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Abstract: We revisited the issue of return predictability in three major developed markets (USA, UK
and Japan) using a unique dataset from the Wharton Research Data Services database and a com-
prehensive set of traditional and recent statistical methods. We specifically employed a variety of
traditional linear and nonlinear tests, latest multiple-break unit root tests and spectral analysis to
test the efficient market hypothesis. Our results show that these stock markets generally are ineffi-
cient. We further explored whether the departure from market efficiency can be used to generate
profitable trades and found that abnormal returns exist in all three markets. We found evidence of
abnormal returns associated with the break dates identified in the models which are correlated with
major historical events around the world. Our findings have important implications for investors
and policymakers.

Keywords: efficient market hypothesis; unit root; spectral analysis; abnormal returns

1. Introduction

The efficient market hypothesis (EMH), introduced by Eugene Fama in 1970, states
that financial asset prices entirely reflect all available information, making it impossible for
investors to beat the market. The EMH posits that stock prices are sensitive to every bit of
information in the market and that movements of stock prices are unpredictable. Therefore,
there should not be a momentous difference between the optimal forecast and actual stock
prices, and the probability of making abnormal profits in the stock market is asymptotically
zero. The theory has attracted many supporters as well as critics. Shiller (1981) documented
that stock price variation should not be explained by fundamentals. Some of the results
which show little alpha (risk-adjusted return) and no persistence were published by Carhart
(1997), Lettau and Van Nieuwerburgh (2008), Fama and French (2010), Busse et al. (2010),
Bertone et al. (2015), etc. Richard Thaler, a Nobel laureate in Economics in 2017, has helped
reignite this debate. Thaler, one of the founders of “behavioral finance”, has put the notion
of the EMH in doubt and provided scientific explanations for the existence of irrational
market behaviors. The empirical evidence is mixed, and the research community is “torn”
between the EMH and behavioral finance camps (Verheyden et al. 2015).

A review of the EMH in developed markets reveals a widespread but not definitive
consensus that markets tend toward efficiency, although there are periods of informational
inefficiency and periods of speculative bubbles (behavioral finance) (e.g., French and Roll
1986; De Long et al. 1990). Carhart (1997) showed that the performance of mutual funds
does not reflect superior stock-picking skills. Fama and French (2010) showed that few
mutual funds produce returns sufficient to cover their costs. Busse et al. (2010) found that
an investment manager’s superior risk-adjusted returns are indistinguishable from zero.
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Finally, Bertone et al. (2015) showed that the US market had become significantly more
efficient even during very short-term intervals. More recently, Durusu-Ciftci et al. (2017)
argued that the evidence for the EMH is mixed. One reason is that traditional tests ignore
the presence of structural breaks, leading to invalid statistical inferences. Another potential
issue is that traditional unit root tests only allow for one of two breaks in the data—a
problem that can be overcome by some of the multiple-break unit root tests employed in
our study.

Our research contributes to the literature by testing market efficiency in three major
developed markets, the USA, the UK and Japan, for the first time—to our knowledge—
using unique authoritative stock price indices provided by the WRDS. Our study also
complements those that examine this topic for major stock markets, especially the study of
the US, UK and Japanese stock markets by Urquhart and McGroarty (2016), Urquhart and
Hudson (2013), Borges (2010) and Narayan and Smyth (2007). However, we employed a
number of recent and powerful statistical tests to study this issue. Specifically, in this paper,
we utilized highly regarded tests such as those used by Elliott et al. (1996), Ng and Perron
(2001) and Brock et al. (1996, BDS) which had not been widely used in this line of research
in addition to the highly popular traditional statistical tests such as the BDS and variance
ratios. Further, we took advantage of the latest multiple-break unit root tests by Lumsdaine
and Papell (1997, LP), Lee and Strazicich (2003, LS), Narayan and Popp (2010, NP) and
Ender and Lee (2012, EL).1 To increase the robustness of our results, we adopted recent
spectral tests commonly found in the electrical engineering literature to further assess the
EMH in the three developed markets in question. The final novelty of our study is the
analysis of abnormal returns. Specifically, we explored whether the departure from market
efficiency can be used to generate profitable trades.

By way of preview, we found that the three stock market indices in our study exhibit
mean reversions. The rather surprising finding of market inefficiency (contradicting many
prior findings of market efficiency for highly developed markets) may indicate more pro-
nounced information asymmetry, limited competition and not fully developed financial
and banking systems within these countries. The paper is organized as follows. Section 2
presents a brief review of the related studies. Section 3 discusses the data and the method-
ology. Section 4 discusses the empirical results. Section 5 provides some discussions of the
findings. Finally, Section 6 concludes the study with some remarks.

2. Brief Literature Review

Numerous studies have explored the predictability of equity returns. Early studies
documented that macroeconomic and financial variables are useful predictors of equity
returns. For example, Fama and Schwert (1977) found a positive relationship between
inflation and expected returns. Chen et al. (1986) showed that term spread, expected and
unexpected inflation, industrial production and credit spread can explain the variations of
equity returns in the US dividend yields (or dividend/price ratios) and also demonstrate
the strong predictive power of equity returns (e.g., Shiller 1982; Bekaert and Hodrick 1992;
Campbell and Hamao 1992; Solnik 1993; Campbell and Shiller 1988; Fama and French 1988;
Ang and Bekaert 2007; Golez and Koudijs 2018). Interest rates, documented by Ang and
Bekaert (2007) and Rapach et al. (2013), are reliable predictors of equity returns. Size and
book-to-market ratio along with the market factor, presented by Fama and French (1992,
1993), are also important variables to predict equity returns. Examining firms’ fundamentals
and equity prices in the USA, Bhargava (2014) found that the following variables were
important predictors: earnings per share, total assets, long-term debt, dividends per share
and unemployment and interest rates.

Other studies incorporate liquidity to explore its relationship with equity returns
(e.g., Amihud 2002; Bekaert et al. 2007). Amihud (2002) found a positive relationship
between expected returns and contemporaneous unexpected illiquidity. Bekaert et al.
(2007) documented that local market liquidity is an important determinant of equity returns
in emerging markets. Another line of research examines the effect of investor sentiment
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on equity returns (e.g., Baker and Wurgler 2006, 2007). Baker and Wurgler (2006, 2007)
documented a negative relationship between investor sentiment and subsequent equity
returns. Nyberg and Pönkä (2016) documented the predictability of other equity market
returns with the information from the US market.

A number of studies most related to our current research include the following studies.
Golez and Koudijs (2018) combined the annual stock market data for the Netherlands/UK
(1629–1812), the UK (1813–1870) and the USA (1871–2015) and showed that dividend
yields are stationary and consistently forecast returns over both short and long horizons.
Goetzmann et al. (2001) estimated a new index for the New York stock market between 1815
and 1925. They found little evidence for return predictability, but data limitations forced
them to approximate dividends for the period before 1870. Mitra et al. (2017) examined
the efficiency of 31 stock index series spanning 26 countries across the world. They found
periods of departure from the martingale difference hypothesis among the stock index
series around the world. The results are consistent with the adaptive market hypothesis
whereby stock markets remain efficient most of the time but there are periods when markets
become inefficient. Urquhart and Hudson (2013) also empirically investigated the adaptive
market hypothesis for the US, UK and Japanese markets using very long-run data. Daily
data were divided into five-yearly subsamples and subjected to linear and nonlinear tests
to determine how the independence of stock returns had behaved over time. Their results
from the linear autocorrelation, runs and variance ratio tests reveal that each market shows
evidence of being an adaptive market, with returns going through periods of independence
and dependence. However, results from nonlinear tests show strong dependence for every
subsample in each market. Urquhart and McGroarty (2016) examined the adaptive market
hypothesis in S&P 500, FTSE 100, NIKKEI 225 and EURO STOXX 50 by testing stock return
predictability using daily data from January 1990 to May 2014. Their results show that
there are periods of statistically significant return predictability, but also periods of no
statistically significant predictability in stock returns. Narayan and Smyth (2007) showed
evidence on the random walk hypothesis in G7 stock price indices using unit root tests
which allow for one and two structural breaks in the trend. Evidence of mean reversion
only exists for the stock price index of Japan. In short, no consensus has been reached.

3. Data and Methodologies

Our dataset was obtained from the Wharton Research Data Services (WRDS) country
price index database. A major advantage of using this database is that all price series have a
consistent data format. Our sample contained daily data for 23 major stock market indices
in the USA, the UK and Japan. The indices were market capitalization-weighted, adjusted
for stock splits and dividends. Compustat Global—Security Daily was used to construct
the indices. The portfolio was rebalanced annually at the end of the last trading day of June
for each country. Observations were removed if the market capitalization was not positive
or if the exchange information was missing. For firms with multiple issues, the issue with
the largest market capitalization was chosen. Additionally, a security had to be in the top
50% of the market capitalization of that country and traded at the stock exchanges located
within the country in question. The currency of the security price had to be consistent with
its ISO currency code. Lastly, only common ordinary shares were included in the indices.
We extracted the country price indices for the USA, the UK and Japan in monthly frequency.
In this study, our sample period for the USA spanned from January 1926 to December
2016, while the sample period for the UK and Japan started in December 1989, ending in
December 2015. We employed a battery of tests typically used in the literature as well as a
number of recent methods.2

Among the most important tests for market efficiency (i.e., random walk) are unit root
tests. The weak-form efficient market hypothesis states that stock prices move in a random
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walk fashion, or that past prices cannot be used to predict future prices. The random walk
model is commonly specified as follows:3

yt = µ + yt−1 + εt

where yt is the log of price or stock index return in a number of studies, µ is the drift
term and εt is the random disturbance term. To evaluate this hypothesis, we examined
the returns on the country price indices and tested for independence of their return series.
To test the random walk hypothesis it is necessary to examine the existence of a unit root
in a return series. More specifically, we conducted traditional, highly regarded unit root
tests and more recent single- as well as multiple-break unit root tests.4 We first used the
following highly popular unit root tests in this study: augmented Dickey–Fuller (ADF),
Phillips–Perron, Elliott–Rothenberg–Stock and Ng–Perron tests. We then employed the
Zivot and Andrews (1992) test as a single-break unit root test. For multiple-break unit
root tests, we utilized the models developed by Lumsdaine and Papell (1997), Lee and
Strazicich (2003), Narayan and Popp (2010), Ender and Lee (2012). Finally, we computed
the abnormal returns for each price index using the structural break information found in
those tests.

3.1. Unit Root Tests

ADF test (1981): This is our baseline test which evaluates if a series is stationary
or random-walk (unit root), mainly for comparison purposes. The null hypothesis of
a unit root is rejected if the test statistic is less (or more negative) than their associated
critical values:

yt = a0 + γ1yt−1 + θt +
k

∑
i=2

βiyt−i + εt

where yt in our setting is the stock index return in month t. The null hypothesis is γ1 = 1,
a unit root in the return series. One problem with the ADF method is the selection of lag
length (Schwert 1989). We, therefore, used Akaike’s information criterion to select the
optimal lag length (to ensure that the residual was white noise) to mitigate this issue. We
also performed the Phillips and Perron (1988, PP) test, a more powerful test than the ADF
test (Dickey and Fuller 1981), but with better size distortions.

ERS test (1996): This is basically a modified ADF test where Elliot, Rothenberg and
Stock (ERS) show that their DF-GLS test has the power function close to the point optimal
test which has better power properties. This test not only provides a higher power than
the ADF and PP tests, but can also distinguish persistent stationary processes from nonsta-
tionary processes. The test has the same null hypothesis as the ADF test, and its results are
interpreted similarly. To our knowledge, this was the first time the ERS tests were used to
examine the market efficiency hypothesis, at least for our sample of countries.

Ng–Perron test (2001): Using the procedure in the ERS test to create efficient versions
of the modified PP tests of Perron and Ng (1996), Ng and Perron (2001) showed that these
tests do not have the same serious size distortions as the PP tests (used in many studies
reviewed in the paper) for errors with large autoregressive and moving average roots. As a
result, they can give a much higher power than the PP tests. Ng and Perron constructed
four test statistics which are based on the PP tests (MZα and MZt statistics), the Bhargava
(1986) (MSB) statistic and the ERS point optimal statistic (MPT). We used the modified
AIC for lag selection as suggested by the authors to maximize the power. Interpretations
of results for these tests are similar to those of the ADF tests discussed above. To our
knowledge, this was the first time these tests were used to examine the market efficiency
hypothesis for our sample of countries.
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3.2. Multiple-Break Unit Root Tests

Perron (1989) showed that structural change and unit roots are intimately related,
and it is important to note that conventional unit root tests (as performed in many of the
reviewed studies) are biased toward a false unit root null when the data are trend-stationary
with a structural break. This observation has led to the development of a large amount of
literature with unit root tests that remain valid in the presence of a break. One of the novel
contributions of our study is the inclusion of multiple-break unit root tests by Lumsdaine
and Papell (1997, LP), Lee and Strazicich (2003, LS), Narayan and Popp (2010, NP) and
Ender and Lee (2012, EL). The main limitation of a unit root test, according to Zivot and
Andrews (1992), is that it allows only for one break in the data and has a lower power than
the tests described below. While Perron (1989) specified an a priori fixed break date, the ZA
tests can endogenously determine a break date from the data.

Lumsdaine and Papell (1997): Improving on ZA, the LP multiple unit root tests allow
for more than one (unknown) breakpoint in either the trend, the intercept or both the trend
and the intercept of the data. We used two, four and six lags for the base model as well as
automatic lag selections using the AIC and the BIC.5 The null hypothesis is that there is a
unit root in the data. Thus, if the null hypothesis is rejected, the return series is predictable,
and vice versa. It should be noted that these are computationally intensive methods when
two or more breaks are selected if the dataset is fairly large (more than 500).

Lee and Strazicich (2003) showed that their model outperforms that of Lumsdaine and
Papell (1997, LP) in simulations and that, unlike the LP unit root test, rejection of the null
unambiguously implies a stationary trend or return predictability in our case. They also
showed that the power of the tests increases substantially when two or more breaks are
taken into account. It is a minimum Lagrange multiplier test for testing the presence of a
unit root with two structural breaks. We employed both the “Crash” model to allow for a
sudden change in level but no change in the trend and the “Break” model to account for
simultaneous changes in the level and the trend. The location of breakpoints is determined
endogenously by conducting a grid search to locate the minimum t-statistics. We used a
10% trimming of data points at each end of the series. The critical values for the test were
provided by Lee and Strazicich (2003). It is important to note that the critical values for the
model with breaks in the intercept and the trend are dependent on break locations.

Narayan and Popp (2010): This has been one of the most cited tests in recent years.
Narayan and Popp showed that their model outperforms those of LP and LS. Furthermore,
NP possesses a more stable power and correct size. Further, the NP test accurately recog-
nizes the break date. Since break dates are endogenously determined within the model, this
test requires no prior knowledge for possible timings of structural breaks. In our study, we
considered two different models, with the first model allowing two structural breaks (level)
and the second model allowing two structural breaks (level and trend). The interpretation
of the model is similar to those of LP and LS. To our knowledge, the NP test has not been
used to study the stock market indices of our three countries.

Ender and Lee (2012): This test, also known as the Fourier unit root test, is one of the
latest tests within this class. EL surpasses the aforementioned multiple-break unit root
test by reducing specification errors about break dates and their forms (gradual or sharp),
leading to an increase in the power of tests. The test uses trigonometric functions to capture
deviations greater than the average of the dependent variable and takes into account
multiple structural breaks. A major advantage of these tests is that there is no need to know
a priori the break dates, the exact number of breaks and the form of breaks. EL utilizes a
dynamic (time variant) deterministic intercept term consisting of sine and cosine functions
to determine the essence of the process or whether there is a breakpoint or nonlinear trend.
EL employs a specific data-generating regression model with the smallest residual sums
of square at the most appropriate frequency, as well as a more precise approximation
including multiple frequencies.
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3.3. Spectral Analysis

A series of tests employed in this study are the recently available spectral tests com-
monly used in electrical engineering.6 We first examined the periodogram for each country
to help identify the dominant periods, cyclical properties or periodicities across different
frequencies (high and low) in a series. We looked for peaks or hidden periodic components
in the data. If a series seems very smooth, for example, then the values of the periodogram
for low frequencies will be large relative to its other values, and vice versa. For a random
walk series, all sinusoids should be of similar importance, and the periodogram will vary
randomly around a constant. On the other hand, if a series exhibits very pronounced
spectra at higher frequencies, this may indicate that the series is driven by dynamics or
transient features that frequently come and go. In this case, we would typically consider
this time series as stationary (we would typically classify it as nonstationary if spectra
are more prominent near zero frequency). Further, we employed Fisher’s G-test to check
for the proportion of intensity represented at each specific frequency to determine if the
observed peak at that frequency is random or not. Particularly, this test reveals if the series
in question is white noise (i.e., a stationary process) in the sense that its maximum ordinate
is not significant enough. Finally, utilizing a normalized integrated spectrum, we tested the
hypothesis if observations from each of series follow a white noise process.

3.4. Abnormal Returns

Another novel feature of our work is the analysis of abnormal returns. We explored in
this section whether a departure from market efficiency can be used to generate profitable
trades. Since the stock markets in our study were found to be inefficient, it was interesting
to explore their abnormal returns. To do this, we split the sample period by the multiple
structural breaks identified in these tests into subsample periods. The random walk
model and a rolling 36-month estimation period were used to compute the 1-month-ahead
predicted return (ŷt+1):

yt = c + εt

ŷt+1 = ĉ =
1
36 ∑(yt + yt−1 + · · ·+ yt−35)

where yt is the return in month t, c is the constant and ŷt+1 is the predicted return in month
t + 1.

We then subtracted the predicted return from the realized return in each month to
calculate the abnormal return (AR):

ARt+1 = yt+1 − ŷt+1.

Summing up the monthly abnormal returns is the cumulative abnormal return (CAR)
in a subsample period:

CAR =
T

∑
t=36

ARt+1.

The importance of a structural break and its impact on abnormal profits should not be
overlooked as the existence of significant abnormal returns may suggest that the market in
question is inefficient.

3.5. Other Tests

Variance ratio tests: This test, after Lo and MacKinlay (1988), has been shown to be
more powerful and reliable than the ADF tests and is robust to heteroscedasticity. It is
based on the notion that if a series follows a random walk process, then the variance of
its qth period difference should be q times the variance of its 1-period difference. If the
variance ratio test statistic is greater than 1, then the series is positively correlated. We
chose two, four, eight and 16 periods as these periods are typically chosen in the literature.
The variance ratio of the Lo and MacKinlay tests whether the variance ratio is equal to 1 for
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a particular holding period. For each country, we presented its variance ratio, its Chow and
Denning (1993) joint maximum z-statistic (since we chose more than one period) and its
associated p-values (we did not report the individual test statistics as they are qualitatively
similar). The null hypothesis of random walk is rejected if the p-value for the z-statistic
is small (i.e., less than 0.05 for a 5% significance level). We noted that for a given set of
test statistics, the random walk hypothesis is rejected if any one of the variance ratios is
considerably dissimilar to one. The results of this test are not reported to conserve space as
they are similar to those obtained using the Lo and MacKinlay tests.

BDS test (1996): This is perhaps the most popular (nonlinear) test for detecting serial
dependence in time series data, after Brock et al. (1996). A number of studies have
found evidence of the movement of asset returns. The BDS tests the null hypothesis of
independent and identically distributed (IID) process against an unknown alternative.
The test is estimated for different embedding dimensions (m) and distances (e). The null
hypothesis of randomness is rejected if the BDS statistic exceeds 2 for a 95% confidence
and 3 for a 99% confidence. For ease of interpretation, we presented results using different
dimensions (m = 2–6) and e = 0.5. The distance e was selected to make sure a certain
fraction of the total number of pairs of points in the sample lie within e of each other as this
approach is most invariant to the distribution of the series in question. Furthermore, we let
e vary from 0.50 to 2 (the higher this value, the lower the power of the test). The results
for the tests where e was higher than 0.5 are not reported as they are similar to those of
the baseline case. As a further robustness test, especially when dealing with shorter series,
we also chose the option of calculating bootstrapped p-values for the test statistic using
various repetitions to increase the accuracy of the p-values (the results are not shown as
they are qualitatively similar to those from the standard tests).

4. Empirical Results

Table 1 presents the summary statistics of the data7. As found in many prior studies,
all the return series for the USA, the UK and Japan were not normally distributed, based on
their associated Jarque–Bera statistics. We also examined the correlation matrix (results not
shown) and observed that these return series are positively (and statistically significant)
related,8 similar to those found in other developed markets in several prior studies. The
rather high kurtosis numbers suggest the higher likelihood of extreme returns in the data
for all the three countries. The skewness numbers indicate high volatility, with some
extreme gains for the USA and losses for the UK and Japan.

Table 1. Descriptive statistics.

USA UK Japan

yUS yUK yJP

Mean 0.0062 0.0070 0.0013
Median 0.0091 0.0116 0.0011

Max. 0.4222 0.1129 0.1843
Min. −0.2994 −0.1306 −0.2012

Std. dev. 0.0542 0.0405 0.0567
Skewness 0.2928 −0.4591 −0.0535
Kurtosis 12.4360 3.6832 3.8240

Jarque–Bera 4063.0700 *** 17.0834 *** 9.0045 **
p 0.0000 0.0002 0.0111

NOB 1092 313 313
Notes: This table reports the descriptive statistics of monthly returns, y, on the country price indices for the USA,
the UK and Japan. The sample period for the USA spanned from January 1926 to December 2016, while the
sample period for the UK and Japan started in December 1989 to December 2015. Notations ** and *** indicate 5%
and 1% significance levels, respectively.

Table 2 shows the results for simple unit root tests. At the 1% level of significance, the
ADF and Phillip–Perron tests unanimously rejected the random walk hypothesis. Table 3
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displays the results for the ERS tests which also rejected the null hypothesis. It is interesting
to note that the random walk hypothesis was rejected by only two of the four tests for
the USA, the UK and Japan indicated in Table 4 (Ng–Perron). Table 5 reports the Zivot–
Andrews test results. Again, the unit root or the random walk hypothesis was rejected at
the 1% significance level. These results are in line with some of the prior reviewed studies
but are in stark contrast to those obtained by Narayan and Smyth (2007), except for Japan
whose price series was found to be stationary. It is possible that their tests (LS, LP, Perron,
Zivot and Andrews) suffer from the same problems as those discussed by Narayan and
Popp (2010) and Ender and Lee (2012) which are performed in our study. While the test
found a structural break in April 2000 for the US, in March 2009 for the UK and in March
2007 for Japan, these results should be interpreted with extreme caution (Perron 1989).9

Table 2. Unit root tests: Augmented Dickey–Fuller and Phillip–Perron Tests.

USA UK Japan

ADF Test Phillips–Perron Test ADF Test Phillips–Perron Test ADF Test Phillips–Perron Test

a0 0.0046 0.0046 0.008795 * 0.008795 * −0.0077 −0.0077
(0.1585) (0.1585) (0.0585) (0.0585) (0.2334) (0.2334)

γ1 −0.9163 *** −0.9163 *** −0.9444 *** −0.9444 *** −0.9034 *** −0.9034 ***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

θ 0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0000
(0.7117) (0.7117) (0.5508) (0.5508) (0.1158) (0.1158)

Adj. R2 0.4572 0.4572 0.4696 0.4696 0.4480 0.4480
NOB 1092 1092 313 313 313 313

Notes: ADF denotes the augmented Dickey–Fuller test. For details, please see Dickey and Fuller (1979) and
Phillips and Perron (1988). The model specification for the ADF and Phillips–Perron tests is: yt = a0 + γ1yt−1 +

θt + ∑
p
i=2 βiyt−i + εt, where yt is the stock index return in month t. The null hypothesis is γ1 = 1, a unit root in

the return series. p-values are in the parentheses. Notations *, ** and *** denote 10%, 5% and 1% significance
levels, respectively.

Table 3. Unit root tests: Elliott–Rothenberg–Stock test.

USA UKA Japan

Elliott–Rothenberg–Stock test statistic 0.6490 *** 0.7920 *** −15.398 ***
Test critical values: 1% level 3.9600 3.9915 −3.4712
Test critical values: 5% level 5.6200 5.6374 −2.9076

Test critical values: 10% level 6.8900 6.8770 −2.6008
NOB 1092 313 313

Notes: The equations of unit root testing by Elliott et al. (1996) are specified as follows: yt = dt + Ut,
Ut = αUt−1 + vt, where yt is the stock index return, dt is a deterministic component, vt is an unobserved stationary
error with zero mean, and its spectral density at frequency of zero is a positive value. In the GLS-detrended series,
ỹt ≡ yt − ϕ̂′Zt, ϕ̂ minimizes S(α, ϕ) =

(
yα − ϕ′Zα

)′(yα − ϕ′Zα
)
, where Zt is a set of deterministic components

and α =
(
1 + c

T
)
. The null hypothesis of a unit root is α = 1, while the alternative hypothesis is α = α. The

likelihood ratio statistic is defined as L = S(α)− S(1), where S(α) = minϕS(α, ϕ). The statistic of a feasible point
optimal test is PT = [S(α)− S(1)]/S2

AR. S2
AR is the autoregressive estimate of the spectral density at zero frequency

of vt. S2
AR = σ̂k/

(
1− β̂(1)

)2
. In an augmented Dickey–Fuller equation, yt = dt + γ1yt−1 + ∑k

i=2 βiyt−i + εtk,
β̂(1) = ∑k

i=2 β̂i and σ̂2
k = (T − k)−1 ∑T

t=k+1 ε̂2
tk , where T is the total of time periods and k is the lag length. Notation

*** denotes a 1% significance level.
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Table 4. Unit root tests: Ng–Perron test.

USA UK Japan

MZα MZt MSB MPT MZα MZt MSB MPT MZα MZt MSB MPT

Ng–Perron test statistics −96.1995 a −6.9339 a 0.0721 0.9531 −8.1361 −2.0149 0.2476 a 11.2068 a −153.1710 a −8.7497 a 0.0571 0.6000
Asym. critical values: 1% level −23.8000 −3.4200 0.1430 4.0300 −23.8000 −3.4200 0.1430 4.0300 −23.8000 −3.4200 0.1430 4.0300
Asym. critical values: 5% level −17.3000 −2.9100 0.1680 5.4800 −17.3000 −2.9100 0.1680 5.4800 −17.3000 −2.9100 0.1680 5.4800

Asym. critical values: 10% level −14.2000 −2.6200 0.1850 6.6700 −14.2000 −2.6200 0.1850 6.6700 −14.2000 −2.6200 0.1850 6.6700
NOB 1092 1092 1092 1092 313 313 313 313 313 313 313 313

Notes: The equations of unit root testing by Ng and Perron (2001) are specified as follows: yt = dt + Ut, Ut = αUt−1 + vt, where yt is the stock index return, dt is a deterministic
component, vt is an unobserved stationary error with zero mean, and its spectral density at zero frequency is a positive value. dt = ∑

p
i=0 ϕti . The analysis by Ng and Perron (2001) focused

on p = 0, 1, but it remains valid in general cases. The null hypothesis of a unit root is α = 1, while the alternative hypothesis is α < 1. In an augmented Dickey–Fuller equation, yt =

dt + γ1yt−1 + ∑k
i=2 βiyt−i + εtk, β̂(1) = ∑k

i=2 β̂i and σ̂2
k = (T − k)−1 ∑T

t=k+1 ε̂2
tk. S2

AR = σ̂k/
(
1− β̂(1)

)2
. MZα =

(
T−1y2

T − S2
AR
)(

2T−2 ∑T
t=1 y2

t−1

)−1
, MSB =

(
T−2 ∑T

t=1 y2
t−1/S2

AR

)(1/2)
.

MZt = MZα ×MSB. The statistic for the modified feasible point optimal test by Ng and Perron (2001) is as follows: when p = 0, MPGLS
T =

[
c−2T−2 ∑T

t=1 ỹ2
t−1 − cT−1 ỹ2

T

]
/S2

AR. When

p = 1, MPGLS
T =

[
c−2T−2 ∑T

t=1 ỹ2
t−1 + (1− c)T−1ỹ2

T

]
/S2

AR. Notation a denotes a 1% significance level.
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Table 5. Single-break unit root tests: Zivot–Andrews test.

USA UK Japan

Zivot–Andrews test statistic −14.17325 *** −16.8966 *** −16.26222 ***
1% critical value −5.57 −5.34 −5.57
5% critical value −5.08 −4.93 −5.08

10% critical value −4.82 −4.58 −4.82
Breakpoint April 2000 March 2009 March 2007

NOB 1092 313 313
Notes: Zivot and Andrews (1992) modified three models developed by Perron (1989), the crash model (model A),
the changing growth model (model B) and the changes in the level and slope of the trend function (model C), to
endogenously determine a breakpoint from the data. The following are the modified models: Model A: yt = µ̂A +

θADUt
(
λ̂
)
+ β̂At + α̂A yt−1 + ∑k

j=2 ĉA
j yt−j + ε̂t, model B: yt = µ̂B + β̂Bt + γ̂BDT∗t

(
λ̂
)
+ α̂B yt−1 + ∑k

j=2 ĉB
j yt−j + ε̂t,

model C: yt = µ̂C + θ̂C DUt
(
λ̂
)
+ β̂Ct + γ̂C DT∗t

(
λ̂
)
+ α̂C yt−1 + ∑k

j=2 ĉC
j yt−j + ε̂t, where yt in our setting is the

stock index return in month t, λ = TB/T, TB is the breakpoint, T is the total of time periods, DUt(λ) = 1 if t > Tλ
and zero otherwise and DT∗t (λ) = t− Tλ if t > Tλ and zero otherwise. Notation ∧ is the estimated value of
the break function. The null hypothesis of a unit root is α = 1. The test statistic is tα̂i (λ), and i = A, B, C. λ

was chosen to minimize the one-sided t-statistic for testing the unit root (i.e., αi = 1). Notation *** denotes a 1%
significance level.

Table 6 presents the results of the LP multiple-break unit tests with two lags and two
breaks as typically suggested in the econometric literature. First, the null hypothesis of
a unit root (with two or more breaks) was rejected by both tests at the 1% significance
level for the USA, the UK and Japan.10 Table 9 reports the findings for Narayan and Popp.
Again, the unit root or the random walk hypothesis was rejected at the 1% significance
level. The test also found two breaks. Similarly, the LS test rejected the random walk
hypothesis, as shown in Tables 7 and 8. It is interesting to note that LS only found one break
for the US and two breaks for the UK and Japan and that the break dates in LS and LP are
quite different—a well-documented phenomenon in the literature. The NP test (Table 9)
appears to do a better job in capturing breaks in all the three series which occurred around
the financial crisis starting in 2007. The NP results also unambiguously rejected the null
hypothesis, based on model 1 (break in the level, not reported) and model 2 allowing for
breaks in both the level and the trend (shown in the table). These break dates found in
the LP and NP tests were later used in the final part of our paper to study the associated
abnormal returns in these countries. Finally, the findings for EL presented in Table 10 are
similar to those of LP, LS and NP. Note that EL, while allowing for an unknown number
of breaks, does not report the number of breaks. The optimal lags chosen to minimize the
residual sum of squares were six, seven and two for the US, the UK and Japan, respectively.
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Table 6. Multiple-break unit root tests: Lumsdaine–Papell test.

USA UK Japan

µ 0.0037 0.0161 −0.0204
(0.7498) (2.4993) (−1.9811)

β 0.0000 −0.0001 0.0003
(0.6149) (−1.8426) (2.2255)

θ −0.0108 0.0395 −0.0505
(−1.4678) (3.4249) (−2.992)

γ 0.0000 −0.0007 0.0006
(1.4546) (−3.0054) (1.7457)

ω −0.025 0.0499 −0.0508
(−2.6197) (3.8389) (−3.0221)

ψ 0.0000 0.0005 −0.0006
(0.5755) (1.7308) (−1.7839)

α −1.0284 *** −1.0022 *** −0.9501 ***
(−14.094) (17.655) (−16.6473)

NOB 1092 313 313
Number of breaks 2 2 2

First break March 1968 March 2003 February 2000
Second break April 2000 February 2009 January 2006

Notes: The model specification for the Lumsdaine and Papell (1997) test is as follows: yt = µ + βt + θDU1t +

γDT1t + ωDU2t + ψDT2t + αyt−1 + ∑k
i=2 cyt−i + εt, where yt in our setting is the stock index return in month

t, DU1t (DU2t) is an indicator dummy for a mean shift at TB1 (TB2), the time breakpoint, and DT1 (DT2) is
the corresponding trend shift variable. The null hypothesis is α = 1, a unit root in the return series. Given

that δ1 = TB1/T and δ2 = TB2/T, the test statistic is defined as t̂(δ1, δ2) =⇒
∫ 1

0 w∗(s)dw(s)/
[∫ 1

0 w∗(s)2ds
]( 1

2 ) ,

where w(s) is a Wiener process. T-statistics are in brackets. Notation *** denotes a 1% significance level.

Table 7. Multiple-break unit root tests: Lee and Strazicich test: the crash model.

USA UK Japan

µ −0.0120 *** 0.0010 0.0023
(−6.1079) (0.4163) (0.7139)

δDU1 −0.0445 0.0655 0.1313
(−0.8311) (1.5284) (2.2769)

δDU2 0.0630 0.0629
(1.4687) (1.1020)

φ −0.9113 *** −0.5163 *** −0.7294 ***
(−10.9841) (−5.9937) (−8.4737)

Minimum test stat. (tau) −10.9841 −5.9937 −8.4737
Test critical values: 1% level −3.7980 −4.2264 −4.2264
Test critical values: 5% level −3.2300 −3.6356 −3.6356

Test critical values: 10% level −2.9250 −3.2995 −3.2995
Breakpoint June 1981 September 2003 March 1993

February 2010 April 2003
NOB 1092 313 313

Notes: The specification for the crash model in the Lee and Strazicich (2003) test is as follows: yt = δ′Zt + φS̃t−1 +

µt, S̃t = yt − ψ̃x − Zt δ̃, ψ̃x = y1 − Zt δ̃, where Zt is a set of exogenous variables, Z′t = [1, t, DU1t, DU2t] and δ′ is a
set of coefficients [δ1,δ1,δDU1, δDU2]. The null hypothesis is φ = 1, a unit root in the return series. T-statistics are in
brackets. Notation *** denotes a 1% significance level.
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Table 8. Multiple-break unit root tests: Lee and Strazicich test: the break model.

USA UK Japan

µ −0.0161 *** −0.0508 *** −0.0339 ***
(−7.0990) (−11.2039) (−6.5624)

δDU1 −0.0192 −0.2457 *** 0.0995
(−0.3569) (−5.9904) (1.7233)

δDU2 −0.0983 −0.1006
(−2.5119) (−1.7423)

δDT1 0.0124 0.1138 −0.0481 *
(2.4237) (8.4136) (−4.8467)

δDT2 −0.0273 0.0965
(−2.2535) (7.0711)

φ −0.9139 *** −1.0956 *** −0.8416 ***
(−10.9961) (−13.7221) (−11.0827)

Minimum test stat. (tau) −10.9961 −13.7221 −11.0827
Test critical values: 1% level −4.4612 −5.6458 −5.5177
Test critical values: 5% level −3.9240 −4.9246 −5.0260

Test critical values: 10% level −3.6492 −4.6474 −4.7586
Breakpoint November 2005 August 2008 November 2005

September 2009 March 2010
NOB 1092 313 313

Notes: The specification for the break model in the Lee and Strazicich test is as follows: yt = δ′Zt + φS̃t−1 + µt,
S̃t = yt − ψ̃x − Zt δ̃, ψ̃x = y1 − Zt δ̃, where Zt is a set of exogenous variables, Z′t = [1, t, DU1t, DU2t, DT1t, DT2t]
and δ′ is a set of coefficients [δ1, δ1, δDU1, δDU2, δDT1, δDT2]. The null hypothesis is φ = 1, a unit root in the return
series. T-statistics are in brackets. Notations *** and * denote 1% and 10% significance levels.

Table 9. Multiple-break unit root tests: Narayan and Popp test.

USA UK Japan

Narayan and Popp test statistic 12.666 *** 17.534 *** 16.397 ***
1% critical value 5.287 5.318 5.318
5% critical value 4.692 4.741 4.741

10% critical value 4.396 4.430 4.430
Breakpoint July 2007 June 2008 August 2008

January 2009 September 2008 April 2009
NOB 1092 313 313

Notes: This table reports the test statistic of the model with a break and a trend in the paper by Narayan and
Popp (2010). The null hypothesis is a unit root in the return series. The test is based on the following process:
yt = dt + Ut, Ut = tt−1 + εt, εt = ψ∗(L)εt = A∗(L)B(L)−1et, where yt is the return series with a deterministic
component dt and a schochastic component Ut, et is iid

(
0, σ2) with A∗(L) and B(L) being polynomial lags of

order p and q lying outside the unit circle. Model 1 in the paper by Narayan and Popp (2010) allows for two
breaks in the level. Model 2 (shown) allows for two breaks in the level and the trend. Notation *** denotes a 1%
significance level.
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Table 10. Multiple-break unit root tests: Ender and Lee test.

USA UK Japan

Ender and Lee test statistic 10.299 *** 4.175 ** 8.144 ***
1% critical value 4.560 4.610 3.730
5% critical value 4.030 4.070 3.120

10% critical value 3.770 3.790 2.830
Chosen lag 6 7 2
Frequency 1 1 5

NOB 1092 313 313
Notes: Ender and Lee test (2012) is a modification of the DF test in which d(t) or the time-dependent deterministic
term is added to the test regression: Y(t) = d(t) + αYt−1 + et and et is iid

(
0, σ2), where Y is the stock re-

turn. The unit root null hypothesis of α = 1 is tested by approximating d(t) with the following Fourier function :
d(t) = φ0 + φsin · sin(2πkt/T) + φcos · cos(2πkt/T) + εt, where εt = αet−1 + ut, k is the single frequency compo-
nent and measures the amplitude and displacement of the sinusoidal component of d(t), t = 1, 2, . . . , T. The
above equation is estimated for all integer values of k which lie between the interval [1, 5] and selecting the
estimation which produces the lowest residual sum of squares. Notations *** and ** denote 1% and 5% significance
levels, respectively.

The results from the normalized integrated spectrum tests are shown in Figure 1
(USA), Figure 2 (UK) and Figure 3 (Japan). The null of stationarity was rejected at the
5% significance level in all the three return series as the statistics fell within the two
bands. Fisher’s G-tests and periodograms for each country, not shown to save space, are
qualitatively similar.
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Table 11 reports the mean abnormal returns and the cumulative abnormal returns
for the USA, the UK and Japan. To conserve space, we presented these statistics for a
sample period with two structural breaks identified by the Lumsdaine–Papell test and
the Narayan and Popp test. The two structural breaks identified using the Narayan
and Popp test coincide with the recent global financial crisis period. Table 11a,b show
that the mean abnormal return in most of subsample periods for the USA, the UK and
Japan is close to zero. However, significant cumulative abnormal returns are found for
the USA, the UK and Japan, lending support for market inefficiency. Interestingly, the
cumulative abnormal returns were all positive (negative) for Japan (UK) in these subsample
periods. The cumulative abnormal returns in the subsample periods ranged from 14.64% to
81.02% for Japan, whereas they were between −4.05 and −64.51% for the UK. The positive
(negative) cumulative abnormal returns for Japan indicated that the stock market in Japan
(UK) consistently outperformed (underperformed) the random walk model.
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Table 11. Abnormal and cumulative abnormal returns for the USA, the UK and Japan. (a) Sample
period split by breakpoints identified by the Lumsdaine–Papell test. (b) Sample period split by
breakpoints identified using the Narayan and Popp test.

(a)

USA
Subsample period 1 First breakpoint Subsample period 2 Second breakpoint Subsample period 3

Jan. 1926–Feb 1968 Mar. 1968 Apr. 1968–Mar. 2000 Apr. 2000 May 2000–Dec. 2016

Mean Ab. Ret −0.0010 0.0007 0.0018
(0.0671) (0.0447) (0.0405)

Cum. Ab. Ret −0.4511 0.2281 0.2924
NOB 470 348 164

UK
Subsample period 1 First breakpoint Subsample period 2 Second breakpoint Subsample period 3

Dec. 1989–Feb. 2003 Mar. 2003 Apr. 2003–Jan. 2009 Feb. 2009 Mar. 2009–Dec. 2015

Mean Ab. Ret −0.0042 −0.0190 −0.0029
(0.0393) (0.0441) (0.0313)

Cum. Ab. Ret −0.5166 −0.6451 −0.1334
NOB 123 34 46

Japan
Subsample period 1 First breakpoint subsample period 2 Second breakpoint Subsample period 3

Dec. 1989–Jan. 2000 Feb. 2000 Mar. 2000–Dec. 2005 Jan. 2006 Feb. 2006–Dec. 2015

Mean Ab. Ret 0.0077 0.0238 0.0093
(0.0572) (0.0407) (0.0508)

Cum. Ab. Ret 0.6635 0.8102 0.7698
NOB 86 34 83

(b)

US
Subsample period 1 First breakpoint Subsample period 2 Second breakpoint Subsample period 3

Jan. 1926–Jun. 2007 Jul. 2007 Aug. 2007–Dec. 2008 Jan. 2009 Feb. 2009–Dec. 2016

Mean Ab. Ret −0.0003 N/A −0.0014
(0.0567) N/A (0.0304)

Cum. Ab. Ret −0.2935 N/A −0.0800
NOB 942 N/A 59

UK
Subsample period 1 First breakpoint Subsample period 2 Second breakpoint Subsample period 3

Dec. 1989–May 2008 June. 2008 Jul. 2008–Aug. 2008 Sep. 2008 Oct. 2008–Dec. 2015

Mean Ab. Ret −0.0008 N/A −0.0008
(0.0368) N/A (0.0321)

Cum. Ab. Ret −0.1555 N/A −0.040538
NOB 186 N/A 51

Japan
Subsample period 1 First breakpoint Subsample period 2 Second breakpoint Subsample period 3

Dec. 1989–Jul. 2008 Aug. 2008 Sep. 2008–Mar. 2009 Apr. 2009 May 2009–Dec. 2015

Mean Ab. Ret 0.0008 N/A 0.0051
(0.0525) N/A (0.0513)

Cum. Ab. Ret 0.146402 N/A 0.2248
NOB 188 N/A 44

Notes: A rolling 36-month estimation period was used to compute the 1-month-ahead predicted return from
the random walk model. Each month, the predicted return is subtracted from the realized return to obtain an
abnormal return. The cumulative abnormal return is the sum of abnormal returns in a subsample period. The
following are the specifications of the random walk model, predicted return (ŷ), abnormal return (AR) and
cumulative abnormal return (CAR): yt = c + εt, ŷt+1 = ĉ = 1

36 ∑ (yt + yt−1 + · · ·+ yt−35), ARt+1 = yt+1 − ŷt+1,
CAR = ∑T

t=36 ARt+1. If a subsample period is shorter than 36 months, predicted return, abnormal return and
cumulative abnormal return are not computed. The standard deviation of abnormal returns is in parentheses.
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Table 11a also shows that the cumulative abnormal return for the USA was −45.11%,
22.81%, and 29.24% in the periods between January 1926 and February 1968, April 1968 and
March 2000, May 2000 and December 2016, respectively. In Table 11b, we find cumulative
abnormal returns of −29.35% and −8% for the USA during the periods of January 1926 to
June 2007 and February 2009 to December 2016, respectively. The presence of significant
cumulative abnormal returns again suggests that the US stock market is not efficient.
Overall, our empirical evidence implies that abnormal profits can be exploited if structural
breaks are correctly identified and appropriate trading strategies are implemented. The
importance of a structural break and its impact on abnormal profits cannot be overlooked.

It is important to note that the structural breaks found correspond to major historical
economic events. For example, 1968 is the year of economic crisis in the USA (Collins 1996):
the Bretton Woods Agreement caused the balance of payments deficit in the USA. In March
1968, foreign investors started selling US dollars to buy gold, which led to the crack of
the Bretton Woods Agreement. In April 2000, the NASDAQ Composite Index plummeted
10% (Johansen and Sornette 2020). When the UK joined the Iraq War in March 2003, the
FTSE 100 Index hit bottom at 3272. In January 2009, the UK entered the recession, and
the unemployment rate rose in February 2009. For Japan, the recession of the Japanese
economy started in the 1990s and continued to 2002. The Nikkei 225 Index rose above
20,000 yen in March 2000 because of the dot.com spillover effect from the USA. In the same
month, news that Japan had entered a recession led to a global selloff which adversely
affected technology stocks. In January 2006, Japan continued its expansion which started
in 2002.

5. Discussion

The overall findings of mean reversions in our study may suggest that stock index
prices behave in an ergodic manner. Horst and Wenzelburger (2008) showed in a theoretical
model that financial market dynamics is ergodic if the interaction between households
is sufficiently weak. In this case, market shares settle down to a unique equilibrium.
However, when ergodicity no longer holds (if the interactive complementarities in the
financial market are “too powerful”), “history matters” and the long-run market shares of
competing financial mediators are path-dependent.

Our results also lend support to the existence of “market anomalies” or “behavioral
finance” as discussed in earlier sections of the paper. Even in an imperfectly efficient market,
Grossman and Stiglitz (1980) showed that there still exist opportunities for abnormal
investment returns due to superior information gathering by some analysts. Lo and
MacKinlay (1988) demonstrated that the serial correlation of share prices is significantly
significant. Therefore, there is a possibility of short-term returns on share prices when
investors realize that share prices move consequently in the same direction. Studying the
American market with high-frequency data for the S&P 500 index, Peters (1994) found
a persistent time series with strong autocorrelation. Findings from other recent studies,
discussed in the literature review, are also consistent with our present results.

What may be the reasons for the mixed empirical evidence for the efficient market
hypothesis?11

We do not have a solid answer but believe that the conflicting findings may be a result
of discrepancies in the datasets used in prior studies. From our prior experience, estimation
results using data from the same stock indices obtained from different databases can
sometimes be quite dissimilar, perhaps due to various methodologies used in constructing
the data series. Econometric methods employed in a given study can also play a role.
Bhargava (2014) demonstrated that certain approaches in testing for random walk (such as
those by Lo and Andrew’s variance ratio and related tests) can lead to erroneous results. Our
study, we believe, mitigated some of these shortcomings by employing a comprehensive
battery of highly regarded tests on an authoritative database. It is surprising that this was
the first time, to our knowledge, data from the WRDS stock price indices were used to
examine this issue.
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6. Concluding Remarks

The main rationale for our research was that previous studies had found mixed results
with regard to the efficient market hypothesis. We set out to explore this topic for the USA,
the UK and Japan with a recent dataset and improved statistical methods. We contributed
to the existing literature by employing a comprehensive battery of tests including several
high-power multiple-break unit root and novel spectral tests. We further computed the
abnormal returns using the break dates captured in the models. We then linked those
abnormal profits to their associated economic events. We found that stock market indices
in the USA, the UK and Japan are generally not efficient. While our results are in line
with a number of recent studies, they do not support the findings of several earlier studies
reviewed in the paper. Therefore, definitive empirical evidence for mean reversions in
highly developed markets remains elusive. It will be interesting to extend the present study
to include market indices in other advanced countries in future studies. Finally, based on
the findings in this study, it may be concluded that investors could possibly be able to earn
arbitrage profits due to market inefficiency even in highly developed stock markets.
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Notes
1 These tests allow for more than one structural break in the data and, if not accounted for, can lead to misleading results

(Lumsdaine and Papell 1997; Lee and Strazicich 2003; Narayan and Popp 2010; Ender and Lee 2012).
2 We strongly suggest the readers refer to the original papers for detailed derivations of the models and test statistics. Due to space

limitations and the large number of tests examined in this study, it is not practical to discuss each of them in detail.
3 There is another model based on the ergodic theorem stating that past and present probability distributions define the probability

distribution, which will help forecast future market prices. The ergodic principle posits that the future is predetermined by the
existing variables such as market fundamentals. Therefore, it is possible to forecast the future by analyzing the present and past
data. If the system is nonergodic, on the other hand, the probability distributions of past and present do not provide a statistically
reliable estimate for the probability of future events. A reviewer commented that stock prices appear to be random, yet they are
“chaotic” in reality. This presents a challenge for the random walk model. Klinkova and Grabinski (2017) and Grabinski and
Klinkova (2019) showed that using arithmetic means in chaotically varying quantities does not always yield results to random
variations and that the “ultimate” financial model is not possible. Furthermore, ergodicity can be assumed in random variations
but, generally, not in chaotic ones.

4 We selected high-impact and widely cited tests (most of which were originally published in elite journals in the fields of
econometrics, statistics, finance and economics) to be used in our study to avoid the “kitchen-sink” approach.

5 To conserve space, we reported the results for two lags since the results were essentially the same for any of these methods.
6 Please refer to Wei (2018) and Ronderos (2014) for detailed discussions of the tests in this section.
7 To conserve space, we did not report the results from all the tests conducted in this study discussed in the Data and Methodologies

section, especially when the vast majority of the findings were similar. Rather, we focused on the more interesting and important
test results. In addition to the reported tests, we completed a variety of older random walk tests such as the Brock et al. (1996),
various versions of variance ratio, runs and autocorrelation tests as in several of the reviewed articles and found the results were
essentially unchanged (and did not report them in the Results section). The complete results are available from the authors
upon request.
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8 The correlation coefficients between the WRDS indices and those of Compustat are between 0.95 and 0.98 for the countries in
our sample.

9 An anonymous reviewer noted that one typically wants to show that the measured results are stronger with a statistical
significance when there is a null hypothesis or placebo. In many cases, the null hypothesis is also a result of observation. As such,
it has a distribution. Including both distributions, consequently, changes the way one proves statistical significance. In a recent
study, Tormählen et al. (2021) showed that in order to obtain identical significance, it may be necessary to perform twice as many
experiments than in a setting where the placebo distribution is ignored. They also showed that statistical significance may be
inaccurate due to “misuse” of the central limit theorem.

10 The specification with three and more structural breaks was tested. However, our statistical software only found two breaks.
Furthermore, the results remained similar regardless of the number of lags employed.

11 We thank an anonymous referee for his/her many stimulating questions, including this one.
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