can be excluded so that the single
cointegration relation in the model is a relation between the inflation rates and the food
and beverage prices.

Table 3. Test of hypotheses on properties of the system variables (r = 2).

Test/Variable rph′t rpt rfbpt dpeat−1 dpheat−1 Dummy C χ2

Long-run
exclusion

2.642
(0.450)

9.938
(0.019) ***

9.805
(0.020) ***

66.445
(0.000) ***

43.375
(0.000) ***

11.629
(0.009) ***

25.160
(0.000) *** χ2(2) = 7.82

Stationarity 11.581
(0.003) ***

7.809
(0.020) ***

23.242
(0.000) ***

2.196
(0.333)

2.489
(0.288) χ2(3) = 7.81

Long-run weak
exogeneity

33.899
(0.000) ***

37.100
(0.000) ***

9.792
(0.020) ***

55.247
(0.000) ***

38.891
(0.000) *** χ2(2) = 7.81

Notes: rpht—Slovenian hospitality industry prices, rpt—Slovenian consumer prices, r f bpt—Slovenian food and
beverages prices, dpeat−1—consumer prices in the Eurozone, and dpheat−1—prices in the hospitality industry in
the Eurozone, and C—constant. Significance levels p-value in the brackets: *** 1% level of significance.

If variable i is stationary around a constant mean value with a Ds109t, then one of the
cointegration relations must be given by a linear combination of variable i, the constant
term and the level shift. When testing for stationarity of variable i we restrict one of the
cointegration relations to variable i, the constant term and the level shift, while we leave the
other cointegration relations unrestricted. For r = 3 we restrict one relation while keeping
the other unrestricted. For a rank of r = 3, the tests given from CATS for RATS are equal to
the manually calculated tests. For r = 2 (and r = 1), none of the variables are stationary by
themselves.

Note that the choice of the cointegration rank matters for the stationarity of the single
variables. For r = 3 the dpeat−1 and the dpheat−1, they become borderline stationery, which
means that a linear combination of them can give the third cointegration relation dpeat−1
and the dpheat−1 with the constant term and the level shift. The significance level is: 0.333
for the dpeat−1 and 0.288 for the dpheat−1, when r = 2. The result can be seen in the second
raw in Table 3.

4.2.2. Test of Weak Exogeneity

We want to impose a test of a long-run weak exogeneity, as presented in the third row
in Table 3. A variable is weakly exogenous for the long-run parameters if the variable is not
adjusting to the long-run equilibrium error given by the cointegration relations. A weak
exogeneity means that the variable has a zero-row in alpha so that the variable does not
react to beta. A zero-row in alpha corresponds to a unit vector in alpha orthogonal. Alpha
orthogonal defines the ordinary stochastic trends in the model. The weakly exogenous
variable determines the endogenous one by pushing the effects out of equilibrium, and
therefore the ordinary stochastic trend is involved in one variable in the opposite direction.

We look at the evidence of a weak exogeneity in Table 3. We can note that all variables
react to almost all the other variables. We can thus accept the joint hypothesis of the
non-weakly exogenous test. All variables have a p-value of at least 0.020 already when
r = 2.
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4.2.3. Long-Run Cointegration Relations and Restrictions on β

The restrictions based on the previous theoretical scenario are imposed. The nineteen
over-identifying restrictions held stationarity and were tested using the likelihood ratio
(LR) test procedure parameterised in Johansen and Juselius (1994). The restrictions were
accepted with a p-value of 0.732. The restrictions are formulated in an econometric approach
with a path where all β coefficients are statistically and empirically correct.

The first long run cointegration vector (CIa) is:

dpeat−1 = −0.004·rpht + 0.397·dpheat−1 − 0.002 + εt, (25)

and is normalised by restrictions on β on the real consumer prices in the Eurozone. They
are negatively related to the real Slovenian hospitality industry prices, representing a
small but statistically significant effect of the national sector economy on the expected
inflation in the Eurozone, and positively related to the real prices in the hospitality indus-
try in the Eurozone, respectively. The constant term shows that consumer prices in the
Eurozone declined.

The second long run cointegration vector (CIc) is:

dpheat−1 = 0.005·r f bpt + 0.866·dpeat−1 − 0.001·Ds109t + εt, (26)

and is a function of the hospitality industry prices in the Eurozone. The real prices in
the hospitality industry in the Eurozone are positively related to the real Slovenian food
and beverages prices and real consumer prices in the Eurozone, respectively. The shift
dummy is in harmony with a small decrease in real prices in the hospitality industry in
the Eurozone following the economic crisis. A confirmation of the stationarity of the shift
dummy is imposed, and the result is consistent with some recent findings (Juselius 2022;
Gričar and Bojnec 2019).

4.2.4. The Cointegrated VAR Model in the Short Run: Empirical Results

In a dynamic equilibrium error correction or CVAR model (Juselius 2009), the non-
significant lagged variables are removed from the system based on the calculated and
confirmed cointegration relationships. This procedure is determined using the F-test, with
insignificant coefficients extracted using the LR test.

Except for a negative correlation between the dpeat−1 and r f bpt (−0.41) shocks, the
remaining cross-correlations are essentially more or less zero. The column headline in the
top half of Table 4 denotes the dependent variable. The row headings indicate the shape
variables. The estimated coefficients of the included dummy variables are also reported in
Table 4.

Table 4 can be seen as a statistically significant impact on dpheat−1 in the short term.
First, impacts on dpheat−1 are long-term cointegration vectors CIa and CIc. Secondly,
we also find an enormously significant relationship between the season’s dummies and
dpheat−1. Several permanent dummies are also significant such as January 2002, October
2004, and September 2009. We can conclude that prices in the hospitality industry in
the Eurozone declined in almost all circumstances. The decline is by seasonal effects,
cointegration relations, and consumer prices in the Eurozone. They increase only before
and after the high season, e.g., June and September.

The empirical results validate the existence of a valid long-run cointegration relation-
ship with short-run parameter constancy. The direct implication of our results is that the
short-run model is robust only if the long-run cointegration parameters are included in
the model. These findings are vital to a short-run model specification, including different
assumptions about whether time-series variable(s) is/are contemporaneously exogenous.
The inclusion of the Eurozone and Slovenian hospitality industry prices in the analysis
is the correct specification given the tremendous impact of seasonal short-run effects on
tourism prices, and therefore, forecasting them as presented in Appendix E.
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Table 4. Short-term effects on the hospitality industry prices in the Eurozone.

Yt =dpheat−1

Variable

dpeat−1, −0.13
(−2.63) ***

r f bpt,
0.02

(1.42) *

CIa −1.18
(−9.37) ***

CIc −1.50
(−12.6) ***

dum0201p −0.002
(−1.94) **

dum0709p 0.003
(1.94) **

dum0410p 0.01
(3.28) ***

∆sd January
−0.006

(−7.98) ***

∆sd February
−0.007

(−7.84) ***

∆sd March
−0.006

(−7.57) ***

∆sd April
−0.008

(−9.49) ***

∆sd May
−0.006

(−7.39) ***

∆sd June
0.001

(1.69) *

∆sd July
−0.006

(−4.70) ***

∆sd August
−0.018

(−23.0) ***

∆sd September
0.01

(−11.5) ***

∆sd October
−0.013

(−19.8) ***

∆sd November
−0.014

(−11.7) ***
Notes: dpheat−1—prices in the hospitality industry in the Eurozone, dpeat−1—consumer prices in the Euro-
zone, r f bpt—Slovenian food and beverages prices, sd—seasonal dummy; dum0201p, dum0410p, dum0709p,
dum0410p—permanent dummies, CIa and CIc—cointegration relations. p-value in the brackets: * 10%, ** 5%, and
*** 1% level of significance.

Our empirical findings on the short-run effects on tourism prices have additional
noteworthy implications for empirical economics and modelling in tourism, adopting new
modelling shreds of evidence. The differences in the implementation of tourism modelling
in our study shed some light on how the performance of correct variables and statistical
models affect the short-run effects. The main benefits of short-run model results of tourism
prices include: first, moderation of the level and volatility of prices and inflation; second,
analysing the structural breaks in business cycles; and third, following the misspecification
test are exclusion test, rank test and test of restrictions on β.

This time-series data research could be extended to more countries using the euro as a
national currency. Such extended time-series data research would represent the studied
determined impact of a specific country on the hospitality industry prices in the Eurozone
and consumer prices in the Eurozone. From the methodological point of view, the research
can be extended to Granger causality between the variables as presented in Table A2,
Appendix G.
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5. Discussion

We have critically evaluated the simple static regression analysis approach in the
literature, which is often used to analyse time-series data. We have also presented non-
stationarity with unit roots and stochastic trends/shocks. Instead of simple static regression
analysis, we apply the CVAR model to analyse time-series data for tourism prices. This is a
novelty and a contribution to the theoretical literature.

We first tested the time-series properties of each variable and restrictions in the VAR
model. The nominal time series prices are integrated with order two, and the VAR model
includes a linear transformation of the tourism prices and inflation variables. We reformu-
lated the VAR model with the transformed variables without losing information when the
restrictions were imposed. Therefore, we decided to use variables of order one.

The formal misspecification tests confirmed that the VAR model does not contain
autocorrelations or heteroskedasticity in the residuals. Normality tests based on skewness
and kurtosis are used to check the integrity of the standard residuals of the model and
variables. Normality tests based on skewness and kurtosis are used to check the integrity of
the standard residuals of the model and the variables. As part of this process, the stability
of the VAR model was developed, and the propositional condition of the different dummies
should be included.

The unrestricted VAR model has two lags and a rank of three; the eigenvalues are
derived using the trace or Johansen test. In the restricted VAR model, there are non-weak
exogenous variables. In this sense, all five time series data are endogenous variables. We
apply a test for the short-run cointegrated VAR (CVAR) model. We can find that prices in
the hospitality sector in the euro area have fallen in almost all circumstances. The decrease
is due to seasonal effects, except in June and September when they increase due to long-run
cointegration relationships and consumer prices in the Eurozone.

The long-run cointegration relationship normalised to β-coefficients for the hospitality
prices in Slovenia was not found. Moreover, the test of long-run exclusion and the results
of the combined effects of the Π-matrix suggest that the Slovenian hospitality prices should
be removed from the CVAR model. This conclusion confirms the research objectives
for the economic modelling literature: simple regression analyses cannot be performed
for dynamic time series models where the Slovenian hospitality prices are a significant
dependent variable. We point out that a long-run cointegration relationship in modelling
short-run effects of “nominal to real” prices is necessary as robust evidence for analysing
tourism price trends.

6. Conclusions

This study defined a state-of-the-art empirical model on general and sectoral prices in
Slovenia and the Eurozone. The main objective was to build a theoretical model and test
the robustness of the econometric model. Since prices explore high volatility, the primary
purpose was to investigate volatility and perform an objective CVAR modelling procedure
as a technical step for reliable modelling and prediction.

The importance of inflation in the econometric procedures was primarily discussed by
Juselius (2009); therefore, this research fills the gap in the literature by showing the time
series conformances. The volatility of prices was identified and confirmed. The normalities
on the residuals were challenging to obtain and led to several findings:

• essential step: the nominal to a real transformation of the variables;
• the definition of the econometric model: several deterministic coefficients needed;
• a guarantee of the corresponding cointegration rank with a slight lag difference;
• and defining cointegration vectors and relations of the short-run effects on tourism prices.

The theoretical importance of the study is reflected in the technical procedure that must
be carried out before applying the model to an empirical sample. The empirical implication
is defined in a reliable empirical model based on econometric steps that can subsequently
predict the future dispersion of the data, which is presented in Appendices B–D and F. The
outlook on these results shows that the model has high conformance for the first 48 months,
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while only a few outliers were detected. Nonetheless, in the last period of the sample,
some more substantial downward fluctuations in consumer price indexes and the food and
beverage index were observed. This striking result could also explain the increase in prices
in the following periods up to the present.

Overall, the study has some limitations as possible issues for research in the future:

• the data have not been deseasonalized. This decision is based on extracting as much
as possible from the raw data;

• the sample period is limited to the most severe period of the 2008 economic crisis.

In summary, this study has added an essential scientific and technical step to the
definition of econometric modelling of time series using aggregate values, leading to
a big data adventure in future phases. However, in the appendices, one can find the
benchmark models for predictive modelling of cointegrated behaviour of time series in
tourism, which has been primarily omitted in tourism research. Therefore, this research
adds value to management policy analysis for decision-making and economic theory at the
integration level to obtain the most appropriate and meaningful forecasts and models for
tourism pricing.
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Appendix A

Table A1. Misspecification test of real price indices for the in-sample.

Miss–Variables rpht rpt rfbpt dpeat−1 dpheat−1

Transformation
procedure

(rphr
t =

log( IPHIt
IPHIEAt

))
(rpr

t =

log( CPIt
CPIEAt

))
(r f bpr

t =

log( IFBt
IPHIEAt

))
(dpeat−1 =

log( CPIEAt
CPIEAt−1

))
(dpheat−1 =

log( IPHIEAt
IPHIEAt−1

))

Skewness 0.350 −0.081 −0.209 0.120 −0.140
Kurtosis 2.958 2.438 3.628 3.274 3.274

ARCH test 1.275(0.529) 4.591(0.101) 0.015(0.992) 6.005(0.05) 0.696(0.706)

Normality test 3.399(0.183) 1.860(0.394) 4.140(0.126) 1.531(0.465) 1.597(0.450)

R2 0.894 0.528 0.715 0.862 0.977
Model

Trace or rank test r = 3
ARCH

test
(1): 207.211(0.797)

(2): 462.989(0.326)

Normality test 11.570(0.315)

Number of lags p = 2
LM
test

(1): 22.767(0.591)

(2): 30.705(0.199)

Note. rpht—Slovenian price index in the hospitality industry, rpt—consumer price index in Slovenia, r f bpt—
Slovenian food and beverages price index, dpeat−1—consumer price index in the Eurozone, dpheat−1—Eurozone
price index in the hospitality industry. Significance levels p-value in the brackets, R2—adjusted deterministic
coefficient, r—(nominal to) real, d—differenced variable.
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Appendix G

Table A2. Granger Causalities.

The Way of Causality * F-Statistics Decision p-Value

r f bp↔ rp 2.73 (7.86) Bi-causality 0.00 (0.06)
r f bp→ dpea 5.25 Uni-causality 0.01

dphea→ r f bp 3.16 Uni-causality 0.05
r f bp→ dpea 5.25 Uni-causality 0.01

rp↔ dpea 5.00 (2.33) Uni-causality 0.01 (0.10)
* Only significant relations are presented.
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