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Abstract: It is common practice to employ returns, price differences or log returns for financial
risk estimation and time series forecasting. In De Prado’s 2018 book, it was argued that by using
returns we lose memory of time series. In order to verify this statement, we examined the differences
between fractional differencing and logarithmic transformations and their impact on data memory.
We employed LSTM (long short-term memory) recurrent neural networks and an XGBoost regressor
on the data using those transformations. We forecasted risk (volatility) and price value and compared
the results of all models using original, unmodified prices. From the results, models showed that, on
average, a logarithmic transformation achieved better volatility predictions in terms of mean squared
error and accuracy. Logarithmic transformation was the most promising transformation in terms of
profitability. Our results were controversial to Marco Lopez de Prado’s suggestion, as we managed to
achieve the most accurate volatility predictions in terms of mean squared error and accuracy using
logarithmic transformation instead of fractional differencing. This transformation was also most
promising in terms of profitability.

Keywords: returns; detrending; LSTM; trading strategies

1. Introduction

It is common practice to make statistical measures of time series invariant over time
to describe data points more precisely using traditional regression methods. Moreover,
various data transformations affect how much memory or similarity will remain between
modified and unmodified series. However, it is unknown how important data transfor-
mation and correlation is to the original form and how they can affect the accuracy of
predictions in machine learning. In this research, we compare how well recurrent neural
networks perform with and without different data transformations in terms of forecasting
prices and volatility, which will be evaluated using different metrics. We will also look into
the accuracy of next-day prediction, create a strategy by using different strategies and seek
to maximize our profit. These metrics will be the main criteria to determine how well the
recurrent neural networks can be applied in daily trading.

To understand detrending (making time series stationary), we have to understand the
reasoning for that and how transformation affects time series. In general, we detrend time
series to make their mean, variance, and autocorrelation constant over time or, in other
words, to decompose them into parts and remove their trend and seasonality components.
Removing these parts makes time series more suitable for linear regression, where linear
models such as ARIMA benefit the most (more discussed by Millionis (2004)). In general,
this implies that the relationship between previous data points and the following ones holds
the same relationship; thus, they perform poorly on long-term forecasting because they
strongly depend on previous values. On the contrary, we have recurrent neural networks,
which are not dependent on a condition for linearity to be satisfied. The best example would
be LSTM cells, which excel at remembering long-term dependencies, meaning that with
sufficient training data, they can determine the changing fluctuations of the time series.
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Like any other model, RNNs are susceptible to a sudden change in financial market
behavior. If you train your model using time series when the market was under the
influence of certain properties, your testing set can differ from reality if new externalities
occur that drastically reshape how the market acts without any similarity in the past. This
can also take some time for the model to relearn. However, if a detrended time series were
used, then despite the drastic change, the model will likely have better results since it is
easier to learn stationary data, or at the very least, use inverse transformation to apply
previous day information to have a more accurate prediction. This is also suggested by
Salles et al. (2019) in “Non-stationary time series transformation methods: An experimental
review”, where the author concludes that to obtain more accurate results, time series
transformations in machine learning are necessary.

2. Fractional Differencing for Stationarity and Memory

In “Advances in financial machine learning” de Prado (2018), the author justifies
the loss of memory in a time series by examining the relation between non-stationary
time series and its stationary transformation, specifically by comparing using first-order
logarithmic and fractional differencing usually used for long memory analysis Carreno
Jara (2011), Maynard et al. (2013), Sadaei et al. (2016), Baillie (1996). To fully understand
this, we have to look into the fractional differentiation of order d:

Xt = dXt−1 −
d(d− 1)

2!
Xt−2 +

d(d− 1)(d− 2)
3!

Xt−3 − ... + εt

and rewrite it for our time series {St}t=1,...,T at time t with weights; then, we obtain its
transformation

Ŝt =
∞

∑
k=0

ωkSt−k

with
ω0 = 1 and ωk = −ωk−1

d− k + 1
k

.

Given d ∈ (0, 1), all weights after ω0 = 1 will be negative and greater than −1. When
d = 0, all weights are 0 except for ω0 = 1, and when d = 1, we have a standard first-order
differentiation because weights sequence {ωk} = {1,−1, 0...}.

In his book de Prado (2018), de Prado provides an example of E-mini S&P log-
prices, where the statistic of the Augmented Dickey–Fuller test with d = 0 (original
time series) is = −0.3387 and −3.2733 with d = 0.4, while the critical value of 5% is
−2.8623, meaning that the null hypothesis of the unit root can be rejected after fractional
differentiation transformation. Furthermore, the correlation between the two datasets
(original and transformed) is around 0.995, indicating that the memory is still preserved.
In comparison, a transformation with d = 1 gives an ADF statistic of −46.9114, but
correlation with the original set falls to 0.05. Thus, to achieve stationarity, it is sufficient to
fractionally differentiate.

It is easy to see that weights are a recursive sequence that is decreasing and bounded.
This means that is has limit L = limk→∞ ωk, and we can show that L = limk→∞ ωk =
− limk→∞ ωk−1

d−k+1
k = −L ∗ limk→∞

d−k+1
k (since both limits exist) = −L ∗ 1 = −L. By

solving equation L = −L, we obtain L = 0. This can also be seen from Figure 1, as k
increases, the weights converge to zero; in other words, the present time variable dependence
on historical values decreases and memory fades.
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Figure 1. Weights distributed to different lag coefficients.

Memory in Time Series

There are a lot of debates in the financial world about the stationary vs. memory
dilemma. Some argue that these two concepts have no correlation Kom Samo (2018) as
there are too many assumptions to be considered, while others oppose that opinion. Upon
further reading, we tried to evaluate memory in time series before and after fractional
differencing from a practitioner’s perspective.

The transformation of fractional differentiation is based on the idea that by transform-
ing present values in relation to past values, the data series persist its trend. This implies
that there is a significant connection between trends of original and transformed time series
or that there is a correlation between those two sets.

In Figure 2, autocorrelations of fractionally different time series take some time to
completely disappear, indicating longer memory compared to first-order difference of
logarithmic time series where previous values have no significant relation to each other.

Hosking (1981) proposed that fractionally differenced processes exhibit long-term
persistence and anti-persistence. One way to examine the persistence of time series is to use
the Hurst exponent. The Hurst exponent H ranges between 0 and 1. If value 0 < H < 0.5,
it implies an anti-persistent series, meaning that any positive movement will likely be
followed by a negative step and vice versa. If value 0.5 < H < 1, it implies that any
positive/negative change in time steps will be followed accordingly by positive/negative
change. A value of H = 0.5 indicates no correlation between a series variable and its past
values. Since the Hurst exponent relates to the autocorrelations lag rate changes, we can
further calculate the decrease in the Hurst exponent and time series trend. An important
note is that after adapting the rescaled range analysis, we calculated the average Hurst
exponent of all future contracts volatility and prices being on average at around 0.602 and
0.449, respectively, indicating that the series of volatility consists of persistence, while prices
consist of anti-persistence as well as lack of long memory in time series and the rapid decay
of correlations in time. In theory, cases with short memory use ARIMA models as they are
more suitable compared to ARFIMA (ARIMA with a fractionally differenced lag), which is
used to represent long-range time series.
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Figure 2. Autocorrelation functions of time series transformation with d = opt (upper one) and d = 1
(lower one).

3. Methodology

In this research, we used 22 future contract close prices as our data. Out of those
22 symbols, 5 were from agricultural, 5 from currency, 5 from the interest rate, 3 from metal,
2 from stock, and 2 from energy sectors. Below, we present a brief description of each of
the following experiments:

• Forecasting true range volatility with RNN;
• Forecasting close prices with RNN and implementing results with two strategies;
• Forecasting close prices with XGBoost regressor and implementing results with

two strategies.

Each of the experiments was performed for three different time series transformations:

I. Unmodified time series, without any manipulation, noted as d = 0;
II. Fractional differenced time series with minimal order d to pass ADF test, noted as d = opt;
III. Classical logarithmic transformation, noted as d = 1.

Implemented strategies We will be using two simple algorithmic trading strategies.
The first strategy uses next-day predictions to determine new positions—if next-day pre-
diction is higher (or lower) than our previous prediction, then the position will be 1 or
−1 (long or short). The second strategy is more intuitive; if the prediction is higher than
today’s price, we will go long, and if the prediction is lower, we will go short. Let us denote
our strategy Ht, St as real price and Ŝt as predicted price, where t indicates time. When our
strategies can be described as:

Strategy no.1: Ht = 1 if Ŝt < Ŝt+1; Ht = −1, if Ŝt > Ŝt+1;

Strategy no.2: Ht = 1 if St < Ŝt+1; Ht = −1, if St > Ŝt+1.

The reason to implement strategy no.1 is that in some cases, RNN can manage to minimize
loss efficiently despite the fact that its prediction is below or above our target. However,
we can still try to see how accurate predicted positions are.
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Data Transformations

In Figures 3 and 4, we will show a process of detrending a few selected symbols.
Before any transformation, time series were randomly distributed Figure 4, indicating
non-stationarity.
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Figure 3. Non-stationary prices of selected futures during an 8 year period.
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Figure 4. Distribution of selected non-stationary futures prices during an 8 year period.

After the transformation to stationary prices, we can visually see the drastic change in
their distributions in Figures 5 and 6.
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Figure 5. Selected futures prices after logarithmic transformation during an 8 year period.
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Figure 6. Distribution of selected futures logarithmic returns during 8 year period.

To confirm stationarity, we applied the ADF test to check if there is a need for second-
order differentiation as well as a measured correlation between the original set and trans-
formed, see Table 1. Critical value being −2.863 at the 95% confidence level.

Table 1. First-order logarithmic differenced series ADF test results and correlation with original series.

Symbol ADF Statistic Correlation

ES −22.480 0.001908
FESX −8.815 0.014000
FGBL −46.013 0.002109

FV −21.003 0.042371
KC −31.127 0.017448
EC −46.760 0.030828

According to de Prado (2018), all future contracts achieve stationarity at around
d < 0.6, and most of them are stationary even at d < 0.3. We conducted the same
experiment on 22 futures contracts, and all of them proved Marcos Lopez de Prado’s
statement, passing the ADF test with d < 0.6, and a part of them achieved stationarity
with d = 0.3. Furthermore, looking into those symbols that passed the ADF test, the
average correlation between original and transformed data sets with d = 0.6 is equal to
0.381 and with d = 0.3 to 0.784, indicating that the time series with d = 0.6 might be
over-differentiated, removing unnecessary information to achieve stationarity. The results
of selected symbols statistics after fractional differencing are seen in Table 2.

Table 2. Statistics of fractional differenced series ADF test results and correlation with original series.

Symbol ADF Statistic Correlation

ES −7.143408 0.749509
FESX −5.202948 −0.182082
FGBL −7.339610 0.787414

FV −7.850287 0.724982
KC −4.875684 −0.310578
EC −7.144471 0.893624

Evaluation metrics
For prediction evaluation, we are using three metrics.

1. Profitability. We integrate predictions into the two strategies mentioned above to
simulate how profitable each of them could be.

2. Accuracy. Position accuracy calculates how many times our predictions from Ŝt to
Ŝt+1 will go in the same direction as the real price movement from St to St+1.



J. Risk Financial Manag. 2022, 15, 602 7 of 12

Accuracy =
1

n− 1

∞

∑
t=1

1{sgn(St+1−St)=sgn(Ŝt+1−Ŝt)}.

3. MSE. Third metric mean squared error, which calculates how far the distance is from
the true values of the time series to our estimated regression

MSE =
1
n

n

∑
t=1

(St − Ŝt).

The experiment was conducted with Python using the Keras library. Because of time
consumption, we grouped similarly correlated time series and predicted each group with
different models. The hyperparameters for models were selected using the tryout approach.
The Adam optimizer was used for all models with MSE as our loss function.

The dataset of each symbol was divided into 3 parts: training, validation, and test
samples with the following ratio: 5:1:1 varying from January of 2012 until November of
2019. To deal with underfitting, we monitored each symbol’s performance by looking at
the training and validation loss graph, which indicates if there is room for improvement.
We also implemented early stopping to stop the model at the inflection point in validation
loss to prevent overfitting.

4. Results

Forecasting risk (volatility) using True Range
Table 3 shows the tabulated results of machine learning forecasted volatility using

different time series transformations. We used accuracy and MSE for measuring predictions
(Figure 7).

Table 3. Accuracy and MSE results of predicted true range volatility.

Symbol
Accuracy MSE

d = 0 d = opt d = 1 d = 0 d = opt d = 1

BP 0.59 0.61 0.61 1.12 × 10−7 1.25× 10−7 1.16× 10−7

C 0.43 0.60 0.51 7.21× 10−4 1.38× 10−2 6.09 × 10−4

SB 0.56 0.59 0.59 1.89× 10−4 5.90× 10−5 3.66 × 10−5

SI 0.51 0.49 0.48 1.44× 10−3 3.06× 10−4 2.32 × 10−4

ES 0.69 0.70 0.70 2.20 × 10−2 2.21× 10−2 2.82× 10−2

SF 0.57 0.58 0.58 4.14× 10−8 3.16 × 10−8 3.64× 10−8

ED 0.65 0.71 0.65 1.79× 10−5 6.84× 10−3 3.96 × 10−6

RR 0.56 0.58 0.62 3.37× 10−5 6.22× 10−5 2.40 × 10−5

PL 0.59 0.61 0.72 1.96× 10−2 6.02× 10−3 3.04 × 10−3

BO 0.58 0.59 0.70 2.10× 10−4 1.88× 10−4 1.21 × 10−4

FESX 0.54 0.63 0.64 2.17× 10−3 2.27× 10−3 1.52 × 10−3

FGBS 0.59 0.59 0.57 3.64× 10−6 3.22 × 10−6 3.78× 10−6

FV 0.51 0.53 0.58 1.01× 10−4 1.52× 10−4 7.15 × 10−5

HG 0.56 0.59 0.56 1.37× 10−6 1.32× 10−6 1.19 × 10−6

JY 0.55 0.59 0.58 3.27× 10−8 4.47× 10−8 2.93 × 10−8

KC 0.44 0.46 0.52 4.17× 10−4 6.45× 10−4 3.30 × 10−4

NE1 0.49 0.47 0.55 3.81× 10−8 1.63× 10−8 1.36 × 10−8

NG 0.41 0.45 0.55 1.77× 10−5 1.76× 10−5 3.65 × 10−6

QM 0.52 0.55 0.66 6.75× 10−3 6.20× 10−3 4.23 × 10−3

US 0.54 0.55 0.55 4.91× 10−3 3.19× 10−3 1.78 × 10−3

EC 0.60 0.59 0.57 5.54× 10−8 4.33× 10−8 2.41 × 10−8

FGBL 0.52 0.56 0.51 4.05× 10−4 4.14× 10−4 3.65 × 10−4

Win Count: 1 9 12 2 2 18
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Figure 7. MSE scaled between 0 and 1.

Forecasting prices with LSTM. Strategies returns
From Table 4 below, we can see the comparison between returns with a different

order of differencing using both strategies. This shows how much each data manipulation
affected each symbol’s profitability. Strategies with d = 1 provide the best outcome.

Table 4. Strategy returns using LSTM predicted prices.

Symbol
Strategy No. 1 Strategy No. 2

d = 0 d = opt d = 1 d = 0 d = opt d = 1

BP −4.953 −3.63 −4.420 2.231 −4.218 −5.471
C 4.715 −6.387 −10.452 −14.176 0.980 −5.411
SB −9.882 −10.886 0.214 −26.0498 −3.776 0.356
SI 5.159 7.944 18.119 2.932 10.044 21.583
ES −11.401 −7.629 −2.393 −0.100 −12.803 −3.516
SF −3.374 1.960 1.733 −4.015 2.360 1.277
ED 0.006 −0.232 0.129 0.087 0.181 0.269
RR 2.221 1.118 5.719 −1.663 4.774 3.331
PL 9.428 1.228 23.783 2.654 19.314 25.646
BO 0.071 −1.412 −7.898 0.125 −4.540 −1.245
FESX −3.3679 −0.196 2.933 6.032 1.687 2.992
FGBS −0.2806 −0.003 −0.596 −0.125 0.055 −0.547
FV −2.5998 −1.128 −2.4 −2.789 −0.627 −3.023
HG −9.5296 −8.075 −7.531 −6.385 −7.027 −0.968
JY −1.697 −0.836 0.442 −2.719 −1.666 0.901
KC −13.3799 −12.387 −29.527 −2.212 −15.932 −26.836
NE1 3.265 3.707 1.344 0.436 3.048 2.166
NG −15.061 7.439 6.971 33.875 14.393 −1.366
QM −34.882 −28.416 −10.163 −25.886 −31.093 −8.628
US 3.223 1.497 0.129 0.095 3.866 −1.414
EC −0.835 3.036 3.150 −5.925 2.523 3.367
FGBL −0.0538 0.954 1.070 2.277 1.823 1.691

Win Count: 3 7 12 7 7 8

Forecasting prices with LSTM. Accuracy and MSE
Table 5 illustrates the results. Note that a huge variance between MSE was caused by

a different tick size of future contracts and price range (Figure 8).

BP C SB SI ES SF ED RR PL BO FESX FGBS FV HG JY KC NE1 NG QM US EC FGBL
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Figure 8. MSE scaled between 0 and 1.
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Table 5. Accuracy and MSE results of predicted prices.

Symbol Accuracy MSE

d = 0 d = opt d = 1 d = 0 d = opt d = 1

BP 40.85 45.07 45.49 0.001 0.000 0.000
C 49.09 50.91 43.64 1.771 8.490 0.262
SB 49.63 54.81 54.81 0.041 0.040 0.051
SI 54.79 51.51 52.74 0.259 0.081 0.058
ES 32.88 37.95 36.07 1.791 1.407 0.794
SF 51.80 54.82 55.25 0.000 0.000 0.000
ED 46.46 49.28 49.71 0.021 0.006 0.001
RR 45.61 59.30 59.02 0.035 0.030 0.015
PL 42.47 53.01 61.04 8.307 3.449 1.241
BO 51.47 49.04 50.51 0.454 0.111 0.127
FESX 50.00 52.50 55.82 1.845 2.122 0.859
FGBS 45.24 44.52 42.92 0.004 0.008 0.001
FV 42.11 42.98 40.80 0.058 0.055 0.049
HG 46.60 47.18 47.57 0.001 0.001 0.001
JY 46.58 45.48 51.23 0.000 0.000 0.000
KC 48.00 46.40 43.01 4.469 0.410 0.406
NE1 49.04 58.85 57.23 0.000 0.000 0.000
NG 56.16 51.51 50.00 0.074 0.006 0.005
QM 49.32 50.41 56.77 1.971 1.670 1.377
US 53.42 53.01 50.62 3.762 2.037 0.763
EC 46.43 54.36 54.39 0.000 0.000 0.000
FGBL 53.62 54.57 52.17 0.816 0.313 0.237

Win Count: 6 6 10 0 3 19

Forecasting prices with XGBoost regressor: Strategy returns
XGBoost, also called Extreme Gradient Boosting, is a machine learning model that

originated from Friedman et al. (2000) idea of gradient boosting used for regression and
classification problems. We examined the XGBoost classifier for our datasets with window
= 20. Each attempt was optimized accordingly on the validation sample. Results are
depicted in Table 6.

Forecasting prices with XGBoost regressor: Accuracy and MSE
Table 7 illustrates the results. Note that a huge variance between MSE was caused by

a different tick size of future contracts and price range (Figure 9).

BP C SB SI ES SF ED RR PL BO FESX FGBS FV HG JY KC NE1 NG QM US EC FGBL
0.0

0.2

0.4

0.6

0.8

1.0
MSE

d = 0
d =  pt
d = 1

Figure 9. MSE scaled between 0 and 1.
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Table 6. Strategy returns using LSTM predicted prices.

Symbol Strategy No.1 Strategy No.2

d = 0 d = opt d = 1 d = 0 d = opt d = 1

BP −5.469 −9.488 −4.249 −5.286 −0.037 −7.160
C −7.535 8.118 −8.518 −7.397 0.399 4.917
SB −9.350 −12.053 −6.298 −23.960 −13.049 −1.238
SI 3.486 35.727 0.964 4.225 1.424 2.566
ES 18.170 −4.344 −20.824 1.599 −9.179 −18.005
SF 0.780 4.153 4.825 −0.411 1.001 1.823
ED 0.075 0.304 −0.320 0.124 0.180 −0.050
RR 0.848 6.093 2.142 −8.471 −1.610 0.878
PL −0.083 22.805 12.050 17.619 20.204 6.976
BO −1.696 17.984 −0.018 −9.518 −17.838 −6.782
FESX −6.728 −2.278 1.179 −6.145 3.385 −0.031
FGBS 0.133 −0.272 −0.476 −0.155 −0.281 −0.939
FV −0.848 2.758 −4.825 0.452 3.138 −4.165
HG −26.104 −9.468 −8.455 −5.488 −20.174 −12.823
JY −9.225 1.297 0.625 −7.154 −4.731 1.106
KC −0.189 −1.553 −27.257 −32.046 −14.720 −22.572
NE1 5.852 −0.196 2.164 6.324 6.632 0.989
NG −0.362 12.753 14.640 −0.362 6.909 5.650
QM −27.229 −19.926 −2.763 −25.197 −2.976 4.016
US 4.804 7.022 −4.351 −5.313 6.336 −4.927
EC −6.784 2.700 −2.018 −1.403 3.922 −1.720
FGBL −3.429 −0.046 2.164 −4.727 2.015 0.780

Win Count : 4 10 8 4 11 7

Table 7. Accuracy and MSE results of predicted prices.

Symbol Accuracy MSE

d = 0 d = opt d = 1 d = 0 d = opt d = 1

BP 50.70 39.44 45.07 0.002 0.000 0.000
C 41.82 52.35 42.95 1.468 1.143 0.498
SB 48.15 50.37 54.07 0.390 0.031 0.026
SI 56.16 60.27 46.58 0.173 0.211 0.091
ES 51.27 44.94 43.04 17.164 1.419 0.896
SF 60.27 53.57 55.40 0.000 0.000 0.000
ED 48.20 52.52 48.92 0.007 0.002 0.002
RR 51.47 56.14 59.65 0.047 0.018 0.010
PL 53.42 55.71 57.53 5.505 2.460 1.731
BO 47.37 58.82 49.26 0.369 0.178 0.107
FESX 44.93 50.72 51.39 35.623 1.150 0.855
FGBS 52.17 48.21 45.83 0.093 0.004 0.001
FV 47.86 50.29 39.18 0.123 0.101 0.054
HG 46.20 44.66 44.66 0.003 0.001 0.001
JY 41.43 50.68 47.95 0.000 0.000 0.000
KC 53.57 45.00 44.00 6.236 5.731 3.290
NE1 56.84 56.84 57.69 0.001 0.000 0.000
NG 56.73 54.05 50.68 0.123 0.004 0.003
QM 46.77 50.35 51.43 2.446 2.768 1.780
US 49.71 53.57 49.32 4.095 2.784 1.076
EC 41.52 53.80 49.32 0.001 0.000 0.000
FGBL 41.29 50.90 54.41 12.868 2.122 0.246

Win Count: 7 8 7 1 3 18
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Evaluating portfolio volatility
We can further analyze the risk of each strategy in regard to its prediction method. As

Table 8 shows, both strategies show similar results in terms of volatility. As expected, the
most consistent method with the difference time series is the first-order logarithmic (d = 1),
providing the least amount of variance between the returns.

Table 8. Volatility.

d = 0 d = opt d = 1

LSTM strategy no.1 6.880 5.743 7.559
LSTM strategy no.2 8.465 7.548 7.239

XGB regressor
strategy no.1 7.089 8.828 6.638

XGB regressor
strategy no.2 7.917 6.745 5.451

Assuming returns are normally distributed, we can approximate the monthly value-
at-risk with a 95% confidence level (Table 9)

Table 9. VaR 95%.

d = 0 d = opt d = 1

LSTM strategy no.1 6.880 5.743 7.559
LSTM strategy no.2 8.465 7.548 7.239

XGB regressor
strategy no.1 7.089 8.828 6.638

XGB regressor
strategy no.2 7.917 6.745 5.451

Neither data transformation shows a significantly lower risk. However, returns using
time series transformation with d = 1 with both LSTM and XGBoost predictors are the
most stable. On average, all methods indicate about at least 5–8% loss every 20 months.

5. Conclusions

According to our research, machine learning algorithms should consider stationary
time series transformations as it improved their predicted values. To deal with unknown
values, algorithms must have a pool of known variables to find the best fitting estimation.
In most cases, first-order difference of logarithmic data transformation (d = 1) showed
the best results for each metric as the vast majority of symbols (more than 80%) had the
best MSE value. One exception was XGBoost regressor, which was most profitable using
fractional differencing as 45.45% of and 50% of all symbols earned more using two different
strategies compared with other time series modifications.

Both transformations improved forecasting results in comparison with unmodified
series. However, concluded results contradicted Marco López de Prado’s suggestion that
saving memory in time series can lead to more accurate and profitable results compared to
other methods.

For future works, we suggest further analyzing this topic since both transformations
(d = opt and d = 1) improved neural network predictions compared to raw data series
(d = 0). One of the possibilities is the absence of long memory in future contract prices.
Determining memory impact on the order of transformation and using supplementary
tests would be beneficial for future research.



J. Risk Financial Manag. 2022, 15, 602 12 of 12

Author Contributions: A.R. and E.G. authors contributed equally to this work. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be provided upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
Baillie, Richard T. 1996. Long memory processes and fractional integration in econometrics. Journal of Econometrics 73: 5–59. [CrossRef]
Carreño Jara, Emiliano. 2011. Long memory time series forecasting by using genetic programming. Genetic Programming and Evolvable

Machines 12: 429–56. [CrossRef]
de Prado, Marcos Lopez. 2018. Advances in Financial Machine Learning. Hoboken: John Wiley & Sons.
Friedman, Jerome, Hastie Trevor, and Robert Tibshirani. 2000. Additive logistic regression: A statistical view of boosting (with

discussion and a rejoinder by the authors). The Annals of Statistics 28: 337–407. [CrossRef]
Hosking, J. R. M. 1981. Fractional differencing. Biometrika 68: 165–76. [CrossRef]
Kom Samo, Yves-Laurent. 2018. Stationarity and Memory in Financial Markets. October 15. Available online: https://towardsdatascience.

com/non-stationarity-and-memory-in-financial-markets-fcef1fe76053 (accessed on 1 November 2022).
Maynard, Alex, Aaron Smallwood, and Mark E. Wohar. 2013. Long memory regressors and predictive testing: A two-stage rebalancing

approach. Econometric Reviews 32: 318–60. [CrossRef]
Milionis, Alexandros E. 2004. The importance of variance stationarity in economic time series modelling. A practical approach. Applied

Financial Economics 14: 265–78. [CrossRef]
Sadaei, HosseinJavedani, Rasul Enayatifar, Frederico Gadelha Guimarães, Maqsood Mahmud, and Zakarya A. Alzamil. 2016.

Combining ARFIMA models and fuzzy time series for the forecast of long memory time series. Neurocomputing 175: 782–96.
[CrossRef]

Salles, Rebecca, Kele Belloze, Fabio Porto, Pedro H. Gonzalez, and Eduardo Ogasawara. 2019. Nonstationary time series transformation
methods: An experimental review. Knowledge-Based Systems 164: 274–91. [CrossRef]

http://doi.org/10.1016/0304-4076(95)01732-1
http://dx.doi.org/10.1007/s10710-011-9140-7
http://dx.doi.org/10.1214/aos/1016218223
http://dx.doi.org/10.1093/biomet/68.1.165
https://towardsdatascience.com/non-stationarity-and-memory-in-financial-markets-fcef1fe76053
https://towardsdatascience.com/non-stationarity-and-memory-in-financial-markets-fcef1fe76053
http://dx.doi.org/10.1080/07474938.2012.690663
http://dx.doi.org/10.1080/0960310042000220040
http://dx.doi.org/10.1016/j.neucom.2015.10.079
http://dx.doi.org/10.1016/j.knosys.2018.10.041

	Introduction
	Fractional Differencing for Stationarity and Memory
	Methodology
	Results
	Conclusions
	References

