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Abstract: This study investigates the time evolution of market efficiency in the Japanese stock markets,
considering three indices: Tokyo Stock Price Index (TOPIX), Tokyo Stock Exchange Second Section
Index, and TOPIX-Small. The Hurst exponent reveals that the Japanese markets are inefficient in their
early stages and improve gradually. TOPIX and TOPIX-Small showed an anti-persistence around the
year 2000, which still persists. The degree of multifractality varies over time and does not show that
the Japanese markets are permanently efficient. The multifractal properties of the Japanese markets
changed considerably around the year 2000; this may have been caused by the complete migration
from the stock trading floor to the Tokyo Stock Exchange’s computer trading system and the financial
system reform, also known as the “Japanese Big Bang”.

Keywords: market efficiency; multifractality; generalized Hurst exponent; efficient market hypothe-
sis; adaptive market hypothesis; Japanese Big Bang

1. Introduction

The efficient market hypothesis (EMH) developed and classified by Fama (1970)
is an important financial issue because it is crucial to find an optimal trading strategy
for institutional investors and practitioners by assessing the correct market status. For
instance, in an efficient market, one may adopt a simple strategy to replicate an investment
index. Contrarily, in an inefficient market, one may adopt a profitable strategy that uses
an abnormality caused by the inefficiency. Fama (1970) classified the EHM into three
forms: (i) weak form, (ii) semi-strong form, and (iii) strong form. The weak-form efficient
market' only discusses historical prices. Under this market, the return time series shows
no profitable predicting power for future returns. Although the weak-form efficient market
has been substantially tested in the literature, no definite evidence on the EMH has been
obtained; rather, the possibility of time-varying market efficiency has been discussed
(Lim and Brooks 2011).

Empirical studies have found universal properties that are not explained by a simple
random walk model, now classified as “stylized facts” (Cont 2001). The major stylized facts
include volatility clustering (Bollerslev et al. 1992; Comte and Renault 1996; Cont et al. 1997;
Ding et al. 1993; Ding and Granger 1994; Engle 1995), absence of return autocorrelations
(Cont et al. 1997; Fama 1970; Pagan 1996), slow decay of autocorrelations in absolute
returns (Cont et al. 1997; Ding et al. 1993; Ding and Granger 1994; Granger and Ding 1996;
Liu et al. 1997; Takaishi and Adachi 2018), heavy tails (Campbell et al. 1998; Cont et al.
1997; Mandelbrot 1963; Pagan 1996), and so on. Some stylized facts, such as the volatility
clustering and the slow decay of autocorrelations in absolute returns, are not consistent with
random walk models (Cont et al. 1997; Lo and MacKinlay 2011), implying that price process
is not in favor of the EMH based on random walk models. Empirical studies also reveal
the existence of anomalies such as momentum (Jegadeesh and Titman 1993) and reversal
(De Bondt and Thaler 1985; Jegadeesh 1990), which may offer an opportunity to gain profits.
Although the existence of such anomalies seems to exclude the EMH, Fama (1998) claims
that the anomalies, especially long-term return anomalies, do not always contradict the
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EMH. Furthermore, the anomalies observably disappear or weaken after their discovery in
academy (Schwert 2003).

A convenient method to test the randomness of a time series is to measure the Hurst
exponent (HE), H, classifying the randomness of the time series. The HE was originally
introduced by H.E. Hurst in hydrology to determine optimum dam sizing for the Nile
river (Hurst 1951) and is related to the autocorrelations of time series. Time series with
H > 0.5 have a property that successive movement in the same direction occurs more often
than the random walk process, denoted by “persistent”. On the other hand, time series
with H < 0.5 have successive movement back and forth more often than the random walk
process, denoted by “anti-persistent”. The random walk time series have a value H = 0.5.

Matteo et al. (2005) classified 32 world stock market indices in approximately 10 years
using the HE. Interestingly, they find a clear ranking for the degree of market efficiency
and classify the world stock indices into three groups: (A) H > 0.5 (persistent), (B) H ~ 0.5
(random), and (C) H < 0.5 (anti-persistent). All the emerging markets belong to group (A),
where the return time series have persistent behavior. The developed markets fall either
into (B) or (C).

Some well-developed markets (USA, Japan, France, and Australia) are classified into
group (C), suggesting that these markets are rather inefficient. The appearance of this
anti-persistency in developed markets is curious, and its origin is not fully understood.
Interestingly, the cryptocurrency markets also show anti-persistent behavior at the early
stage of the market (Urquhart 2016) and then move to a maturity stage by improving
their efficiencies (Drozdz et al. 2018a). It is suggested that ill-liquidity causes the anti-
persistence of cryptocurrency markets (Takaishi and Adachi 2020; Wei 2018). Given that
the liquidity of developed stock markets is expected to be sufficiently high, different
manifestation mechanisms may be applied to the anti-persistent behavior observed in
developed stock markets.

This study aims to investigate the evolution of market efficiency in the Japanese stock
markets over time from the early days of the markets to the present day. Specifically, we
focus on whether the anti-persistence observed in the Japanese market survives to the
present day. To quantify the market efficiency, we compute the generalized Hurst exponent
(GHE), which can reveal the complexity of the time series that is not captured by the
standard HE alone. As mentioned above, the HE is related to the autocorrelations of the
time series, i.e., linear correlations. The HE is not enough to measure the complexity or
non-linear correlations of the time series. The GHE captures more information on non-
linearity of the time series, and we use the GHE to quantify the property of the time series.
The time series with variable (constant) GHE is said to be multifractal (monofractal). Since
the Gaussian time series are monofractal, the appearance of multifractality means a certain
deviation from the Gaussian time series or some market inefficiency. Multifractality offers
another insight into market efficiency, and we examine the market efficiency by the degree
of multifractality via GHE.

The multifractal method is a powerful technique to analyze the time series property of
financial markets. Drozdz et al. (2018b) investigated the long-term records of the S&P 500
and NASDAQ and showed that the multifractal features are related to the most significant
historical events. Under the similar concept, by examining the multifractality of return
time series, we show that the time series property of the Japanese stock markets changed
considerably in around 2000 and infer that this property-change is attributed to the complete
migration from the stock trading floor to the Tokyo Stock Exchange’s (TSE’s) computer
trading system as well as the Japanese financial reform, known as the “Japanese Big Bang”,
that was established in the late 1990s.

This study is organized as follows. Section 2 describes the data and methodology used.
Section 3 presents the empirical results of this study. Finally, we discuss the results and
conclude the study in Section 4.
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2. Data and Methodology

Our analysis is based on the daily price data of three indices of Japanese stocks traded
on the TSE. (1) TOPIX: an index based on all domestic common stocks listed in the TSE
First Section. (2) Tokyo Stock Exchange Second Section Index (TSE-Second): an index of
all domestic common stocks listed in the TSE second section. (3) TOPIX-Small”: an index
based on small-sized stocks, excluding the 500 most liquid and highly market-capitalized
stocks. The data were retrieved from the JPX data cloud (http://db-ec.jpx.co.jp/, accessed
on 12 May 2021), and the time periods of the data used for the analysis are listed in Table 1.

Table 1. Time period of the data used and descriptive statistics of the returns.

Index Period Average Variance Kurtosis Skewness

TOPIX 16 May 1949-30 December 2020 23x107% 1.1 x 107% 14.7 —0.427
TSE-Second 2 November 1961-30 December 2020 25x%x 1074 6.8 x 107° 17.3 —1.14
TOPIX-Small 4 October 1968-30 December 2020 25x%x 1074 99 x10°° 15.7 —0.884

Given the time series of the daily price p(t),t =
by a logarithmic price difference, as follows

1,2,...,N, we define the return r(¥)

r(t) = logp(t) —log p(t —1). @

Figure 1 shows the return time series of the three indices, and the descriptive statistics
are listed in Table 1.
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Figure 1. Return time series of the three indices (top) Topix, (middle) TSE-Second, and (bottom)
TOPIX-Small.

We determine the GHE h(q) using multifractal detrended fluctuation analysis (MFDFA)
(Kantelhardt et al. 2002). The MFDFA, which is an extended method of the detrended
fluctuation analysis (Peng et al. 1994), can precisely investigate the multifractal properties
of non-stationary time series, which has been successfully applied to a variety of financial
markets (see, e.g., Jiang et al. 2019).
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The MFDFA is described as follows®:
First, we determine the profile Y (i).

=Y () - (), @
=1

where (r) stands for the average of returns. Then, we divide the profile Y (i) into Ns non-
overlapping segments of an equal length s, where Ny = int(N/s). Since the length of the
time series is not always a multiple of s, a short time period may exist at the end of the
profile. To utilize this part, the same procedure is repeated, starting from the end of the
profile. Therefore, 2N segments are obtained in total. Next, we calculate the variance.

—_

,i Y[(v—1)s +i] — P,(i))?, ©)

i=1

[v2)

for each segmentv,v =1,..., N5 and

m\»—\

i (v—Ns)s+i] — Pv(i))z, (4)

for each segment v,v = Ns +1,...,2N;. Here, P, (i) is the fitting polynomial to remove the
local trend in segment v; we use a cubic order polynomial. Averaging over all segments,
we obtain the gth order fluctuation function

v=1

1 2N 1/q
Fy(s) = {ZNS Z(Fz(V/S))qﬂ} : ©)

For g = 0, the averaging procedure in Equation (5) cannot be directly applied. Instead,
we employ the following logarithmic averaging procedure.

TR
Fy(s) = exp IN, 2 In(F*(v,s))|. (6)

V=

If the time series (i) is long-range power-law correlated, F;(s) is expected to be the
following functional form for large s:

Fy(s) ~ sh@), (7)

The GHE is determined by the scaling exponent 1(q). (2) corresponds to the HE H,
and for h(2) < 0.5 (h(2) > 0.5), the time series is classified as anti-persistent (persistent).
When h(q) varies with g, the time series is multifractal. Conversely, when %(g) is constant
for any g, the time series is monofractal. We restrict the range of g in ¢ = [—5, 5] because
when |g| is large, the moments in the fluctuation function could diverge, and the calculation
of h(gq) might be unstable (Jiang et al. 2019).

As the MFDFA is applied for a finite time series, we need to choose the length of time
series. Since we investigate time evolution of the market efficiency, in this study we choose
a length of 1250 working days, which roughly corresponds to 5 years.

The relationship between the multifractal degree and market efficiency has been
discussed by Zunino et al. (2008), and we define the degree of multifractality Ah(q) b

Ah(q) = h(—q) — h(q). ®)

As Ah(q) will take the value of zero for the Gaussian time series, a finite Ah(g) is
expected to be related to some degree of inefficiency.
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3. Empirical Results

To measure the time evolution of /(g), a rolling window method is used: each h(g) is
calculated with a time window of 1250 working days (approximately 5 years), and the time
window is shifted to 25 days for the next calculation. Figure 2 shows a representative of the
fluctuation function F;(s) at the first time window of the TOPIX time series. We determine
the scaling exponent /1(q) by fitting to Equation (7) for 25 < s and typically the fitting errors
0 (%) of h(q) are found to be in a range of 0.7 < 6 < 3.

0.1

Fq(S)

0.01

il i1 | 1 I 1 I R | I
0.001 10 100

S

Figure 2. A representative of the fluctuation function F;(s) at the first time window of TOPIX time
series. The results are plotted from g = —5 (bottom) to g = 5 (up) with a step of 0.1.

First, we present the results of the HE, /(2). Figure 3 shows the time evolution of
h(2) for the returns of three indices, and we find that #(2) varies considerably over time.
To check if this variable behavior originates from time-correlations, we also calculate the
h(2) of randomized return time series. The randomization can eliminate all possible time-
correlations of the time series. The red lines in Figure 3 represent the averages of /1(2),
calculated from 20 randomized return time series. The averages of /(2) fluctuate around
0.5, which is expected in the case of the random time series. Thus, it is confirmed that the
variable behavior of HE in the original time series is driven by time correlations.

It is observed that before 1970, 11(2) of TOPIX was greater than 0.5, indicating that the
TOPIX market has persistency and is thus inefficient. 1(2) of TOPIX gradually decreases,
and it appears that /(2) reaches 0.5 around the 1980s, indicating that the market becomes ef-
ficient. However, /1(2) of TOPIX decreases further to less than 0.5 after around the year 2000,
indicating anti-persistency. This anti-persistence was also observed by Matteo et al. (2005),
and it persists until today. The h(2) values of the TSE-Second and TOPIX-Small took a
value greater than 0.5 before 2000, indicating that the time series are persistent. Both the
h(2) values of the TSE-Second and TOPIX-Small decreased at the beginning of the 2000s
and the h(2) of TSE-Second reached approximately 0.5, indicating that the TSE-Second
market has become efficient.
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Figure 3. Time evolution of /(2) for TOPIX, TSE-Second, and TOPIX-Small. The red lines show h(2)
calculated from the 20 randomized time series. The blue symbols with error bars represent a typical
fitting error level of 1%.

A steep decrease in h(2) for all the three indices is observed in around the year 2000.
In 1999, the stock trading floor of the TSE was closed*, and a computer trading system
was introduced. This migration to the computer trading system may have changed the
market status and can explain the steep decrease in 1(2). Another explanation for this
steep decrease is the financial system reform, also known as the “Japanese Big Bang”,
which started in the late 1990s (See, e.g., Ito and Melvin 1999). The objective of the
“Japanese Big Bang” under the principles of “free, fair, and global” was to make the Japanese
financial markets more efficient and internationalized. To achieve this, deregulations such
as decontrolling brokerage commissions and dropping the securities transactions tax were
introduced in various financial sectors.

For the TOPIX-Small, 1(2) is observed to have decreased to less than 0.5 at the be-
ginning of the 2000s, similar to the TOPIX. This observation suggests that before 2000,
although the TSE represented by TOPIX had already become efficient, the market including,
only small capital stocks represented by TOPIX-Small, still showed inefficiency. After 2000,
both the h(2)s from TOPIX and TOPIX-Small showed similar anti-persistency. Thus, the
market status of the TSE, including the small capital stock sector, has become similar to
that of TOPIX.

Next, we examine the multifractal properties by the GHE, h(q). Figure 4 is a repre-
sentative of hi(q) as a function of ¢ at the first time window of the TOPIX time series. In
Figure 4, we find that /1(q) is not constant, thereby showing the multifractality of the time
series. To investigate the time evolution of 1(g), we show h(g) in three-dimensional plots
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in Figure 5; we recognize that the h(q) values of the three indices at any given time are
not constant, exhibiting the multifractal nature of the return time series. The functional
form of h(q) varies considerably over time, causing the surface of 1(7) on the g-time plane
to fluctuate. Before 2000, the area with h(g) > 0.5, represented in yellow and orange,
dominated the others. After 2000, the area with 1(q) < 0.5, represented in blue and light
blue, has expanded. These results suggest that the market status by multifractality changed
substantially in around 2000, which is possibly attributable to the complete migration to
the TSE’s computer trading system and the financial system reform, also seen in /(2).

0.8 . . .

0.75 N
0.7

=
= 0.65
0.6

0.55

0.5

Figure 4. h(q) as a function of g at the first time window of the TOPIX time series. The blue symbol
with error bar represents a typical fitting error level of 1%.

Finally, we quantify the degree of the multifractality by Ak(g) and investigate market
efficiency. Although the existence of multifractality or a finite Ak(g) might be related to
market inefficiency, it should be noted that two possible sources of multifractality exist: (i)
time correlations and (ii) broad (fat-tailed) return distributions (Kantelhardt et al. 2002).
The degree of multifractality by Ah(g) could contain a multifractal component from the
fat-tailed distribution. To subtract the component of the time correlations that relate to
market efficiency, we also performed a multifractal analysis for a randomized time series
containing the component from the fat-tailed distribution only and then calculated the
time-correlation component of the multifractal degree by

Ahtime(q) = Ahorig(q) - Ahrand(Q)/ 9)

where Ahyio(q) and Ahyq,4(q) are the degree of the multifractality for original and random-
ized time series, respectively. Taking q = 4, we plot Ahy;(4) and Ah,,:(4) in Figure 6.
In addition, to investigate the contribution of linear correlations to the multifractality
we calculate the degree of the multifractality for the surrogate time series (Schreiber and
Schmitz 2000; Theiler et al. 1991) and also plot the results in Figure 6 as Ahpys, (4) and
Ahamp(4). Ahppgse(4) is obtained from the phase randomized surrogate time series, which
eliminates the distributional properties and time correlations, except for the linear correla-
tion. Ahgmp(4) is obtained from the amplitude adjusted surrogate series which keep the
linear correlation and the distributional properties. We generate 20 surrogate time series for
each time window and calculate averages of the GHE over those time series. The amplitude
of Ahppas (4) is found to be small, meaning that the contribution of linear correlations to the
multifractality is small. We find that Ahgp(4) and Ah,,,q(4) have a similar time variation,
which also indicates that the contribution of linear correlations is small, and thus Ak (4)
and Ah,,,(4) mainly exhibit the degree of multifractality from the return distributions. As
typically Ahyig(4) is larger than Ahgyp(4), Ahoyig(4) contains the contributions from com-
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plex non-linear correlations. Ah,,,;(4) takes mostly non-zero values and varies over time,
implying that the return distribution contributes to the appearance of the multifractality,
and the form of return distribution may vary over time.

TOPIX

0.8
0.6
hia) o4
0.2

0.2

TSE-Second

=

h{q)

coee
NMONBR DN

=)

TOPIX-Small

cooo &=
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Figure 5. Three-dimensional plots of the GHE /(g). The bottom plane in each plot represents a
viewing map on the time-g plane.
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Figure 6. Time evolution of Ahy,g(4) (black) and Alt,gu0(4) (red), Ahamp(4) (blue), and Al (4)
(green).

As seen in Figure 7, Ahyjy,. (4) varies over time, and there is no indication that Al (4)
converges to zero, meaning that the Japanese markets are inefficient. It especially contrasts
with h(2) of TSE-Second, showing that the recent market is efficient only judging by
h(2). Our observation implies that multifractality is induced by complex time correlations
uncaptured by HE alone, and the Japanese stock markets quantified by the multifractality
are inefficient.
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Figure 7. Time evolution of the time-correlation component of the degree of multifractality, Al (4).

4. Discussion and Conclusions

The HE in the early stage of the Japanese stock markets was higher than 0.5, indicating
an inefficient market. Consequently, it decreased to 0.5 in around 2000, indicating an
improved market efficiency. The return time series of TOPIX and TOPIX-Small exhibit
an HE smaller than 0.5 after 2000, showing the anti-persistent property of the time series.
Anti-persistency means that the up—down reversal of returns occurs more often than the
random walk process, and this observation could explain why the momentum effect that
causes rising (falling) assets to rise (fall) is insignificant in the Japanese stock market
(Liu and Lee 2001).

There exists multifractality in the Japanese stock markets without any indication that
it disappears. The multifractal properties changed considerably in around 2000, which
is possibly attributable to the complete migration to the computer trading system and
adoption of the financial system reform, “Japanese Big Bang”.

The existence of multifractality implies that the return time series could have complex
time-correlations that are not captured by HE alone, and the Japanese stock markets are
not always efficient. The inefficiency observed by multifractality could offer an opportu-
nity to gain profits, and one can use the strategy of multifractality, such as multifractal
characteristics, to predict the returns as advocated by Fu et al. (2018).

Our study reveals that the degree of multifractality varies over time, implying that
market efficiency is not stable but changes over time. Thus, even if the EMH is established,
it does not seem to hold permanently. Our observation might be consistent with the view
of the adaptive market hypothesis (Lo 2004), which combines the EMH with behavioral
finance and results in time-varying market efficiency.

On the markets with large inefficiencies such as emerging markets (Matteo et al. 2005),
asset prices could be mispriced and apart from the fundamental values, which might result
in increasing instability of the markets and the market risk for investors. To achieve less
risky markets, one way is to improve the market efficiency which can be done by increasing
disclosure of information from available sources to the public so that investors can obtain
the correct information on their investments. An efficient disclosure might be done by the
government policy with legal force.
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The present study considers only the return time series of the Japanese stock mar-

kets. Given that some other markets also experience anti-persistency’, future studies
should explore whether such markets still exhibit anti-persistency and have a time-varying
multifractal nature.
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Notes
Throughout this study, we focus on the weak-form efficient market of the EMH.

2 TOPIX-Large also exists, an index including the 100 most liquid and highly market capitalized stocks. We find that the results of
the TOPIX-Large are mostly similar to those of TOPIX. Thus, in this study, we consider only TOPIX.

3 For a more detailed description, see, e.g., Kantelhardt et al. (2002).

4

See, e.g., “History of Tokyo Stock Exchange”, https:/ /www.jpx.co.jp/english/corporate/about-jpx/history /01.html (accessed
30 August 2021).

5 A recent study shows that the S&P500 has a decreasing trend of h(2) under 0.5 (Drozdz et al. 2018b).
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