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Abstract: Options paying the product of put and/or call option payouts at different strikes on two
underlying assets are observed to synthesize joint densities and replicate differentiable functions
of two underlying asset prices. The pricing of such options is undertaken from three perspectives.
The first perspective uses a geometric two-dimensional Brownian motion model. The second inverts
two-dimensional characteristic functions. The third uses a bootstrapped physical measure to propose
a risk charge minimizing hedge using options on the two underlying assets. The options are priced
at the cost of the hedge plus the risk charge.

Keywords: multivariate bilateral gamma; fast Fourier transform; distorted expectations; accept-
able risks

JEL Classification: G10; G11; G12

1. Introduction

Option markets considerably enhance the collection of functions of the stock price
at the option maturity that may be purchased or sold. In the absence of options, the only
functions one can access are straight lines with bonds delivering the intercept and stocks the
slope. Options allow one to change the slope and access any twice differentiable function
of the stock price as shown, for example, in Carr and Madan (1998).

Functions that have been priced this way include the logarithm of the S&P 500 index
a month later in arriving at the VIX index. The CBOE skew prices the first three powers
of the logarithm to build the Skew index. Others have used the procedure to study the
risk neutral kurtosis and its effects (Bakshi et al. (2003)). It is also known from Breeden
and Litzenberger (1978) that option prices synthesize risk neutral densities and permit the
recovery of the density from the second derivative of option prices.

These results have natural extensions to two dimensions when one considers functions
of a pair of stock prices at maturity. Functions differentiable four times may be replicated
provided one trades product options. The payoff on a product option is the product of
payoffs on two standard options be they puts or calls. Furthermore, joint densities may be
synthesized from the prices of such product options. Consider, for example, a product call
with strikes K1, K2. For stock prices S1, S2 at maturity, the payoff or value at maturity T is

C(S1, S2, T; K1, K2) = (S1 − K1)
+(S2 − K2)

+. (1)
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For a risk neutral density f (S1, S2), the price of the product call w(K1, K2) for an interest
rate r is given by

w(K1, K2) = e−rT
∫ ∞

K1

∫ ∞

K2

(S1 − K1)(S2 − K2) f (S1, S2)dS1dS2.

Differentiation shows that

∂4

∂K2
1∂K2

2
erTw(K1, K2) = f (K1, K2). (2)

Other approaches to such recovery using basket option prices include Lipton (2001) and
Carr and Laurence (2011).

Product options, therefore, play a critical role when one considers functions of pairs
of prices. We, therefore, consider the pricing of such options. The first context is a simple
generalization of the Black and Scholes (1973) and Madan (1973) geometric Brownian
motion model to a bivariate normal density for the logarithm of the two stock prices.
The product options are then priced using bivariate normal distribution functions and an
assumed correlation value. The bivariate normal has normal marginals that do not fit the
marginal risk neutral densities.

However, there is a large class of pure jump Lévy process models that fit option
prices at each maturity. Among them is the three parameter variance gamma model of
Madan and Seneta (1990), Madan et al. (1998). Recently, this model has been generalized
to the four parameter bilateral gamma model of Küchler and Tappe (2008) that also fits
marginal risk neutral densities. The bilateral gamma model is used to fit the two risk
neutral marginals. Recent work reported in Madan and Schoutens (2020), Madan (2020)
and Madan and Wang (2020a) formed multivariate densities consistent with prespecified
bilateral gamma models with two additional dependency parameters. The multivariate
bilateral gamma model has a closed form characteristic function.

The methods of Carr and Madan (1999) are extended to employ the two dimensional
fast Fourier transform to price product options. In addition, methods reported in Madan
and Wang (2020b) may be employed to price product options from the physical measures
using the options in the two markets as hedge instruments.

The outline of the rest of the paper is as follows. Section 2 develops the two dimen-
sional replication result. Section 3 presents the bivariate log normal pricing of product
options. The two dimensional fast Fourier inversion of suitably modified product options
is taken up in Section 4. The multivariate bilateral gamma model is described in Section 5.
Sample computations and the effects on product option prices of changes in the depen-
dency parameters of the multivariate bilateral gamma model are illustrated in Section 6.
Physical measure pricing of product options is formulated and implemented in Section 7.
Finally, Section 8 concludes.

2. Product Options and Functional Replication

Let g(x, y) be a sufficiently smooth function of two variables. It may then be written
as the integral of its second order cross partials as follows. For an arbitrary reference point
(x0, y0)

g(x, y) = g(x0, y) + g(x, y0)− g(x0, y0) +
∫ x

x0

∫ y

y0

∂2g(u, v)
∂x∂y

dudv. (3)
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Now, we apply this result to the second cross partial itself to write

g(x, y) = g(x0, y) + g(x, y0)− g(x0, y0)

+
∫ x

x0

∫ y

y0

 ∂2g(x0,v)
∂x∂y + ∂2g(u,y0)

∂x∂y − ∂2g(x0,y0)
∂x∂y

+
∫ u

x0

∫ v
y0

∂4g(a,b)
∂x2∂y2 dadb

dudv (4)

= g(x0, y) + g(x, y0)− g(x0, y0)

+(x− x0)

[
∂g(x0, y)

∂x
− ∂g(x0, y0)

∂x

]
+ (y− y0)

[
∂g(x, y0)

∂y
− ∂g(x0, y0)

∂y

]
−∂2g(x0, y0)

∂x∂y
(x− x0)(y− y0)

+
∫ x

x0

∫ y

y0

∫ u

x0

∫ v

y0

∂4g(a, b)
∂x2∂y2 dadbdudv (5)

The first row is a constant plus a function of x and a function of y that may be
constructed using a bond and options on x and options on y. The second row is a product
of x and options on y plus a product of y and options on x. The third row involves the
product. The fourth order integral may be analyzed as follows. For x > x0 and y > y0,
we write ∫ x

x0

∫ y

y0

∫ u

x0

∫ v

y0

∂4g
∂x2∂y2 (a, b)dadbdudv

=
∫ x

x0

∫ y

y0

dadb
∫ x

a

∫ y

b

∂4g
∂x2∂y2 (a, b)dudv (6)

=
∫ x

x0

∫ y

y0

dadb
∂4g

∂x2∂y2 (a, b)(x− a)(y− b) (7)

=
∫ ∞

x0

∫ ∞

y0

dadb
∂4g

∂x2∂y2 (a, b)(x− a)+(y− b)+ (8)

In the positive orthant relative to the point x0, y0, one may replicate such functions
with positions in product calls at strikes (a, b). In the region x < x0 and y > y0, one
may write

∫ x0

x

∫ y

y0

∫ x0

u

∫ v

y0

∂4g
∂x2∂y2 (a, b)dadbdudv

=
∫ x0

x

∫ y

y0

dadb
∫ a

x

∫ y

b

∂4g
∂x2∂y2 (a, b)dudv (9)

=
∫ x0

x

∫ y

y0

dadb
∂4g

∂x2∂y2 (a, b)(a− x)(y− b) (10)

=
∫ x0

0

∫ ∞

y0

dadb
∂4g

∂x2∂y2 (a, b)(a− x)+(y− b)+ (11)

In the second orthant relative to x0, y0 products of puts on x and calls on y are
employed. Similarly, in the third orthant, it is products of puts, and, in the fourth, it
is calls on x and puts on y. The general result may be stated as follows.
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g(x, y) = g(x0, y) + g(x, y0)− g(x0, y0)

+(x− x0)

[
∂g(x0, y)

∂x
− ∂g(x0, y0)

∂x

]
+ (y− y0)

[
∂g(x, y0)

∂y
− ∂g(x0, y0)

∂y

]
−∂2g(x0, y0)

∂x∂y
(x− x0)(y− y0)

+
∫ x0

0

∫ y0

0
dadb

∂4g
∂x2∂y2 (a, b)(a− x)+(b− y)+

+
∫ x0

0

∫ ∞

y0

dadb
∂4g

∂x2∂y2 (a, b)(a− x)+(y− b)+ (12)

+
∫ ∞

x0

∫ y0

0
dadb

∂4g
∂x2∂y2 (a, b)(x− a)+(b− y)+ (13)

+
∫ ∞

x0

∫ ∞

y0

dadb
∂4g

∂x2∂y2 (a, b)(x− a)+(y− b)+. (14)

A classic application of functional replication in one dimension is the pricing of the
variance swap contract or the computation of the VIX index. Other applications include
the computation of the CBOE skew index. In two dimensions, applications would include
the replication of straddles and strangles on the spread of one asset price over another.

3. Multivariate Geometric Brownian Motion and Product Options

Suppose two assets, S1, S2, are driven by correlated Brownian motions with mean rates
of return µ1, µ2 with volatilities σ1, σ2 and correlation ρ. For a pair of correlated standard
Brownian motions W1, W2, the asset price dynamics under the true or physical measures are

dS1 = µ1S1dt + σ1S1dW1 (15)

dS2 = µ2S2dt + σ2S2dW2 (16)

dW1dW2 = ρdt (17)

Consider a product call paying at maturity for strike K1, K2 the cash flow (S1 −
K1)

+(S2 − K2)
+. Let the value of the option prior to maturity be C(S1, S2, t) if, at time t,

the stock prices are S1, S2. The differential of the call price is

dC = Ctdt + CS1 µ1S1dt + CS2 µ2S2dt (18)

+
1
2

CS1S1 σ2
1 S2

1dt +
1
2

CS2S2 σ2
2 S2

2dt + CS1S2 ρσ1σ2S1S2dt (19)

+CS1 σ1S1dW1 + CS2 σ2S2dW2 (20)

Consider a short call that is delta hedged with hedge returns

CSµ1Sdt + CSσ1SdW1 (21)

CVµ2Vdt + CVσ2VdW2. (22)

Then, the hedged short call has a risk free return that must be the interest on value, or

− Ct −
1
2

CS1S1 σ2
1 S2

1 −
1
2

CS2S2 σ2
2 S2

2 − CS1S2 ρσ1σ2S1S2 = r
(
CS1 S2 + CS2 S2 − C

)
. (23)

Reversing time, the value function is a solution to the equation

CT = rS1CS1 + rS2CS2 +
1
2

CS1S1 σ2
1 S2

1 +
1
2

CS2S2 σ2
2 S2

2 + CS1S2 ρσ1σ2S1S2 − rC (24)
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subject to the boundary condition

C(S, V, T) = (S1 − K1)
+(S2 − K2)

+. (25)

From the Feynmann–Kac relationship between partial differential equations and
expectations, the value is given by

C(S1, S2, t) = e−rtE
[(

S1ert+σ1
√

tz1−σ2
1 t/2 − K1

)+(
S2ert+σ2

√
tz2−σ2

2 t/2 − K2

)+]
, (26)

where (z1, z2) has a standard bivariate normal distribution with correlation ρ. The product
call option pricing formula may be developed on solving this integration problem. One
may also assert Equation (26) directly by appealing to the existence of a single risk neutral
measure; however, for completeness one should also display the explicit measure change.
However, the explicit replication strategy is not as clear in such an approach.

The domain of integration is

z1 > d =
ln(K1/S1)

σ1
√

t
− r

σ1

√
t +

σ1

2

√
t (27)

z2 > e =
ln(K2/S2)

σ2
√

t
− r

σ2

√
t +

σ2

2

√
t (28)

The forward product call price ertC(S1, S2, t) is given by the double integral∫ ∞

d

∫ ∞

e

(
S1ert+σ1

√
tz1−σ2

1 t/2 − K1

)(
S2ert+σ2

√
tz2−σ2

2 t/2 − K2

)
f (z1, z2)dz1dz2 (29)

There are four terms and

ertC(S1, S2, t) = I1 − I2 − I3 + I4 (30)

where

I1 = S1S2e2rt
∫ ∞

d

∫ ∞

e
eσ1
√

tz1−σ2
1 t/2eσ2

√
tz2−σ2

2 t/2 f (z1, z2)dz1dz2 (31)

I2 = K1S2ert
∫ ∞

d

∫ ∞

e
eσ2
√

tz2−σ2
2 t/2 f (z1, z2)dz1dz2 (32)

I3 = K2S1ert
∫ ∞

d

∫ ∞

e
eσ1
√

tz1−σ2
1 t/2 f (z1, z2)dz1dz2 (33)

I4 = K1K2

∫ ∞

d

∫ ∞

e
f (z1, z2)dz1dz2 (34)

Here, f is the bivariate normal density.
We then have that

I4 = 1− (N(d) + N(e)− bvncd f (d, e, ρ)) (35)

=
∫ ∞

d

1√
2π

e−w2/2N

(
ρw− e√

1− ρ2

)
dw

where bvncd f is the bivariate normal cummulative distribution function.
For I3, we write the joint density as

f (z1, z2) =
1√
2π

e−z2
1/2 1√

2π(1− ρ2)
e
− (z2−ρz1)

2

2(1−ρ2) (36)
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It follows that

I3 = K2S1ert
∫ ∞

d
eσ1
√

tz1−σ2
1 t/2 1√

2π
e−z2

1/2N

(
ρz1 − e√

1− ρ2

)
(37)

= K2S1ert
∫ ∞

d−σ1
√

t

1√
2π

e−w2/2N

(
ρ(w + σ1

√
t)− e√

1− ρ2

)
dw (38)

Similarly,

I2 = K1S2ert
∫ ∞

e−σ2
√

t

1√
2π

e−w2/2N

(
ρ(w + σ2

√
t)− d√

1− ρ2

)
dw (39)

Finally,

I1 = S1S2e2rt
∫ ∞

d

∫ ∞

e
eσ1
√

tz1−σ2
1 t/2eσ2

√
tz2−σ2

2 t/2 × (40)

1√
2π

e−z2
1/2 1√

2π(1− ρ2)
e
− (z2−ρz1)

2

2(1−ρ2) (41)

= S1S2e2rt
∫ ∞

d
eσ1
√

tz1−σ2
1 t/2 1√

2π
e−z2

1/2dz1 × (42)

∫ ∞

e
eσ2
√

tz2−σ2
2 t/2 1√

2π(1− ρ2)
e
− (z2−ρz1)

2

2(1−ρ2) dz2 (43)

= S1S2e2rt
∫ ∞

d
eσ1
√

tz1−σ2
1 t/2 1√

2π
e−z2

1/2dz1 × (44)∫
e−ρz1√

1−ρ2

1√
2π

e−w2/2eσ2
√

t(ρz1+
√

1−ρ2w)−σ2
2 t/2dw (45)

= S1S2e2rt
∫ ∞

d
eσ1
√

tz1−σ2
1 t/2 1√

2π
e−z2

1/2eσ2
√

tρz1 × (46)∫
e−ρz1√

1−ρ2

1√
2π

e−w2/2+σ2
√

t
√

1−ρ2w−−σ2
2 t/2dw (47)

= S1S2e2rt
∫ ∞

d
eσ1
√

tz1−σ2
1 t/2 1√

2π
e−z2

1/2eσ2
√

tρz1 × (48)∫
e−ρz1√

1−ρ2

1√
2π

e−(w−σ2
√

t
√

1−ρ2)2/2−ρ2σ2
2 t/2dw (49)

= S1S2e2rt
∫ ∞

d
eσ1
√

tz1−σ2
1 t/2 × (50)

1√
2π

e−z2
1/2eσ2

√
tρz1−ρ2σ2

2 t/2N

(
ρz1 + (1− ρ2)σ2

√
t− e√

1− ρ2

)
dz1 (51)

= S1S2e2rt+ρσ1σ2t
∫ ∞

d−σ1
√

t−σ2
√

tρ

1√
2π

e−w2/2 × (52)

N

(
ρw + ρσ1

√
t + σ2

√
t− e√

1− ρ2

)
(53)
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We, thus, obtain

I1 = S1S2e2rt+ρσ1σ2t(1− (N(d1) + N(e1)− bvncd f (d1, e1, ρ))) (54)

I2 = K1S2ert(1− (N(d2) + N(e2)− bvncd f (d2, e2, ρ))) (55)

I3 = K2S1ert(1− (N(d3) + N(e3)− bvncd f (d3, e3, ρ))) (56)

I4 = K1K2(1− (N(d) + N(e)− bvncd f (d, e, ρ)) (57)

d1 = d− σ1
√

t− ρσ2
√

t (58)

e1 = e− σ2
√

t− ρσ1
√

t (59)

d2 = d− ρσ2
√

t (60)

e2 = e− σ2
√

t (61)

d3 = d− σ1
√

t (62)

e3 = e− ρσ1
√

t (63)

d =
ln(K1/S1)

σ1
√

t
− r

σ1

√
t +

σ1

2

√
t (64)

e =
ln(K2/S2)

σ2
√

t
− r

σ2

√
t +

σ2

2

√
t (65)

The option price is

C(S1, S2, t) = S1S2ert+ρσ1σ2t(1− (N(d1) + N(e1)− bvncd f (d1, e1))) (66)

−K1S2(1− (N(d2) + N(e2)− bvncd f (d2, e2)))

−K2S1(1− (N(d3) + N(e3)− bvncd f (d3, e3)))

+K1K2e−rt(1− (N(d) + N(e)− bvncd f (d, e)))

d =
ln(K1/S1)

σ1
√

t
− r

σ1

√
t +

σ1

2

√
t

e =
ln(K2/S2)

σ2
√

t
− r

σ2

√
t +

σ2

2

√
t

d1 = d− σ1
√

t− ρσ2
√

t

e1 = e− σ2
√

t− ρσ1
√

t

d2 = d− ρσ2
√

t

e2 = e− σ2
√

t

d3 = d− σ1
√

t

e3 = e− ρσ1
√

t

Consider now the product of a put times a call with value

e−rtE
[(

K1 − S1ert+σ1
√

tz1−σ2
1 t/2

)+(
S2ert+σ2

√
tz2−σ2

2 t/2 − K2

)+]
(67)

The domain of integration is

z1 < d =
ln(K/S)

σ1
√

t
− r

σ1

√
t +

σ1

2

√
t (68)

z2 > e (69)

The result is of the form
I2 − I1 + I3 − I4 (70)
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and the integral I2 is

K1S2ert
∫ d

−∞

∫ ∞

e
eσ2
√

tz2−σ2
2 t/2 f (z1, z2)dz1dz2

=
∫ ∞

e−σ2
√

t

1√
2π

e−w2/2N

(
d− ρσ2

√
t− ρw√

1− ρ2

)
dw.

There are four cases denoted cc, cp, pc, and pp for whether the option is a product of two
calls, a call and a put, a put and a call, or two puts, respectively. For two calls and two puts,
the forward price is I1 − I2 − I3 + I4, and, for cases cp, pc, the forward price is given by
I2 − I1 + I3 − I4. In each of the integrals, the probability is a bivariate normal probability of
the appropriate quadrant defined by the point (d, e).

4. Fast Fourier Transform for Product Options

For a joint density f (x, y) of a pair of log returns, define the product call price by

w(a, b) =
∫ ∞

a

∫ ∞

b
(ex − ea)

(
ey − eb

)
f (x, y)dxdy (71)

for a joint density f (x, y).
Further suppose the joint characteristic function φ(u, v) of the joint density is available

in closed form. By definition,

φ(u, v) =
∫ ∞

−∞

∫ ∞

−∞
eiux+ivy f (x, y)dxdy. (72)

Following the methods of Carr and Madan (1999), define

γ(a, b) =
∫ ∞

−∞

∫ ∞

−∞
eαa+βb+iua+ivbw(a, b)dadb (73)

=
∫ ∞

−∞

∫ ∞

−∞
ei(u−iα)a+i(v−iβ)b × (74)∫ ∞

a

∫ ∞

b
(ex − ea)

(
ey − eb

)
f (x, y)dxdydadb (75)

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)dxdy× (76)∫ x

−∞

∫ y

−∞
ei(u−iα)a+i(v−iβ)(ex − ea)

(
ey − eb

)
dadb (77)

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)dxdy×

∫ x

−∞

∫ y

−∞
dadb (78)(

ei(u−iα)a+i(v−iβ)+x+y − ei(u−i(α+1))a+i(v−iβ)b+y−
ei(u−iα)a+i(v−i(β+1))b+x + ei(u−i(α+1))a+i(v−i(β+1))b

)
(79)

= φ(u− i(α + 1), v− i(β + 1))× (80)( −1
(u−iα)(v−iβ) +

1
(u−i(α+1))(v−iβ)+

1
(u−iα)(v−i(β+1)) − 1

(u−i(α+1))(v−i(β+1))

)
(81)

=
φ(u− i(α + 1), v− i(β + 1))(

(u− iα)2 − i(u− iα)
)(

(v− iβ)2 − i(v− iβ)
) (82)

It follows that

w(a, b) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−iua−ivb e−αa−βbφ(u− i(α + 1), v− i(β + 1))(

(u− iα)2 − i(u− iα)
)(

(v− iβ)2 − i(v− iβ)
)dudv (83)
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Hence, by two-dimensional fast Fourier inversion, we may price product options given the
joint characteristic function.

For the product of put and a call defined for α > 1, β > 0

γpc(a, b) =
∫ ∞

−∞

∫ ∞

−∞
ei(u+iα)aei(v−iβ)bwpc(a, b)dadb (84)

=
∫ ∞

−∞

∫ ∞

−∞

∫ a

−∞

∫ ∞

b
ei(u+iα)aei(v−iβ) × (85)

(ea − ex)
(

ey − eb
)

f (x, y)dxdydadb (86)

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)dxdy

∫ ∞

x

∫ y

−∞
× (87)

ei(u+iα)aei(v−iβ)b(ea − ex)
(

ey − eb
)

dadb (88)

= φ(u + i(α− 1), v− i(β + 1))× (89)[ 1
(u+i(α−1))(v−iβ) − 1

(u+i(α−1))(v−i(β+1))
− 1

(u+iα)(v−iβ) +
1

(u+iα)(v−i(β+1))

]
(90)

=
φ(u + i(α− 1), v− i(β + 1))

((u + iα)2 − i(u + iα))((v− iβ)2 − i(v− iβ))
(91)

Similarly, we will have

γcp(a, b) =
φ(u− i(α + 1), v + i(β− 1))

((u− iα)2 − i(u− iα))((u + iβ)2 − i(u + iβ))
(92)

γpp(a, b) =
φ(u + i(α− 1), v + i(β− 1))

((u + iα)2 − i(u + iα))((u + iβ)2 − i(u + iβ))
. (93)

It follows that

wcc(a, b) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−iua−ivb × (94)

e−αa−βbφ(u− i(α + 1), v− i(β + 1))(
(u− iα)2 − i(u− iα)

)(
(v− iβ)2 − i(v− iβ)

)dadb (95)

wpc(a, b) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−iua−ivb × (96)

eαa−βbφ(u + i(α− 1), v− i(β + 1))
((u + iα)2 − i(u + iα))((v− iβ)2 − i(v− iβ))

dadb (97)

wcp(a, b) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−iua−ivb × (98)

e−αa+βbφ(u− i(α + 1), v + i(β− 1))
((u− iα)2 − i(u− iα))((u + iβ)2 − i(u + iβ))

dadb (99)

wpp(a, b) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−iua−ivb × (100)

eαa+βbφ(u + i(α− 1), v + i(β− 1))
((u + iα)2 − i(u + iα))((u + iβ)2 − i(u + iβ))

dadb (101)

For puts, the values of α, β need to be above unity.
The inversion may be accomplished using a two dimensional fast Fourier Transform.

The fast Fourier transform Y of an m× n matrix X evaluates the double sum

Yp+1,q+1 =
m−1

∑
j=0

n−1

∑
k=0

ω
jp
m ω

kq
n Xj+1,k+1, p = 0, · · ·m− 1, q = 0, · · · n− 1 (102)
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where

ωm = e−2πi/m (103)

ωn = e−2πi/n (104)

The integral to be evaluated is∫ ∞

−∞

∫ ∞

−∞
e−iuae−ivbg(u, v)dudv (105)

We may approximate by ∫ M

−M

∫ N

−N
e−iua−ivbg(u, v)dudv (106)

We discretize with spacing λu, λv

uj = −M + λu j (107)

vk = −N + λvk (108)

We also discretize in strike space with spacing ηa, ηb by

ap = −A + ηa p (109)

bq = −B + ηbq (110)

to approximate the double integral by the double sum

W(ap, bq) =
m−1

∑
j=0

n−1

∑
k=0

e−i(−M+λu j)(−A+ηa p)e−i(−N+λvk)(−B+ηbq) (111)

×g(−M + λu j,−N + λvk)λuλv (112)

e−iM(−A+ηa p)W(ap, bq)e−iN((−B+ηbq) (113)

=
m−1

∑
j=0

n−1

∑
k=0

e−iλuηa jpe−iλvηbkq × (114)

 eiA(−M+λu j)

×g(−M + λu j,−N + λvk)
×eiB(−N+λvk)

λuλv (115)

Now, we set

λuηa =
2π

m
(116)

λvηb =
2π

n
(117)

Define

Xj+1,k+1 = eiA(−M+λu j)g(−M + λu j,−N + λvk)eiB(−N+λvk)λuλv (118)

Then, define Y via Equation (102). The option prices are obtained as

W
(
ap, bq

)
= eiM(−A+ηa p)Yp+1,q+1eiN((−B+ηbq). (119)

5. Multivariate Bilateral Gamma

An application of the two dimensional fast Fourier transform on pricing product
options requires a closed form multivariate characteristic function. The marginals of this
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joint characteristic function should be capable of calibrating risk neutral densities observed
in the separate option markets for a given maturity. There are a number of pure jump Lévy
processes that will fit marginal option prices.

Among them are the three parameter variance gamma model of Madan and Seneta (1990),
Madan et al. (1998) and its four parameter extension to the bilateral gamma model proposed in
Küchler and Tappe (2008). Recently, Madan and Schoutens (2020), Madan (2020), and Madan
and Wang (2020a) have investigated multivariate models with closed form characteristic
functions consistent with arbitrary marginal bilateral gamma models. Here, we present a
summary of the required characteristic functions.

Consider first the bilateral gamma process for the marginals. Let (γp(t), t > 0),
(γn(t), t > 0) be two independent standard gamma processes with unit mean and variance
rates. Now, we introduce four parameters bp, cp, bn, cn representing the scale and speed of
positive and negative moves, respectively. The bilateral gamma process XBG(t) is given by

XBG(t) = bpγp
(
cpt
)
− bnγn(cnt). (120)

The process is a Lévy process of independent and identically distributed increments. It is
also a pure jump process with the characteristic function

E[exp iuXBG(t)] =
(

1
1− iubp

)cpt( 1
1 + iubn

)cnt
. (121)

The characteristic function has a Lévy–Khintchine decomposition in terms of a Lévy density
k(x) that announces the arrival rate of jumps of size x as follows.

E[exp iuXBG(t)] = exp
(∫ ∞

−∞

(
eiux − 1

)
k(x)dx

)
. (122)

The specific form for the Lévy density is

k(x) = cp

exp
(
− x

bp

)
|x| 1x>0 + cn

exp
(
− |x|bn

)
|x| 1x<0. (123)

The density for any horizon may be obtained by Fourier inversion of the characteristic
function using the Fast Fourier Transform. The density also has a closed form in terms of
the Whittaker W function (Küchler and Tappe (2008)). We denote this function by W(a, b).
For x > 0, the density is given by

fBG(x) =

(
1
bp

)cp( 1
bn

)cn
(

1(
1/bp + 1/bn

)(cp+cn)/2Γ
(
cp
)
)
× (124)

x(cp+cn)/2−1 exp
(
−x/2(1/bp + 1/bn)

)
×

W
(

cp − cn

2
,

cp + cn − 1
2

,
(

1
bp

+
1
bn

)
x
)

.

For x < 0, the roles of bp, cp and bn, cn are reversed.
The multivariate bilateral gamma model is presented in Madan and Schoutens (2020).

The presentation follows Buchmann et al. (2019) where a multivariate Lévy process is
constructed having a Lévy density with full support on Rn − {0} that is also consistent
with prespecified variance gamma marginals displaying different kurtosis levels for each
component. The construction in Madan and Schoutens (2020) extends that of Buchmann et
al. (2019) to attain consistency with prespecified bilateral gamma marginals.

Let the marginal distributions be bilateral gamma with the parameters bpi, cpi, bni, and
cni for component i. The multivariate bilateral gamma model is the sum of a multivariate
variance gamma plus independent bilateral gamma shocks. The multivariate variance
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gamma is a multivariate normal with the mean vector θ and covariance Σ, both of which
are scaled by a single gamma variate g with a unit mean and variance ν. The multivariate
variance gamma random vector XMVG may then be written as

XMVG = θg +
√

g
√

diag(Σ)Z (125)

where the vector Z = (Zi, i = 1, · · · , n) is multivariate normal with zero means, unit
variances, and correlation matrix C. The covariance matrix is

Σ =
√

diag(Σ)C
√

diag(Σ). (126)

In addition, there are independent bilateral gamma variates Yi with the parameters
b̃pi, c̃pi, b̃ni, andc̃ni and with Y = (Y1, · · · , Yn)′

XMBG = XMVG + Y. (127)

The only dependency parameters are the correlation matrix C and the variance ν of the
gamma variate g. All other parameters are derived from the parameters of the marginal
processes. Specifically, we have that

θi =
bpi − bni

ν
(128)

Σii =
2bpibni

ν
(129)

b̃pi = bpi (130)

b̃ni = bni (131)

c̃pi = cpi −
1
ν

(132)

c̃ni = cni −
1
ν

(133)

The parameter ν has a lower bound of the reciprocal of the minimum of all the marginal
speed parameters mini(min(cpi, cni)).

The characteristic function of the multivariate bilateral gamma vector is given by

φMBG(u) = E
[
exp(iu′XMBG)

]
=

(
1

1− iu′θν + ν
2 u′Σu

) 1
ν

∏
j

(
1

1− iujbpj

)cpj−1/ν(
1

1 + iubnj

)cnj−1/ν

. (134)

The multivariate arrival rates or Lévy density k(x) for the multivariate bilateral gamma
model may be specified as follows.

k(x) = m̃(x) +
n

∑
j=1

k j(xj)
M

∏
l 6=j
l=1

1xl=0, (135)
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where

m̃(z) =
exp

(
θTΣ−1x

)
ν(2π)n/2−1√|Σ|√xTΣ−1x

× (136)

exp

(
−
√(

θTΣ−1θ +
2
ν

)
(xTΣ−1x)

)
k j(xj) =

cnj−1/ν

|xj|
exp

(
−|xj|/bnj

)
1xj<0 (137)

+
cpj − 1/ν

xj
exp

(
−xj/bpj

)
1xj>0. (138)

For option pricing, one must incorporate the marginal convexity corrections to match
the forward prices for the two assets. This is the characteristic function φBGMP(u), and, in
the two dimensional case, it is given by

φBGMP(u) = φMBG(u) exp(iu1ω1 + iu2ω2) (139)

ω1 = ln(S1) + (r− q1)t− ln φMBG((−i, 0)) (140)

ω2 = ln(S2) + (r− q2)t− ln φMBG((0,−1)). (141)

6. Sample Computations Using the Multivariate Bilateral Gamma Model

For an example on product option pricing, we consider product options on JPM and
SPY, both of which have many options trading. On 12 December 2019 for maturities below
three months and moneyness, measured by the absolute value of the logarithm of strike
to the spot price, below 0.3, there were 226 options trading on JPM and 1582 options on
SPY. The number of days to maturity of traded maturities closest to a month was 29 days.
The maturity of 29 days had 36 strikes for JPM and 74 strikes for SPY. These options may
be employed to determine the marginal risk neutral distribution on JPM and SPY for the
29 day maturity. The marginal bilateral gamma parameters are presented in Table 1.

Table 1. Marginal BG parameters for the 29 day maturity on 12 December 2019.

Asset bp cp bn cn ω

JPM 0.0241 18.2249 0.0398 16.8810 0.2142
SPY 0.0270 2.2784 0.0509 6.6806 0.2693

Figure 1 presents a graph of the observed and model option prices for the 29 day
maturity on 12 December 2019 for the two assets.

The two dependency parameters were set as follows. The value of ν = 0.4828 was ten
percent above the lower bound and the correlation was set at 0.6. For this parameter setting
and the spot for both assets set to 100 with strikes ranging between 80 and 120 Figure 2
presents four graphs for product option prices computed by two dimensional fast Fourier
inversion of the Fourier transform of modified product option prices as per Equations (82),
(91), (92), and (93).
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Figure 1. Bilateral Gamma marginals fit to JPM and SPY options for a maturity of 29 days on
12 December 2019. The circles represent marlet prices. Model prices are shown by dots.
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Figure 2. Product option prices. The upper panel is products of calls on JPM with calls and puts on
SPY. The lower panel is for products of puts on JPM with calls and puts on SPY.
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With a view toward studying the effects of dependency parameters on product option
prices, we considered four product options with strikes five percent out of the money. The
options were a product of two calls, a call and a put, a put and a call, and two puts. There
were five settings for correlation from −0.8 to 0.8 in steps of 0.4. There were four settings
for the percentage excess of ν above its lower bound of 0.25, 0.5, 0.75, and 1.0. These results
are presented in Tables 2–5, for the four option types.

Table 2. Product of two calls.

Correlation

ν −0.8 −0.4 0 0.4 0.8

0.25 55.47 64.67 75.08 86.75 99.72
0.5 58.35 66.15 74.85 84.48 95.08
0.75 60.44 67.21 74.69 82.89 91.84
1.0 62.04 68.02 74.57 81.71 89.46

For the product of two calls, the option price rises with correlation. The effect
of ν is positive for negative correlation, negative for positive correlation, and flat for
zero correlation.

Table 3. Product of a call and a put.

Correlation

ν −0.8 −0.4 0 0.4 0.8

0.25 98.06 86.33 75.49 65.55 56.52
0.5 94.82 85.13 76.11 67.76 60.08
0.75 92.52 84.28 76.55 69.35 62.68
1.0 90.82 83.64 76.88 70.55 64.65

For the product of a call and a put, the option price falls with correlation. The effect
of ν is negative for negative correlation, positive for positive correlation, and flat for
zero correlation.

Table 4. Product of a put and a call.

Correlation

ν −0.8 −0.4 0 0.4 0.8

0.25 90.90 80.32 70.53 61.53 53.35
0.5 87.80 79.06 70.92 63.37 56.41
0.75 85.61 78.18 71.20 64.69 58.65
1.0 83.98 77.51 71.41 65.69 60.35

For the product of a put and a call, the option price falls with correlation. The effect
of ν is negative for negative correlation, positive for positive correlation, and flat for
zero correlation.

Table 5. Product of two puts.

Correlation

ν −0.8 −0.4 0 0.4 0.8

0.25 62.59 71.39 80.77 90.72 101.3
0.5 64.47 71.86 79.68 87.92 96.60
0.75 65.82 72.19 78.89 85.94 93.31
1.0 66.85 72.44 78.31 84.45 90.87
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For the product of two puts, the option price rises with correlation. The effect
of ν is positive for negative correlation, negative for positive correlation, and flat for
zero correlation.

7. Pricing Product Options Using the Physical Measure

For product options, one has the ability to partially hedge the risk using options on
the two underlying assets. The prices of options on these assets are informative on the
terms at which the product options could trade. However, as the hedge is not perfect,
there is residual risk. Recently, Madan and Wang (2020b) reported on an investigation
of option pricing at the cost of a hedge plus a charge for residual risk to levels of risk
acceptability. For acceptable risk defined by concave distortions of probability as proposed
in Cherny and Madan (2009) following Artzner et al. (1999) and Kusuoka (2001), the resid-
ual risk charge is just a distorted expectation of the simulated residual risk taken at an
appropriate stress level for the distortion employed. For further details, we recommend,
apart from the cited papers, Madan and Schoutens (2016). Here, we use the distortion
minmaxvar with stress parameter γ and definition

Ψ(γ)(u) = 1−
(

1− u
1

1+γ

)1+γ
.

For the physical measure, we bootstrap pairs of returns from the data immediately
prior to the pricing date for the option maturity of interest. Bilateral gamma marginals are
fit to this data. The dependency parameters of the multivariate bilateral gamma model
are estimated by matching the two dimensional empirical characteristic function to the
theoretical counterpart.

The estimated parameters are then used to simulate a hundred thousand readings
on pairs of returns. On the simulated space, a hedge is determined by determining the
funds needed to cover the residual risk to a level of risk acceptability. This magnitude is
the residual risk charge. The cost of the hedge is then obtained from the market prices of
the hedging instruments. The product option is priced at the cost of the hedge plus the
residual risk charge. This procedure is illustrated on a set of strikes for all four types of
product options on data for XLE and XLP as on 12 December 2019.

The first step is the formulation of joint returns on the two assets to the option maturity.
We work with an option maturity of a month or 21 business days. However, an exact 21 days
may not be a relevant way of forming joint returns as some months may be longer and
others shorter in terms of economic time. We, therefore, take the number of days to be
random with a gamma distribution with a mean of 21 days. For the shape parameter, we
take the value of 2 that places the mode at half the mean.

The number of days n is simulated as one plus the integer part of the gamma variate.
For the random number of days, we randomly select a start date within the last thousand
days and an end date at the start date plus n. The returns on the two assets between the
start and end dates delivers a single reading on joint returns. The procedure is repeated
500 times to draw a sample of 500 monthly joint returns.

In modeling the joint returns, we follow Madan and Wang (2020b). First we lock in a
regression of the first asset return on the second and for the pair XLE and XLP, we obtain
the results

r1n = −0.0018 + 0.4006r2n + un

The t− statistics for this regression were −0.92, and 6.38. The R− square was 6.22 percent.
We then model r2n and un to be multivariate bilateral gamma. The marginal bilateral

gamma parameters for r2 and u are displayed in Table 6.
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Table 6. Marginal bilateral gamma parameters.

bp cp bn cn

r2 0.0134 2.7719 0.0111 2.7719
u 0.0361 1.0546 0.0359 1.0547

The dependency parameters ν and ρ were estimated by matching the empirical joint
characteristic functions at the values 0.9482 and −0.4769, respectively. The drifts in the
Brownian motions to be time changed were 0.0025 and 0.0003, respectively, for r2 and u.
The corresponding volatilities were 0.0177 and 0.0523. Setting the initial price levels for
the two assets as they were at 31 December 2019 at 60.03 and 62.95 for XLE and XLP,
respectively, we simulated 100, 000 readings for the two asset prices a month later from
this joint law for the two returns.

Consider first a product call at the strikes 61.21 and 64 for XLE and XLP, respectively.
The payout on the product call is

c(S1, S2) = (S1 − 61.21)+(S2 − 64)+.

By taking positions in the assets and options on the two assets one may access option
payouts from the markets of g(S1) and h(S2). These functions may be built up from payouts
to the assets and option on the assets as a function of the positions taken. One may construct
matrices G, and H that evaluate the payout on the assets and the options at the 100, 000
readings on the two assets. G and H are then 100, 000 times n1, n2 respectively, where
n1, n2 are the number of assets in the two markets. With positions given by vectors a1, a2 of
dimensions n1, n2, we have a hundred thousand readings on hedge cash flows as

g(S1) = Ga1

h(S2) = Ha2.

Evaluating the product option payout at the hundred thousand pairs of outcomes the
product option payout is also a vector c(S1, S2) of length a hundred thousand.

We now propose the construction of the hedge or the positions a1, a2 in the two sets of
assets. We took for hedging assets, the two underlying assets and options at moneyness
multiples of a percentage point between plus or minus 10 percent to get 19 and 12 hedging
strikes on XLE and XLP, respectively. The post hedge residual cash flow is

R(S1, S2) = c(S1, S2)− g(S1)− h(S2).

The residual is the post hedge shortfall on the product option liability and it is to be valued
at its ask or upper price, which is the risk charge for holding the residual risk.

The lower price for a risk using distorted expectations is given by its expectation
evaluated under a probability distortion. The distorted probability distribution for a risk X
with distribution function FX(x) is Ψ(FX(x)) for a concave distortion Ψ(u), 0 ≤ u ≤ 1. The
upper price is just the negative of distortion expectation for the negated risk. Defining the
distorted expectation by

E(X) =
∫ ∞

−∞
xdΨ(FX(x))

the upper price or risk charge is
rc = −E(−X).

Positions in the hedging assets are found by minimizing the residual risk charge rc.
The distortion employed, as already stated, is minmaxvar, and we need to pick the

stress level γ for the distortion. As distorted expectations of hedge fund returns turn
negative at stress levels of 0.75, indicating acceptability at the margin for this stress level,
we employed the stress level of γ = 0.75. In constructing hedges, it is imperative to keep
the hedging assets neutral, and this was done by centering their cash flows using the
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sample mean of the payouts for each asset. The minimal risk charge was 1.9899. Figure 3
displays the hedge cash flows accessed on the two assets. The cost of the hedge was 1.2843,
and the price for the product call was 3.2743.
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With a view to reporting further on the quality of the hedge, we present the percentiles
for the hedge cash flows, inclusive of the risk charge, when the payout on the product call
is zero. We also present, in Table 7, the percentiles of the shortfall on the product option
payout, again inclusive of the risk charge.
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With a view to reporting further on the quality of the hedge, we present the percentiles
for the hedge cash flows, inclusive of the risk charge, when the payout on the product call
is zero. We also present, in Table 7, the percentiles of the shortfall on the product option
payout, again inclusive of the risk charge.

Table 7. Short fall and zero payout percentiles.

1 5 10 25 50 75 90 95 99

shortfall −20.78 −11.06 −7.24 −2.81 −0.71 −0.22 0.11 0.30 1.03
zero payout 0.22 0.23 0.23 0.23 0.24 0.70 3.47 8.34 20.95

Table 8 presents the strikes, risk charges, hedge costs, and product option prices for
other types of product options hedged using risk charge minimizing hedges.

Table 8. Other product options.

Type K1 K2 rc hc POP

PC 57.21 63 1.2009 1.4320 2.6329
PP 60.21 61 0.7096 2.9561 3.6657
CP 62.21 62.5 1.1374 0.2 1.3374

Three types are PC, PP, and CP for products of a put and a call, two puts, and a call and a put. rc, hc, and POP
are the risk charge, hedge cost, and the product option price, respectively.
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8. Conclusions

Product options paying the product of put and or call options payouts at different
strikes on two underlying assets were shown to be useful in synthesizing joint densities
and replicating sufficiently differentiable functions of two underlying assets. Theory for
pricing such options was presented and implemented from three perspectives. The first
employed assumptions on asset log returns being jointly driven by correlated Brownian
motion. The second used the two dimensional inversion of joint characteristic functions.
The third was based on using the physical measure and proposing a risk charge minimizing
hedge-using options on the two underlying assets. The options were then priced at the
cost of the hedge plus the risk charge for the residual or unhedged risk.
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