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Abstract: The purpose of this study is to address the critical issue of optimal credit allocation.
Predicting a borrower’s probability of default is a key requirement of any credit allocation system
but turning it into labeled classes leads to problems in performance measurement. In this paper the
connection between the probability of default and optimal credit allocation is established through a
conceptual construct called the Kelly criterion. Conflicting performance measures in dichotomous
classification are replaced with coherent criteria for judging the performance of credit allocation
decisions. Extensive testing on peer-to-peer lending data shows that the Kelly strategy enables
consistent outperformance and efficiency in processing information relative to alternative credit
allocation approaches.

Keywords: credit allocation; Kelly criterion

1. Introduction

In the field of lending, a large body of the literature deals with credit scoring methods,
especially the development of dichotomous classification models that distinguish potential
defaulters (“non-payers” that are refused a loan) from non-defaulters (“payers” that are
given a loan) (Altman 1968; Lessmann et al. 2015; Teply and Polena 2020). Approaches
that depart from dichotomous classification focus on modeling loss given default (LGD),
driven by regulatory requirement concerns (Eleftherios 2019; Izzi et al. 2012; Schutte et al.
2020; Srivastava and Dashottar 2020), and on forecasting credit losses (Byanjankar and
Viljanen 2019; Hwang et al. 2020; Jobst et al. 2020; Kaposty et al. 2020; Papoušková and
Hajek 2019). Essentially, these approaches are concerned with credit risk, paying little
attention to the goal of developing a sensible approach that connects PDs to satisfactory
risk-adjusted returns.

From a practical point of view, designing a system that allocates credit amongst
multiple borrowers to ensure optimal return on the investment capital, while keeping
investment risk within acceptable bounds, is the ultimate goal of any lending institution
(Mathur and Marcelin 2014). From a research perspective, this task represents a significant
shift in credit risk modeling—from a focus solely on dichotomous classification to credit
allocation. Conventional solutions provided by the literature on credit allocation are
essentially based on the idea of grouping probabilities of default (PDs) into clusters that are
mapped to a ratings scale (Krink et al. 2007; Lyra et al. 2010; Stein 2005; Tvrdik and Křivý
2015). There is, however, no sound basis to judge which clustering technique performs best.
Going from PDs to credit allocation is a rather confusing process.

It is the purpose of the current paper to address this gap in the literature by developing
a cohesive conceptual framework establishing a sound connection between PDs and credit
allocation that maximizes the investment return to the lending institution. This provides
two benefits. First, the change in focus from dichotomous classification to optimal credit
allocation implies we are no longer concerned with the issue of choosing an optimal
cut-off threshold of PDs for default classification (Dastile et al. 2020). Second, it avoids

J. Risk Financial Manag. 2021, 14, 434. https://doi.org/10.3390/jrfm14090434 https://www.mdpi.com/journal/jrfm

https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://doi.org/10.3390/jrfm14090434
https://doi.org/10.3390/jrfm14090434
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jrfm14090434
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm14090434?type=check_update&version=1


J. Risk Financial Manag. 2021, 14, 434 2 of 15

performance benchmarking issues often associated with dichotomous classification due to
the subjective nature of the performance measures themselves (Abdou and Pointon 2011;
Dastile et al. 2020). Various classification benchmarking criteria that tend to disagree on
what they are trying to measure can now be replaced by coherent performance criteria that:
(i) are derived from mathematical structures that are logical and consistent in capturing
performance across different allocation models; and (ii) as a group form a consistent whole
that captures multiple aspects of credit allocation performance.

Besides theoretical novelty, integrating classification and allocation into a single model
is expected to bring benefits to the practice of credit risk assessment in financial institutions.
First, the process of quantifying default and making allocation decisions could be integrated
into a unified framework that explains how credit could be assessed. Without such a
framework, there would be disconnection between quantification of default, which so far
has been the major focus of credit risk modeling, and allocation of credit, which has been in
the realm of practices based on domain-specific experiences that would make generalization
and transferability of knowledge difficult. Second, this disconnection between theory and
practice will make communication about risk difficult as there is no common framework
to represent the various approaches to credit allocation in practice. To the best of our
knowledge, this paper is the first attempt to construct a framework that not only looks
at credit risk modeling from a new perspective but also makes the practice of credit risk
assessment more efficient and transparent.

The credit allocation framework proposed in this paper is based on the Kelly criterion
and applied to the Lending Club’s peer-to-peer loans dataset from 2007–2018. The empirical
results confirm the soundness of the conceptual framework, consistently outperforming
alternative credit allocation systems. This is even though several aspects of the modeling
process were not optimized, such as the Kelly threshold. The perspective offered in this
paper, seeing credit risk modeling as an allocation challenge rather than a classification
problem, is essentially an attempt to overcome the gap between theory and practice. It is
likely to lead to better understanding of how the task could be implemented effectively
and efficiently in practice.

This paper is organized as follows. Section 2 describes in detail the conceptual
framework proposed. Section 3 presents the data, whilst Section 4 presents the empirical
results. Section 5 concludes the paper.

2. Conceptual Framework
2.1. Kelly Criterion

The Kelly criterion (Kelly 1956) is a formula for allocating bets or investments over
the results of a chance situation, represented as a noisy binary private channel in which an
investor may still place bets at the original odds with the winning probability p and the
losing probability q = 1− p. The optimal strategy is found to be the one that maximizes
the growth rate of capital betting a fraction f = p− q of the capital over time if the odds
are favorable to the investor (p > q).

Suppose that at time n− 1 a lender has capital Cn−1 and decides to make a loan equal
to a fraction f of the capital (the loan amount), with default probability q. It follows that
the loan amount is f Cn−1, regardless of whether the borrower defaults or not. To see why
this is the case, let us assume there is no default. In this case the lender will receive, besides
the principal, a return equal to a fraction rn−1 of the loan amount, with the capital at time n
having the following recursive form:

Cn = Cn−1 + rn−1 f Cn−1 = (1 + rn−1 f )Cn−1. (1)

If the borrower defaults, the lender will lose a fraction ln−1 of the loan amount, with
the capital at time n being:

Cn = Cn−1 − ln−1 f Cn−1 = (1 + ln−1 f )Cn−1. (2)
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Now suppose that the lender started with a level of initial capital C0 and, without loss
of generality, made S consecutive loans without a single default. Using the construct in (1),
we have:

C1 = (1 + r0 f )C0
C2 = (1 + r1 f )C1 = (1 + r1 f )(1 + r0 f )C0

. . .
CS = (1 + rS−1 f ) . . . (1 + r0 f )C0.

(3)

Similarly, and without loss of generality, capital CF after the lender makes F consecu-
tive default loans is:

CF = (1 + lF−1 f ) . . . (1 + l0 f )C0. (4)

Now suppose that after n loans, there are S non-default loans and F default loans with
n = S + F. Since we are dealing with compounding change in capital, the order of default
and non-default loans will not affect the result in (3) and (4). Hence, after n loans, we have:

Cn = C0(1 + r0) . . . (1 + rS−1)(1 + l0) . . . (1 + lF−1). (5)

Assuming r0 = r1 = . . . = rS−1 = r and l0 = l1 = . . . = lF−1 = l, Equation (5)
becomes the Kelly criterion:

Cn = C0(1 + r f )S. (6)

The Kelly criterion requires several assumptions:

(i) there is a continuing existence of the source of the probability signals during the
allocation period;

(ii) the information about the probability of default remains private at the time allocation
decisions are made;

(iii) capital can be divided into infinite amounts and reallocated; and
(iv) the lender focuses on the long-term and keeps allocating capital, even when there are

successive credit losses.

The optimal value of f is obtained by maximizing the growth rate of capital over time:

G( f ) = lim
n→∞

1
n (log2

(
Cn
C0

)
) = lim

n→∞
1
n (log2

(
(1 + r f )S(1− l f )F

)
)

= p log2(1 + r f ) + q log2(1− l f ),
(7)

where p is the probability of gaining and q = 1 − p is the probability of sustaining credit
losses.1

The first derivative of G is:

G′( f ) =
1

log2

(
pr

1 + r f
− ql

1− l f

)
, (8)

with G′( f ) = 0 when f ∗ = p
l −

q
r .

The second derivative of G is

G′′ ( f ) = − 1
log2

(
pr2

(1 + r f )2 +
ql2

(1− l f )2

)
, (9)

with G′′ ( f ) < 0 for all f 6= 1
l .

It follows that G is maximized at f ∗ = p
l −

q
r with the odds favorable to the lender

when pr > ql.
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In Kelly’s (1956) model l = r = 1, with the fraction of capital that maximizes the
growth rate of capital in the long-term equal to p − q. This is a full Kelly strategy, where
the optimal growth rate is

G( f ∗) = 1 + p log2(p) + q log2(q) = 1− H(p, q), (10)

which is the information transmission rate, defined by H(p, q), which is the information
entropy of the signals.

In practice, lenders can adopt a fractional Kelly strategy by allocating l(p − q) fraction
of capital with 0 < l < 1 to suit a certain risk appetite, capital constraint and the allocating
system’s specific conditions. Rotando and Thorp (1992) list several properties for G( f ) to
ensure that the strategy leads to optimal capital allocation. MacLean et al. (2011) carried out
an extensive empirical analysis of the Kelly strategy in the short, medium and long term,
concluding that over a relatively medium to long betting horizon, defined as consisting of
at least 40 decision points, full Kelly and close to full Kelly strategies are superior. However,
without careful financial engineering practices, in the short-term this strategy can be risky
in situations where there is a sequence of losses.

While good implementation is needed to ensure that the Kelly strategy works opti-
mally over various time horizons, it is a sound conceptual construct for designing a credit
allocation system. An ongoing credit allocation system, such as a peer-to-peer lending
platform or a traditional bank credit channel, can be viewed as a source of signals of credit
risk, expressed as PDs, that can be used by lenders to make appropriate capital allocation
decisions. It is also worth noting that the four key assumptions required for the Kelly
strategy to work can be met through good design of the credit allocation system. In other
words, the assumptions are a design challenge rather than a conceptual challenge.

The only remaining key issue within the context of the proposed credit allocation
system is how to define investing capital. Given that the system provides lenders with not
only signals of credit risk but also the requested borrowing amount, investing is defined in
this paper as the requested amount, instead of the amount a lender has available. In other
words, a lender chooses to allocate the following amount of credit:

C = f A, (11)

where A is the requested borrowing amount and f is the fraction allocated as per the Kelly
criterion. To make this possible, the following assumption regarding the design of the
system is added:

(v) the credit allocation system allows fractional credit allocation by multiple lenders,
with each providing a fraction of the full lending amount.2

2.2. Performance Measurement

With the initial assumptions in place, the next question is how performance is mea-
sured when there is no confusion matrix to begin with. Since the objective of the credit
modeling process is to provide optimal capital allocation, a sensible performance bench-
mark is the system’s overall return on credit allocated to accepted borrowers. A construct
of this benchmark, called system credit allocation performance (SCAP), is proposed here:

SCAPM
S =

∑S
i=1 RP

i −∑S
i=1 FA

i

∑S
i=1 FA

i

, (12)

where M refers to the model used to compute PDs, S is the number of borrowers approved,
FA

i is the funded amount for borrower i and RP
i is the total amount of money received

from borrower i whose final credit status is considered by the system to be either default or
non-default, whilst paying back at least a proportion of the original funded amount.

In the proposed model, dichotomous outcomes are used for selecting borrowers that
are qualified for credit allocation, and its role stops here to avoid complicating the modeling
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process unnecessarily. SCAP essentially enables an objective comparison of how well the
credit allocation model performs in terms of return on capital invested. At the same time,
SCAP avoids issues associated with classification measurement. The higher the value of
SCAP, the better the performance of the system.

By considering the amount acquired by each borrower, performance comparison can
be made more objective. To achieve this, the return must be weighted by the corresponding
credit amount allocated, capturing the average return on credit allocated per borrower (i.e.,
the credit-weighted average return):

SCAPM
S /S. (13)

Whist SCAP is a measure of the overall performance of the system, it reveals little
information about the dynamics of return over the population of accepted borrowers,
which is also necessary information for potential lenders. Another measure, area under the
return curve (ARC), is proposed here to address this shortcoming:

ARCM
S =

∫ S

1
f r(x), (14)

where M refers to the model used to estimate PDs, S is the number of borrowers for which
performance is computed and f r is an interpolating function constructed over S from the
set of return rates of individual borrowers in S. Essentially, ARC is formed by plotting the
model’s return performance over S. ARC thus complements SCAP in measuring overall
performance of the system by looking at the dynamics of credit allocation decisions for the
population of accepted borrowers. The higher the value of ARC, the better the performance
of the model in terms of allocating capital across multiple borrowers. The SCAP and
ARC metrics themselves are appropriate measures of economic impact since they focus on
evaluating return on allocated credit and thus carry more information regarding allocation
performance than absolute return (dollar) measures would.

So far two measures of allocation effectiveness have been proposed, SCAP and ARC,
that quantify how well credit has been allocated to borrowers in terms of return on the
amount invested. However, neither measure reveals anything about the efficiency of the
model in terms of utilizing information in the PDs to generate returns. To address this
challenge, the concept of information entropy developed by Shannon (1948) is utilized.

Entropy is a measure of the amount of information created by an ergodic source and
transmitted over a noisy communication channel. Noise here reflects the uncertainty in
how signals arrive at the destination. For finite discrete signals they are represented by a
set of probabilities p1, p2, . . . , pn, with the entropy of the system (H) defined as

H(p1, p2, . . . , pn) = −
n

∑
i=1

pi log2 pi (15)

Shannon considered this uncertainty to be the amount of information contained in the
signals, thus conceptually establishing a link between uncertainty and information.

The concept of entropy is combined with SCAP and ARC to compute efficiency in
turning information into returns. More specifically, a model that processes information
more efficiently will generate higher performance per unit of information. From a credit
allocation perspective this line of reasoning makes sense—given the same amount of
information, and assuming lenders act on this information alone, models with higher
performance should generate higher return per unit of information.

Several computational constructs of this criterion are presented next, each requiring
a different measure of entropy. The first efficiency measure is based on area under the
entropy curve (AEC), defined as follows:

AECM
S =

∫ S

1
f h(x), (16)
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where f h is an interpolating function constructed over S from the set of Shannon’s infor-
mation entropy (h) derived from the model’s PDs. Essentially, the area under the curve is
formed by plotting the model’s entropies over S. While this construct may leave out details
that could be important in judging the model’s quality, it represents in simple terms how
uncertain a model is in its prediction that can be understood clearly and comparatively. The
closer this measure to zero, the less uncertain (more confident) the model in its predictive
performance. AEC presents an aggregate measure of how much information is generated
by a model given a specific dataset. It thus provides an overall picture of information
availability by connecting individual data points together through a set of computational
constructs. AEC can be combined with ARC to form the area under the entropy curve
efficiency (AECE) measure:

AECEM
S =

ARCM
S

AECM
S

, (17)

which measures how much performance is generated for each unit of information.
The second efficiency measure requires another entropy construct called average

entropy value (AEV), which when complemented with AEC, describes the information
entropy at the level of individual borrowers. Instead of aggregating the information over
multiple borrowers, it compresses the whole information space into a single value as
follows:

AEVM
S =

∑S
1 hi
S

, (18)

where hi is Shannon’s information entropy measure for the data point i derived from the
model’s PDs. AEV can then be combined with SCAP to construct the system entropy value
efficiency (SEVE) measure:

SEVEM
S =

SCAPM
S

AEVM
S

, (19)

which describes how much SCAP can be extracted from one unit of information represented
by AEV.

With the allocation and efficiency measures now defined, the conceptual approach
to credit risk modeling, with a focus on optimal credit application, is proposed next. Its
structure is presented by a category as shown in Figure 1.
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Figure 1. Categorical construct of credit risk modeling based on optimal capital allocation.

At first sight, this category appears similar to the one representing current approaches
to modeling credit risk,3 where object D represents a data structure that forms the basis
of which specific data are collected, processed, analyzed and used in both the testing and
training process, and object M represents model choice with the morphism m between D
and M defined by a computational process that optimally maps the specific training dataset
to a unique model. Nevertheless, substantial differences are apparent. First, the object
C, representing the confusion matrix, is replaced by a new object CA, representing the
predicted PDs and corresponding credit allocation amount. The morphism c now represents
the Kelly betting strategy, and p represents the process of turning instances of CA into
various measurements of performance, as proposed above, which constitute the elements
of the object P. Based on this category framework, a computational implementation is
developed, which is the subject of the next section.
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2.3. Computational Implementation

Four credit allocation systems are employed. The first credit allocation system is
the adaptive Kelly strategy (‘Kelly Strategy’). Theoretically, the Kelly criterion states that
the optimal strategy is to allocate a fraction of available capital to each borrower. This
fraction should be equal to the difference between non-default probability (p) and default
probability (q). Implicitly, this suggests that somehow in any proposed transaction, the
amount of available capital is equal to the proposed borrowing amount. From a practical
perspective, two considerations require attention: (i) lenders usually have more capital
than what is needed in a proposed transaction; and (ii) PDs will likely carry different
weights at different values. For example, a borrower with a PD of 0.8 will appear different
from a borrower with a PD of 0.6, even though both may be classified as sound borrowers
(“payers”). To make appropriate adjustments, a threshold is constructed based on the PDs
estimated during the training process. The Kelly fraction (f ) is set equal to the probability
difference when the PD is less than a preassigned threshold value (5%), and equal to 1
when the PD is above this threshold. The funded amount therefore equals a fraction of the
loan amount observed in the data. Total payment is estimated by a predictor trained on the
full sample space before it is split into smaller subsets. This adaptive strategy performs an
operation in the spirit of the bucketing process4 used to group PDs into clusters (Krink et al.
2007; Lyra et al. 2010; Tvrdik and Křivý 2015). The adaptive Kelly strategy, however, is
simpler in its construction and has a sound theoretical basis.5 The second credit allocation
system is the actual credit allocation observed directly from the data (‘System Actual
Payment’). Here, all borrowers in the testing sample are accepted and fully funded, with
the actual total loan payment observed directly from the data. The third credit allocation
system (‘System’) is identical to the second one, except that the total payment amount is
predicted from the borrowing amount with the same predictors employed as in the first
allocation process to ensure consistency in the prediction process.6 The fourth and final
credit allocation system (‘Base’) is where all borrowers appearing in the data are accepted
and fully funded, regardless of whether they are classified as default or non-default by the
model. This scenario is like the second allocation system (‘System Actual Payment’), except
that the payment amount (rather than being observed from the actual data) is predicted as
in the other approaches. A summary of all four credit allocation processes is provided in
Table 1 (see Appendix A for flow chart).

For robustness, we conducted 100 simulations, where in each simulation two
subsamples—one to train the model, the other for testing—were picked at random from
the database. This process ensures that each subsample will have a different data structure
regarding feature availability, especially categorical features. The performance results
reported in the tables are thus the average of 100 simulations. The subsamples contain
20 percent of the original data, consisting of 268,676 data points, with the default to non-
default ratio remaining around 4, identical to that observed in the full sample. Essentially,
a scaled down sample of the original dataset is employed, with the structure of bad loans
and good loans remaining the same. Nevertheless, this reduced sample is larger than any
dataset employed in any previous studies on credit risk modeling (e.g., see Dastile et al.
(2020)).

Nine classifiers were selected as the base models for default and payment prediction:
logistic regression, nearest neighbors, random forest, gradient boosted trees, decision tree,
support vector machine, Markov, naive Bayes and neural network. Details of these base
models are provided in Tran et al. (2021).
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Table 1. Summary of the credit allocation systems.

Base Kelly Strategy System

Data Process

Two samples were randomly
extracted from the original
dataset. One of the samples
was used to train the models,
the other for testing. This
process was repeated 100
times.

The same datasets were used
to train and test the model.

The testing datasets were used
only. No classifier is trained in
this approach.

Model Selection

Nine standard classifiers
available in the Mathematica
software package: gradient
boosted trees, logistic
regression, Markov, nearest
neighbors, random forest,
support vector machine,
neural network, decision tree
and naive Bayes.

Identical classifiers were used.

No classifiers were used, with
the results calculated directly
from the actual data of funded
amount and total payment.

Accepted
Borrowers/Allocation
Strategy

All borrowers in the test
sample received full funding.

In the testing sample, only
borrowers with difference
between non-default
probability and default
probability of at least 5% are
accepted. An adaptive Kelly
strategy was used for
determining the fraction of
credit allocated to these
borrowers.

All borrowers in the test
sample received full funding.
Actual credit allocation
decisions are as reflected in
the test data.

Performance Criteria SCAP, ARC, AECE, AEVE and
SEVE SCAP, ARC, AECE and SEVE. SCAP and ARC.

Significant Tests

Yes, to compare SCAP and
ARC to systems with Kelly
strategy.
H1: The Kelly strategy is no
better than other strategies.
H2: The Kelly strategy is
better than other strategies.

Yes, to compare SCAP and
ARC to systems without Kelly
strategy.

Yes, to compare SCAP and
ARC to systems with Kelly
strategy.

Payment Prediction
Yes, a predictive model was
used to estimate loan
payment.

Yes, a predictive model was
used to estimate loan
payment.

Yes, a predictive model was
used to estimate loan payment
for one approach (system). The
other approach (system actual
payment) used actual payment
data to gauge how well the
predictor worked.

Finally, the winning ratio (r) and the losing ratio (l) for the Kelly criterion were
assumed to be constant over time and set equal to 1. In an actual credit risk allocation
system, both r and l are less than 1 since the interest rate charged is typically much less
than 100%, while borrowers usually pay some loan instalment prior to default. While
deriving a correct value for the winning ratio is straightforward using existing lending
rates, getting an accurate measure of l requires a model to estimate LGD. However, this
requirement is well beyond the scope of this paper. First, setting the winning and losing
ratios equal to 1 essentially assumes a long-term approach to allocating capital with a
margin of safety. It is reasonable to assume that lenders prefer to make bets at least until
their capital doubles, while preparing for total loss when default occurs. Second, current
approaches to measuring LGD are essentially based on statistical methods that lack a sound
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conceptual framework (Calabrese and Zenga 2010; Chen et al. 2018; Zhang and Zhou 2018).
Since the focus of this paper is on implementing a coherent computational model, statistical
approaches that have no valid reasoning processes underlying them are avoided. Third,
features needed for modeling LGD are not available in the peer-to-peer loan database
considered in this paper. Fourth, the assumption of constant winning and losing ratio
is realistic in terms of what is likely to happen in practice: lenders form expectations of
the returns on their assets (loans) based on past experiences. These expectations are often
captured in the notion of an approximate but sensible average value over time, rather than
a stream of precise values that are sensitive to changing assumptions about the future.
The notion of r and l capture such expectations given that Equations (1)–(5) have been
developed from one loan to another within the context of n loan decisions and then let n
increase to capture the notion of default and non-default probability through the frequency
approach. Whilst relaxing the above assumption will give the modeler more control over
the allocation process, it has no significant impact on the merits of the credit allocation
strategy proposed in this paper.

3. Data

The modeling process was performed on the Lending Club’s personal loans dataset
obtained from Kaggle (Lending Club 2020). Compared to the Lending Club dataset used
in Teply and Polena (2020), the Kaggle dataset has more than 1.3 million sample points,
is much larger in scope and has significantly more features, including total repayment by
borrowers. Since the objective is credit allocation rather than credit classification, the larger
dataset is preferred. Details of the features of the dataset used in both the classification and
prediction models are provided in Table 2.

Table 2. Summary of the Lending Club dataset used in both the classification and prediction models.

Sample Period 2007–2018

Original Sample Size 1,343,380

Filtered Samples 1,074,704

Filtering Criteria Reduction size, current loans, loans in grace period, and sample with one of the training
features having no or abnormal value.

Final Sample Size 268,676

Default Sample 53,638

Non-Default Sample 215,038

Classes “Default” and “Non-default”

Number of Original Features 115

Number of Final Features 24

acc_now_delinq Number of accounts on which the borrower is now delinquent.

annual_inc Self-reported annual income provided by the borrower during registration.

chargeoff _within12mths Number of charge-offs within 12 months.

delinq_2yrs The number of 30+ days past-due incidences of delinquency in the borrower’s credit file
for the past 2 years.

delinq_amnt Past-due amount owed for the accounts on which the borrower is now delinquent.

Dti
A ratio calculated using the borrower’s total monthly debt payments on the total debt
obligations, excluding mortgage and the requested LC loan, divided by the borrower’s
self-reported monthly income.

home_ownership Home ownership status provided by the borrower during registration or obtained from
the credit report.

inq_last_6mths The number of inquiries in past 6 months (excluding auto and mortgage inquiries).
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Table 2. Cont.

loan_amnt Listed amount of the loan applied for by the borrowers.

funded_amnt Actual amount received by the borrowers.

open_acc Number of open credit lines in the borrower’s credit file.

pub_rec Number of derogatory public records.

pub_rec_bankruptcies Number of public record bankruptcies.

purpose Category provided by the borrower for the loan request.

revol_util Revolving line utilization rate, or the amount of credit the borrower is using relative to all
available revolving credit.

term Number of payments on the loan. Values are in months and can be either 36 or 60.

tax_liens Number of tax liens.

total_acc Total number of credit lines currently in the borrower’s credit file.

verication_status Indicates if income was verified (1) by LC or not verified (0).

loan_status Final status of loan has labelled outcome. “Non-default” for fully paid loans and “Default”
for charged-off loans.

emp_length Number of years in employment represented by continues variable going from 0 to 10.

earliest_cr_line Number of years since the first credit line has been opened.

fico_range_low The low FICO value.

fico_rangee_high The high FICO value.

4. Empirical Results

Table 3 reports the mean values of the capital allocation effectiveness (SCAP and ARC)
computed over 100 simulations. The results show that the credit allocation system based on
the Kelly strategy strongly outperforms the other approaches on both performance criteria
across all base models. For both the support vector machine and decision tree classifiers,
the Kelly strategy shows an 80% increase in SCAP when compared to the alternative credit
allocation systems. All other classifiers show a minimum 3-fold increase in SCAP for
the Kelly strategy. The random forest model delivers the best performance, with a more
than 4-fold increase in SCAP for the Kelly strategy. Recall that SCAP considers not only
investment return but also the amount of credit allocated to borrowers. Similar increases in
performance are observed for the ARC measure across all classifiers—the support vector
machine and decision tree classifiers show an 80% increase in performance for the Kelly
strategy, with all other classifiers delivering at least a 5-fold increase in ARC. Univariate
tests of mean difference in performance of the Kelly strategy vs. alternative credit allocation
systems reported in Table 4 confirm these results.

There are two observations that warrant explanation. First, both AEC and AEV values
are nearly identical for all classifiers employed, irrespective of whether the Kelly strategy
is used or not. This can be explained by the fact that both scenarios use the same set of
accepted borrowers and thus the same PDs to compute entropy.7 Second, for the Kelly
strategy, the performance across the classification models varies substantially. For example,
at one end of the performance spectrum is random forest, with a SCAP of 16.1%, ARC of
1787, AEC of 2295 and AEV of 0.874. At the other end is support vector machine, with a
SCAP of 5.5%, ARC of 207.813, AEC of 853.02 and AEV of 0.318. This wide difference in
performance can be explained by the fact that each classification model uses a different
set of Kelly fractions, as reflected by the differences in AEC and AEV values. For all other
allocation strategies, the full amount requested is granted, regardless of the value of AEC
or AEV, thus resulting in similar SCAP and ARC values.
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Table 3. Capital allocation performance.

Measures/Models Logistic
Regression

Nearest
Neighbors

Random
Forest

Gradient
Boosted

Trees

Decision
Tree

Support
Vector

Machine
Markov Naive

Bayes
Neural

Network

SCAP—System
Actual Payment 2.90% 2.90% 2.90% 2.90% 2.90% 2.90% 2.90% 2.90% 2.90%

SCAP—System 3.10% 3.10% 3.10% 3.10% 3.10% 3.10% 3.10% 3.10% 3.10%
SCAP—Base 3.60% 3.20% 3.40% 3.40% 3.80% 3.20% 3.30% 4.20% 3.60%
SCAP—Kelly
Strategy 14.30% 11.30% 16.10% 14.30% 6.70% 5.50% 13.50% 13.70% 14.30%

ARC—System
Actual Payment 91.643 91.643 91.643 91.643 91.643 91.643 91.643 91.643 91.643

ARC—System 119.488 119.488 119.488 119.488 119.488 119.488 119.488 119.488 119.488
ARC—Base 128.802 120.142 123.003 123.27 113.923 120.484 120.391 124.565 127.714
ARC—Kelly
Strategy 3763.89 650.865 1787 4821.15 209.044 207.813 1427.38 3216.45 3642.58

AEC—Base 1715.76 1775.4 2302.67 1734.33 430.265 853.052 1705.24 991.763 1606.6
AEC—Kelly
Strategy 1715.76 1775.4 2295.6 1734.33 411.466 853.052 1705.24 991.763 1606.6

AEV—Base 0.658 0.661 0.875 0.659 0.197 0.318 0.648 0.449 0.623
AEV—Kelly
Strategy 0.658 0.661 0.874 0.659 0.19 0.318 0.648 0.449 0.623

Notes: Reported are the mean SCAP, ARC, AEC and AEV values computed over 100 simulations. SCAP = system credit allocation
performance, ARC = area under the return curve, AEC = area under the entropy curve and AEV = average entropy value. The credit
allocation approaches are described in Table 1.

Table 4. Univariate tests of mean difference in performance of the Kelly strategy vs. alternative strategies.

Measures/Models Logistic
Regression

Nearest
Neighbors

Random
Forest

Gradient
Boosted
Trees

Decision
Tree

Support
Vector
Machine

Markov Naive
Bayes

Neural
Network

SCAP—System
Actual Payment <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

SCAP—System <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
SCAP—Base
Models <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

ARC—System
Actual Payment <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

ARC—System <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
ARC—Base
Models <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Notes: SCAP = system credit allocation performance, ARC = area under the return curve. H1: The Kelly strategy is no better than other
strategies. H2: The Kelly strategy is better than other strategies. Reported are the p-values. The algorithm automatically selects the most
optimal test (Mann–Whitney or t-test) that fits the simulation data. The credit allocation approaches are described in Table 1.

Table 5 reports the mean values of the efficiency in processing metrics (AECE and
SEVE) computed over 100 simulations. The results show that the Kelly strategy utilizes
information embedded in the entropy value more efficiently than the alternative credit
allocation systems, thus providing better performance per unit of information. The statis-
tical significance tests (p < 0.01) reject the null that the credit allocation system based on
the Kelly strategy processes information with similar efficiency as the alternative credit
allocation systems. While each model has a different level of efficiency in processing credit
risk information, the performance gains of the Kelly strategy are consistent across classifiers
and data environments. In sum, the results suggest that the Kelly strategy is robust to the
choice of classifier, providing a more efficient credit allocation system.
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Table 5. Efficiency in processing information.

Measures/Models Logistic
Regression

Nearest
Neighbors

Random
Forest

Gradient
Boosted

Trees

Decision
Tree

Support
Vector

Machine
Markov Naive

Bayes
Neural

Network

SEVE—No Kelly Strategy 0.055 0.048 0.039 0.052 0.196 0.103 0.051 0.095 0.058
SEVE—Kelly Strategy 0.219 0.171 0.184 0.216 0.353 0.174 0.209 0.304 0.228
AECE—No Kelly Strategy 0.075 0.068 0.053 0.072 0.267 0.145 0.071 0.128 0.080
AECE- Kelly Strategy 2.165 0.369 0.776 2.769 0.510 0.248 0.833 3.163 2.222
Significance Test
(p-value)—SEVE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Significance Test
(p-value)—AECE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Notes: Reported are the mean SECE and AECE values computed over 100 simulations. SEVE = system entropy value efficiency, AECE =
area under the entropy curve efficiency. H1: The Kelly strategy is no better than other strategies. H2: The Kelly strategy is better than other
strategies. The algorithm automatically selects the most optimal test (Mann–Whitney or T-test) that fits the simulation data. The credit
allocation approaches are described in Table 1.

5. Conclusions

This paper outlines the merits of designing a credit risk model with a focus on op-
timal credit allocation rather than just dichotomous default classification. Predicting a
borrower’s PD is a key requirement of any credit risk model but turning it into labeled
classes immediately leads to issues in performance measurement. The decoupling of mod-
eling PDs from modeling credit allocation, as is often seen in the credit risk literature makes
it difficult to understand how credit should be allocated optimally given a borrower’s
default probability.

The credit allocation strategy proposed in this paper addressed this issue by providing
two constructs. First, the connection between PDs and optimal credit allocation was
established through a conceptual construct called the Kelly criterion. Second, conflicting
performance criteria in dichotomous classification were replaced with coherent criteria for
judging the performance of credit allocation system. The whole process was guided by a
new perspective on modeling credit risk based on sound structures derived from category
theory. Extensive testing on various data environments provided results that confirm the
soundness of the conceptual constructs proposed. For all classifiers employed, the Kelly
strategy consistently outperformed alternative credit allocation systems with unparalleled
efficiency in processing information.

Even though several aspects of the modeling process were not optimized, such as
the Kelly threshold, the allocation strategy proposed performed remarkably well. This
opens possibilities for further improvement in performance. In particular, the findings
point to two key considerations for the design of an effective allocation system in practice.
First, the equivalence concept proposed by category theory and detailed in an earlier
paper (Tran et al. 2021), provides a concrete basis for reasoning that combining several
models would be a better way to construct optimal Kelly fractions. Confirmation of this
proposition would require a level of analysis beyond the scope of the current paper. Second,
the Kelly strategy requires a credit allocation system capable of distributing fractions
of a loan among different lenders in concurrent state. In other words, the technology
infrastructure required for such a system must be able to handle large scale concurrent
computation tasks related to fractional credit allocation and back-end operations, such as
accounting and transaction tracking. Conceptual structures in optimal credit allocation
could be a key consideration in the design of such an infrastructure. Viewing credit risk
modeling as an allocation challenge will eventually lead to better understanding of how
the task could be implemented effectively and efficiently in practice. Likewise, discussions
regarding a framework for ongoing diagnosis of clients’ credit health, a topic that plays
an important role in credit risk modeling but so far been avoided, are also worthwhile.
Another interesting direction worthy of exploring further is identification of the source
of the outperformance of the Kelly criterion—is it due to large allocation being given to
high-risk borrowers who may not be offered a loan in practice? To find an answer would
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require additional data on borrowers who were initially rejected loans, being classified as
“non-payers” during the application process. We will leave these suggestions for others
to pursue.
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Notes
1 This is derived from the fact that 1

n ln
(

Cn
C0

)
equals ln(1 + g), where g is the compounding growth rate of capital after n periods.

The equations also exploit the facts that lim
n→∞

1
n

(
S
N

)
= p and lim

n→∞
1
n

(
F
N

)
= q where p = 1− q.

2 Essentially, we believe that given current advances in cost effective distributed computing technologies, building a lending
platform that concurrently coordinates the issuance of small fractional loans from different lenders to the same borrowers is
feasible from a technological perspective.

3 See Tran et al. (2021) for a discussion of the application of category theory to credit risk modeling.
4 In the bucketing process, PDs are put into different groups, or buckets, that establish how much a borrower could borrow and

the credit charge.
5 Whilst the analytical process appears to take each borrower as being independent, the classification and prediction models,

especially the machine learning models, are trained to recognize similarities and differences between borrowers in terms of their
credit profile based on the set of features presented in the dataset. Thus, correlation and other similarity, if apparent, will be
capitalized on by the training models when evaluating the probability of default, classify borrowers and make sound prediction
as to the expected repayment amount.

6 By comparing the various approaches, the quality of the predictor can be checked. Results showed that the predicted results are
close enough to the actual values across the models, warranting realistic and meaningful model comparison.

7 The exception is when rounding errors in the calculation of the Kelly fraction led to slight differences in the set of accepted
borrowers, as in the case of the random forest and decision tree models. This happened because one scenario accepted borrowers
that have a “non-default” classification status, while the other only accepted borrowers with a Kelly fraction greater than zero.
When a borrower had a PD slightly greater than 0.5 but small enough to generate a zero Kelly fraction due to rounding, the
borrower was present in one modeling scenario but not in the other.
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