
Journal of

Risk and Financial
Management

Article

An Artificial Intelligence Approach to the Valuation of
American-Style Derivatives: A Use of Particle
Swarm Optimization

Ren-Raw Chen 1,*,†, Jeffrey Huang 2, William Huang 1 and Robert Yu 1

����������
�������

Citation: Chen, Ren-Raw, Jeffrey

Huang, William Huang, and Robert

Yu. 2021. An Artificial Intelligence

Approach to the Valuation of

American-Style Derivatives: A Use of

Particle Swarm Optimization. Journal

of Risk and Financial Management 14:

57. https://doi.org/10.3390/

jrfm14020057

Academic Editors: Michael McAleer

and Thanasis Stengos

Received: 16 January 2021

Accepted: 25 January 2021

Published: 2 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Gabelli School of Business, Fordham University, 45 Columbus Avenue, New York, NY 10019, USA;
khuang41@fordham.edu (W.H.); jyu115@fordham.edu (R.Y.)

2 Bank SinoPac, Financial Markets, 5F, #306, Bade Road, Section 2, Taipei 104, Taiwan; jeffrey.hcc@gmail.com
* Correspondence: rchen@fordham.edu
† We thank Joe Pimbley for his encouragement and valuable comments that make this paper substantially

better.

Abstract: In this paper, we evaluate American-style, path-dependent derivatives with an artificial
intelligence technique. Specifically, we use swarm intelligence to find the optimal exercise boundary
for an American-style derivative. Swarm intelligence is particularly efficient (regarding computation
and accuracy) in solving high-dimensional optimization problems and hence, is perfectly suitable for
valuing complex American-style derivatives (e.g., multiple-asset, path-dependent) which require a
high-dimensional optimal exercise boundary.

Keywords: American option; Monte Carlo; PSO

JEL Codes: G12; G13; G4

1. Introduction

Evaluating American-style derivatives is a challenging task. In a univariate setting
(e.g., option on one stock), lattice models—either the binomial model (e.g., Cox et al. 1979)
or finite difference methods (e.g., see Hull 2015)—are an efficient method.1 However, once
the derivative contract is written on multiple assets (e.g., exchange options), lattice models
become infeasible (with regard to both computation time and memory space). Furthermore,
path-dependent derivatives cannot be evaluated with lattice models.

As a result, modifying the Monte Carlo method to evaluate American-style derivatives
is a popular alternative. There are two approaches to achieve this goal. The first approach is
proposed by Longstaff and Schwartz (2001) who approximate the continuation value of the
option by a regression function (its functional form can be arbitrary). They recognize that
the early exercise decision is merely a comparison of the exercise value and its continuation
value of the option. If the continuation value can be reasonably and accurately estimated,
then the early exercise problem can be easily solved and hence, one can readily compute
the value of an American-style derivative. The drawback of this approach is apparent—it is
hard to know in advance which functional form of the regression will provide an accurate
estimate for the continuation value.

The other approach is to recognize that derivatives pricing, in general, is a free-
boundary PDE (partial differential equation) problem. If we can accurately estimate the
exercise boundary, then it is just an easy integration over the boundary (as a first passage
time problem). In other words, if we can accurately estimate the boundary, then the value
of an American-style derivative can be calculated, as it would be a barrier option2.

1 By efficient, we refer to the balance between speed and accuracy.
2 For recent work, see Carr et al. (2008). See also Nunes (2009) for a nice review/comparison of various boundaries.

J. Risk Financial Manag. 2021, 14, 57. https://doi.org/10.3390/jrfm14020057 https://www.mdpi.com/journal/jrfm

https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://doi.org/10.3390/jrfm14020057
https://doi.org/10.3390/jrfm14020057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jrfm14020057
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/1911-8074/14/2/57?type=check_update&version=1

J. Risk Financial Manag. 2021, 14, 57 2 of 22

This approach is more computationally efficient than the Longstaff–Schwartz model;
yet, it suffers the same drawback of the Longstaff–Schwartz model—the accuracy of the
American-style derivative value relies upon an accurate exercise boundary. Moreover, the
literature of this approach lacks evidence on derivatives on multiple assets.

In this paper, we introduce an artificial intelligence method, i.e., swarm intelligence, to
locate the optimal exercise boundary. In particular, we use an optimization algorithm within
the realm of swarm intelligence named PSO (particle swarm optimization) to locate the
optimal exercise boundary. The intelligence by the swarm can efficiently decide piecewise
values of the boundary, one for each time step, without an approximated functional form as
in the literature. As in any artificial intelligence model, PSO is efficient in high-dimensional
optimization problems. In the case of a truly free boundary (i.e., piecewise), we find that
PSO can ideally provide the best solution to complex (e.g., American-style, multi-asset,
path-dependent) derivatives problems.

2. Monte Carlo in American-Style Derivative Pricing

In this section, we briefly describe the two Monte Carlo methods in American-style
derivative pricing. It is generally understood that Monte Carlo simulations are only suitable
for pricing European-style derivatives. This is because American-style derivatives require
a backward induction. In other words, the optimal exercise decision at any given time
depends on all future optimal exercise decisions. The first method proposed by Longstaff
and Schwartz (2001) recreates such a recursive structure in Monte Carlo and the second
method adopts a free-boundary property in PDE (partial differential equation) solutions.

2.1. The Longstaff–Schwartz Model

The Longstaff–Schwartz model (2001) is the most popular model in the financial
industry. It is an efficient Monte Carlo model for American-style derivatives. Longstaff
and Schwartz propose a regression method to estimate the “continuation value” at each
time step.3 The option value ξt at any time t is the larger of the exercise value Et and the
continuation value Ct as follows:

ξt = max{Et, Ct} (1)

where
Ct = EQ

t [ξt+1] (2)

is the continuation value of the option at time t (which is the risk-neutral expected value,
EQ

t [·], of the next period’s option price); and Et is the exercise value at time t. In the case of
a put option (which is what we use throughout the paper), Et = K− St.

Longstaff and Schwartz cleverly recognize that the conditional expectation of future
maximum payoff is a function of today’s stock price:

EQ
t [ξt+1] = f (St) (3)

where f (·) is an arbitrary function. They propose the simplest (and it works amazingly
well) quadratic equation:

EQ
t [ξt+1] = f (St)

= a0 + a1St + a2S2
t

(4)

which can turn into a regression model as follows:

ξt+1 = a0 + a1St + a2S2
t + et+1 (5)

3 As a reminder, a continuation value in the option literature refers to the expected value of future maximum payoff at any given point in time. Since
the continuation value is the expected future payoff, it is compared to the exercise value at the given time to see if (early) exercise is worthwhile.

J. Risk Financial Manag. 2021, 14, 57 3 of 22

with the boundary condition ξT = max{K− ST , 0}.
As mentioned earlier, the major criticism of the model is the choice of the functional

form of the regression. It is ad hoc and it is not possible to know which form is most
suitable for which payoff.4

2.2. Explicit Boundary Method

In an alternative (relatively unsuccessful) attempt, researchers have tried to solve
American-style derivatives by using an explicit exercise boundary5. The approach is built
upon the advantageous property that option prices of any kind are solutions to a class of
differential equations which can be solved as a “free boundary problem”. In other words,
as long as the exercise boundary of an option is known, its price is no more than a simple
integration along the exercise boundary.

Unfortunately, not only is the exercise boundary of an American-style derivative
unknown, but it is recursive (i.e., the boundary value at the current time depends on the
boundary value at the immediately later time—resulting a recursively dependent structure
of boundary values). In other words, the boundary function can only be achieved via a
lattice model (e.g., binomial model). In doing so, the option is guaranteed to be exercised
optimally and the valuation can hence be at the maximum.

As Carr (1998), among others, points out, if we solve an American-style derivative
premium as a free-boundary problem, then we can use an explicit boundary function and
the American-style derivative premium is simply an integration of payoff function (e.g.,
put) over the boundary.

ξ(t) = EQ
t
[
e−rτmax{[E(τ), 0}

]
(6)

where E(τ) is the exercise value at the stopping time τ. If it is a put option without
dividends, which is the case in this paper, then E(τ) = K − S(τ). On the boundary,
S(τ) = B(τ) and hence, E(τ) = K − B(τ) where B(τ) is the boundary function given
exogenously. The way the boundary function works is that it serves as a stopping time.
Once the stock price at time t hits the boundary B(t), the process stops and the option
will be exercised and paid and hence, the American-style derivative can be evaluated as a
barrier option.

The easiest way to perform the integration is through Monte Carlo simulations. As
the derivative price, ξ(t) is given as an expected value:

ξ(t) =
1
N

N

∑
j=1

e−rτj max
{

K− B(τj), 0
}

(7)

We note that the recursively determined boundary function (via a lattice model)
maximizes the option value; any other exogenously specified boundary function will
only be “sub-optimal”, that is, generating a lower value than the lattice model. This sub-
optimal argument is convenient in that now we can simply try a large number of boundary
functions and use the one that generates the highest option value as a good approximation.

Researchers then have tried various approximations on the exercise boundary. These
approximations are explicit functions and hence, can be easily integrated (thus, the
American-style derivative value can be solved). According to a recent survey by Nunes
(2009), the literature has the following functional forms:

• Constant: B(t) = a0;
• Linear: B(t) = a0 + a1t;
• Exponential: B(t) = aoea1t;
• Exponential-constant: a0 + ea1t;

4 In the case of put options, the quadratic function works very well. Yet, in other forms of payoff, Longstaff and Schwartz do not provide any
guidance.

5 For example, see Carr (1998).

J. Risk Financial Manag. 2021, 14, 57 4 of 22

• Polynomial: B(t) = ∑n
i=1 aiti−1;

• Carr et al. (2008): B(t) = min(K, r
q K)e−a

√
T−t + E∞

[
1− e−a

√
T−t
]
.

Note that the boundary is not a function of the stock price (i.e., free boundary problem).
Since these boundary functions are explicit, they can be easily integrated.

Certainly, the accuracy of the American value depends on the accuracy of the approxi-
mated boundary function. The problem of this approach is that there is no consensus of
which functional form of the boundary can consistently be the best. Often, it varies with
the parameters of the option (i.e., moneyness, interest rate, time to maturity, and volatility).
As a result, no conclusion can be drawn on a particular functional form.

So far, the literature has not reached any consensus and the boundary seems to
be payoff-specific. In other words, different payoffs require different boundaries for
accurate American-style derivative values. As a result, it is quite natural to allow the
boundary function to be absolutely free (i.e., one value per time step). Yet, this requires
an optimization in high dimensions. As the number of time steps increases, the cost of
computation becomes exponentially and prohibitively high.

In this paper, we propose an artificial intelligence (AI) method which is based upon
the theory of swarm (swarm intelligence, SI). In the SI model, a school of fish (or a group of
ants and bees or a flock of birds) will move (swim) around to look for the maximum value
of the option.

3. Swarm Intelligence

In this section, we briefly “open the black-box” of swarm intelligence, which is a
branch of recently popular artificial intelligence.

3.1. What Is AI?

Artificial intelligence (AI), machine learning (ML), and big data (BD) have recently
been adopted into FinTech and have been the fastest growing area in finance, both in
private industry and academia. While these three areas are frequently used in combination
in developing valuable applications, these three areas are fundamentally different and
deserve separate research.

Strictly speaking, AI is a combination of computation (artificial) and biology (in-
telligence), which is quite different in nature from ML which is based upon statistical
methodologies. In the past, statistics have predominantly been presented in a parametric
fashion, mainly due to insufficient computational power and lack of data. This has been
changed recently and non-parametric statistics with powerful computation capabilities
have fueled the growth of machine learning. As non-parametric statistics require a large
amount of data, ML and BD (such as NLP, or natural language processing) have been
combined in revolutionizing the financial world. Together, they facilitate the progress of AI.

AI has four major branches:

• Swarm intelligence (birds, ants, bees, fish);
• Genetic algorithm (genes);
• Neural networks (neurons);
• Reinforcement learning (mice in a maze).

These AI theories are behavioral models in that they “artificialize” natural intelligence
(specified in parentheses above) which reflects biological behaviors. As a result, they are
different from ML methodologies. The connection (and hence, confusion) of these two is
due to the fact that these AI models can be efficiently used to find optimal solutions (e.g.,
PSO) which then are similar to ML models. Indeed, from the perspective of computation,
one can hardly differentiate one tool from the other and in many instances, these two
distinctly different theories are used in combination.

As we shall demonstrate in this section, swarm intelligence is a behavioral model and
PSO is an optimization tool.

J. Risk Financial Manag. 2021, 14, 57 5 of 22

3.2. Swarm Intelligence

Wikipedia describes swarm intelligence as “the collective behavior of decentralized,
self-organized systems.”6 The basic idea of swarm intelligence is derived from those
animals (such as birds, ants, bees, and fish) that rely on a group effort to achieve their
basic survival needs—seek food and avoid prey. The intelligence behind this collective
behavior is how they communicate among one another. Reynolds (1987)7 was the first
to “artificialize” such natural intelligence and create a computer algorithm named Boids
(bird-oid object). Reynold’s algorithm is amazingly simple. For any given bird, Reynold
devises a set of linear equations (vectors), combining which determines how the bird
should fly to its next destination.

The factors that determine how various vectors are combined are: separation, align-
ment, and cohesion. As their names suggest, “separation” is to avoid collision with other
birds, “alignment” decides how a particular bird should fly in a direction by referencing to
its fellow birds, and “cohesion” decides how fast (speed) a particular bird should fly to its
next target position.

There are countless versions of Boids.8 One can add obstacles. One can add an
objective destination (swim to target). One can perform Boids in a maze. The basic Boids,
as described in Figure 1, can be described by the following algorithm.

J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 5 of 23

• Reinforcement learning (mice in a maze).
These AI theories are behavioral models in that they “artificialize” natural

intelligence (specified in parentheses above) which reflects biological behaviors. As a
result, they are different from ML methodologies. The connection (and hence, confusion)
of these two is due to the fact that these AI models can be efficiently used to find optimal
solutions (e.g., PSO) which then are similar to ML models. Indeed, from the perspective
of computation, one can hardly differentiate one tool from the other and in many
instances, these two distinctly different theories are used in combination.

As we shall demonstrate in this section, swarm intelligence is a behavioral model and
PSO is an optimization tool.

3.2. Swarm Intelligence
Wikipedia describes swarm intelligence as “the collective behavior of decentralized,

self-organized systems.”6 The basic idea of swarm intelligence is derived from those
animals (such as birds, ants, bees, and fish) that rely on a group effort to achieve their
basic survival needs—seek food and avoid prey. The intelligence behind this collective
behavior is how they communicate among one another. Reynolds (1987)7 was the first to
“artificialize” such natural intelligence and create a computer algorithm named Boids
(bird-oid object). Reynold’s algorithm is amazingly simple. For any given bird, Reynold
devises a set of linear equations (vectors), combining which determines how the bird
should fly to its next destination.

The factors that determine how various vectors are combined are: separation,
alignment, and cohesion. As their names suggest, “separation” is to avoid collision with
other birds, “alignment” decides how a particular bird should fly in a direction by
referencing to its fellow birds, and “cohesion” decides how fast (speed) a particular bird
should fly to its next target position.

There are countless versions of Boids.8 One can add obstacles. One can add an
objective destination (swim to target). One can perform Boids in a maze. The basic Boids,
as described in Figure 1, can be described by the following algorithm.

Separation

Alignment

Cohesion

Figure 1. Three major parameters in a swarm. Sources: https://en.wikipedia.org/wiki/Boids.

Formally, let there be m birds flying in an n -dimensional space. Also let:

• ()i
tf be the i th bird at time t ;

• ()i
tv be a vector in the n space representing the velocity of the i th bird;

6 https://en.wikipedia.org/wiki/Swarm_intelligence.
7 According to Wikipedia (footnote 6), Reynold created Boid in 1986: “Boids is an artificial life program, developed by Craig

Reynolds in 1986, which simulates the flocking behaviour of birds.”
8 For example, see Google Scholar:

https://scholar.google.com/scholar?q=boids+flocking+algorithm&hl=en&as_sdt=0&as_vis=1&oi=scholart

Figure 1. Three major parameters in a swarm. Sources: https://en.wikipedia.org/wiki/Boids.

Formally, let there be m birds flying in an n-dimensional space. Also let:

• f (i)t be the ith bird at time t;

• v(i)t be a vector in the Rn space representing the velocity of the ith bird;

• p(i)t be a vector in Rn space representing the position (coordinates) of the ith bird.

Finally, let F =
{

f (i)t

∣∣∣i = 1, · · · , m
}

be the collection of all birds. Define a mapping

function Xi = ℘(f (i)t−1), which returns all of f (j 6=i)
t−1 ∈ F− f (i)t−1, where a radius d and an angle

a are predetermined (
∣∣∣∣∣∣x, y

∣∣∣∣∣∣= √x2 + y2 , and ∠{x, y} is the angle between two vectors),
such that ∣∣∣∣∣∣v(i)t−1, v(j 6=i)

t−1

∣∣∣∣∣∣< d∣∣∣∣∣∣p(i)t−1, p(j 6=i)
t−1

∣∣∣∣∣∣< d
and

∠
{

v(j 6=i)
and t−1, v(i)t−1

}
= a◦

∠
{

p(j 6=i)
t−1 , p(i)t−1

}
= a◦

(8)

are satisfied. In words, what (8) describes is that for any given bird i, where it is heading
depends on a reference group of birds “nearby”, described by a set of birds Xi = ℘(f (i)t−1).
These reference birds must be “nearby” in the following sense—they must be within a

6 https://en.wikipedia.org/wiki/Swarm_intelligence.
7 According to Wikipedia (footnote 6), Reynold created Boid in 1986: “Boids is an artificial life program, developed by Craig Reynolds in 1986, which

simulates the flocking behaviour of birds.”
8 For example, see Google Scholar: https://scholar.google.com/scholar?q=boids+flocking+algorithm&hl=en&as_sdt=0&as_vis=1&oi=scholart

https://en.wikipedia.org/wiki/Boids
https://en.wikipedia.org/wiki/Swarm_intelligence
https://scholar.google.com/scholar?q=boids+flocking+algorithm&hl=en&as_sdt=0&as_vis=1&oi=scholart

J. Risk Financial Manag. 2021, 14, 57 6 of 22

distance (specified by the radius d) and within an angle (specified by a◦), as depicted
graphically as9:

J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 6 of 23

• ()i
tp be a vector in n space representing the position (coordinates) of the i th bird.

Finally, let (){ | 1, , }i
tF f i m= = be the collection of all birds. Define a mapping

function ()
1()ii tX f -= Ã , which returns all of () ()

1 1
j i i
t tf F f¹
- -Î - , where a radius d and an

angle a are predetermined (2 2|| , ||x y x y= + , and { , }x y is the angle between two
vectors), such that

() ()
1 1

() ()
1 1

|| , ||

|| , ||

i j i
t t

i j i
t t

v v d

p p d

¹
- -

¹
- -

<

<
 and

() ()
1 1

() ()
1 1

{ , }

{ , }

j i i
t t

j i i
t t

v v a

p p a

¹
- -

¹
- -

 =

 =
 (8)

are satisfied. In words, what (8) describes is that for any given bird i , where it is heading
depends on a reference group of birds “nearby”, described by a set of birds ()

1()ii tX f -= Ã
. These reference birds must be “nearby” in the following sense—they must be within a
distance (specified by the radius d) and within an angle (specified by a), as depicted
graphically as9:

where the circled bird is referencing three nearby birds by the angle and the radius. The
alignment and cohesion (we ignore the separation parameter for the moment) parameters
are calculated as follows10:

()
()

() () () ()
1 1 1,

() () () ()
1 1 1,

avg |

avg |

i j i j i
t t tA t

i j i j i
t t tC t

v v f X v

v p f X p

¹
- - -

¹
- - -

= Î -

= Î -
 (9)

Then, an average velocity is calculated as follows:

() () ()
,,

i i i
A Ct C tA tv w v w v= + (10)

where 1A Cw w+ = and each is positive. Finally, the velocity and the position of each
bird are updated as follows:

() () ()
1

() () ()
1

i i i
t tt

i i i
t tt

v v v

p p v

-

-

= +

= +
 (11)

As emphasized earlier, a swarm is a behavioral model which describes how birds
(ants, bees, fish) move and an artificial swarm is a mathematical (linear algebraical)

9 These reference birds are like “my leaders” for a given bird.
10 We ignore separation in our model because in our applications, particles can take the same coordinates (i.e., collision is allowed).

where the circled bird is referencing three nearby birds by the angle and the radius. The
alignment and cohesion (we ignore the separation parameter for the moment) parameters
are calculated as follows10:

v(i)A,t = avg
(

v(j 6=i)
t−1

∣∣∣ f (j)
t−1 ∈ X

)
− v(i)t−1

v(i)C,t = avg
(

p(j 6=i)
t−1

∣∣∣ f (j)
t−1 ∈ X

)
− p(i)t−1

(9)

Then, an average velocity is calculated as follows:

v(i)t = wAv(i)A,t + wCv(i)C,t (10)

where wA + wC = 1 and each is positive. Finally, the velocity and the position of each bird
are updated as follows:

v(i)t = v(i)t−1 + v(i)t

p(i)t = p(i)t−1 + v(i)t

(11)

As emphasized earlier, a swarm is a behavioral model which describes how birds (ants,
bees, fish) move and an artificial swarm is a mathematical (linear algebraical) algorithm
that imitates this natural behavior by animals. One can use an artificial swarm to solve a
number of complex problems.11

As we can see, Reynold’s boid model can be easily programmed and implemented.
For the sake of easy exposition, we shall refer to birds, ants, bees, or fish as particles for the
rest of the paper.

Particle Swarm Optimization (PSO) can be viewed as a simplified AI swarm. Its
objective is to find the global optimum. While details can be seen in the next section, the
idea of PSO is to replace nearby birds/particles with the global optimum found by all
birds/particles.

3.3. Particle Swarm Optimization

In theory, swarm intelligence is effective for optimization problems in a high-dimensional
space. PSO is such an application. The original version of PSO was first proposed by

9 These reference birds are like “my leaders” for a given bird.
10 We ignore separation in our model because in our applications, particles can take the same coordinates (i.e., collision is allowed).
11 While this is out of the scope of this paper, we encourage the readers to view a popular YouTube clip on how drones use an artificial swarm:

“Skynet’Drones Work Together for ‘Homeland Security” (https://www.youtube.com/watch?v=oDyfGM35ekc).

https://www.youtube.com/watch?v=oDyfGM35ekc

J. Risk Financial Manag. 2021, 14, 57 7 of 22

Eberhart and Kennedy (1995) who modify the behavioral model of swarm into an objective-
seeking algorithm. Similar to Reynold’s, their model “artificializes” the group behavior of
a flock of birds seeking food. Via bird-to-bird chirping (peer-to-peer communication), all
birds fly to the loudest sound of chirping. Subsequently, Eberhart and Shi (1998) improve
the model by adding an inertia term (symbolized as w later as we introduce the model)
and this has become the standard PSO algorithm used today. Setting a proper value of the
inertia term is to seek the balance between exploitation and exploration. A larger value of the
inertia term gives more weight to exploration (as the bird is more likely to fly on its own)
and a smaller value of the inertia term gives more weight to exploitation (as the bird tends
more to fly toward other birds).12

One can compare PSO to a grid search. A grid search can find the global optimum
and yet, it takes an exploding amount of time to reach such a solution, especially in a
high-dimensional space. PSO can be regarded as a “smart grid search” where each particle
performs a “stupid search” and yet, by communicating with other particles and by having
a large number of such particles, we can reach the global optimum quickly.

Imagine we would like to measure the deepest place of a lake whose bottom has an
uneven surface. A two-dimension grid search can easily find the global minimum. An
alternative would be PSO. Imagine we have a number of “fish” (particles) who swim in
the lake. At each time step, all fish will measure the depth of the lake underneath them.
Each fish is communicating with all the other fish to decide whose depth is the deepest
(minimum). All fish now remember the minimum and then they swim for another time
step. At each time step, they update the global minimum so far. If we let these fish swim
randomly for enough time, we will reach the global minimum.

In the case of the lake, we may find grid search to be more accurate and time-effective.
However, in an n-dimensional lake, grid searches become ineffective; the same num-
ber of fish may just perform the same job in the same amount of time as in the two-
dimensional lake.

Currently there have been a limited number of applications of PSO in finance, mostly
in portfolio selection. In this paper, we use it for the first time in the literature to locate
the exercise boundary of American-style derivatives (specifically, put options, options on
min/max, and Asian options).13

The PSO algorithm can be formally defined as follows. For i = 1, · · · , n particles, and
each particle is a vector of j = 1, · · · , m dimensions, we have:{ →

v i,j(t + 1) = w(t)
→
v i,j(t) + r1c1(

→
p i,j(t)−

→
x i(t)) + r2c2(

→
g (t)−→x i,j(t))

→
x i,j(t + 1) =

→
x i,j(t) +

→
v i,j(t + 1)

(12)

where
→
v i,j(t) is the velocity of the ith particle in the jth dimension at time t;

→
x i,j(t) is

position of the ith particle in the jth dimension at time t; w(t) is a “weight” (less than 1)
which decides how the current velocity will be carried over to the next period (and usually,
it is set as w(t) = αw(t− 1) and α < 1 to introduce diminishing velocity);14 and finally,
r1, r2 ∼ u(0, 1) follow a uniform distribution.

In the swam literature, w(t)
→
v i(t) is called inertia; r1c1(

→
p i(t) −

→
x i(t)) is called the

cognitive component; r2c2(
→
g (t)−→x i(t)) is called the social component. Coefficients c1

and c2 are known as acceleration coefficients.

12 Similar to PSO, an ACO (ant colony optimization) by Dorigo et al. (1991) and ACS (ant colony system) by Dorigo and Gambardella (1997) are both
based upon swarm intelligence. The first ant system was first developed by Dorigo et al. (1991) and then popularized by Dorigo and Gambardella
(1997).

13 A brief analysis of the min/max option is provided in the Appendix A.
14 The reason is that as a particle is approaching the global best, the velocity should approach 0 (i.e., the particle should no longer move at the global

optimum).

J. Risk Financial Manag. 2021, 14, 57 8 of 22

At each position, there is a “cost function” f (·) (sometimes called distance function),
at which a “cost” (or penalty) is computed. This cost function is the objective function to
be minimized (or maximized).

The global best at any given time is either the maximum or minimum value of the
objective function generated by all particles at the time:

→
g (t) = min

i

{
f (
→
p i(t))

}
(13)

and the personal best at the time is:

→
p i(t) = min

t

{
f (
→
x i(t))

}
(14)

and f (·) : Rn → R is the “fitness function”. The usual fitness function is

f (
→
x i(t)) = ‖xi − χ‖ =

J

∑
j=1

(xij − χj)
2 (15)

where χ =< χ1, · · · , χJ > is a coordinate in a J-dimensional space.
Later, we illustrate via a very simple example how the process is so easily imple-

mented.
As we can see, the algorithm (at least, the standard one presented here) of PSO is

quite different from that of a generic swarm by Reynolds (1987). Yet, they both share the
same behavioral pattern of a natural swarm. In other words, (1) both PSO and the generic
swarm are based upon peer-to-peer communication in order to achieve the objective and
(2) the particles in both PSO and the generic swarm are identical (like birds or ants) and
each particle follows its neighbor particles. The difference is just how each particle weighs
its neighbors. In PSO, each particle only cares about the global best discovered by its
neighbors; in the generic swarm, each neighbor’s position is important.

(i) Different Types of PSO

The literature on PSO is voluminous. Zhang et al. (2015) provide an excellent survey.
They classify the existing PSO literature into the following strands:15

• Modifications;16

• Population topology;17

• Hybridization;18

• Extensions;19

• Theoretical analysis;20

• Parallel implementation.21

15 PSO can also vary in terms of parameterization such as center mass (see Jamous et al. 2015).
16 This includes quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO.
17 This includes von Neumann, ring, star, random, among others.
18 This is to combine PSO with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee

colony, differential evolution, harmonic search, and biogeography-based optimization.
19 This includes multi-objective, constrained, discrete, and binary optimization.
20 This includes parameter selection and tuning, and convergence analysis.
21 This involves multi-core, multiprocessor, GPU, and cloud computing forms.

J. Risk Financial Manag. 2021, 14, 57 9 of 22

However, Zhang, Wang, and Ji only provide applications in non-financial areas.22,
23 To date, there have been a very limited number of applications in the area of finance.
Within the limited literature, most noticeable is the area of portfolio selection.24

(ii) A PSO Demonstration

As a demonstration, we use a conic function as follows:

f (x, y) = x2 + y2 (16)

The function is a cone, as shown in the top plot in Figure 2. In Figure 2a, we can
readily see how particles move toward the center of the cone, which is the global minimum.

J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 9 of 23

• Extensions;19
• Theoretical analysis;20
• Parallel implementation.21

However, Zhang, Wang, and Ji only provide applications in non-financial areas.22, 23
To date, there have been a very limited number of applications in the area of finance.
Within the limited literature, most noticeable is the area of portfolio selection.24

(ii) A PSO Demonstration

As a demonstration, we use a conic function as follows:

 2 2(,)f x y x y= + (16)

The function is a cone, as shown in the top plot in Figure 2. In Figure 2a, we can
readily see how particles move toward the center of the cone, which is the global
minimum.

19 This includes multi-objective, constrained, discrete, and binary optimization.
20 This includes parameter selection and tuning, and convergence analysis.
21 This involves multi-core, multiprocessor, GPU, and cloud computing forms.
22 They are electrical and electronic engineering, automation control systems, communication theory, operations research,

mechanical engineering, fuel and energy, medicine, chemistry, and biology.
23 Kumar et al. (2013) examines the performance of various PSO algorithms: Canonical PSO, Hierarchical PSO (HPSO), Time

varying acceleration coefficient (TVAC) PSO, Self-organizing hierarchical particle swarm optimizer with time-varying
acceleration coefficients (HPSO-TVAC), Stochastic inertia weight (Sto-IW) PSO, and Time varying inertia weight (TVIW) PSO
have been used for comparative study. These versions of PSO vary only in parameterization.

24 See Huang (2019) for a survey.

Figure 2. Cont.

22 They are electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel
and energy, medicine, chemistry, and biology.

23 Kumar et al. (2013) examines the performance of various PSO algorithms: Canonical PSO, Hierarchical PSO (HPSO), Time varying acceleration
coefficient (TVAC) PSO, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients (HPSO-TVAC), Stochastic
inertia weight (Sto-IW) PSO, and Time varying inertia weight (TVIW) PSO have been used for comparative study. These versions of PSO vary only
in parameterization.

24 See Huang (2019) for a survey.

J. Risk Financial Manag. 2021, 14, 57 10 of 22J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 10 of 23

(a)

Figure 2. Cont.

J. Risk Financial Manag. 2021, 14, 57 11 of 22
J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 11 of 23

(b)

Figure 2. (a) Function (16). (b) Function (17). For an animated demonstration, see for example,
https://en.wikipedia.org/wiki/Particle_swarm_optimization#/media/File:ParticleSwarmArrowsAnimation.gif.

Another function, as follows, has multiple local minima.
2 2

(,) cos[]cos 1
4000 2
x y x

f x y x
+ é ù= - +ê úë û

 (17)

Results are shown in Figure 2b.
The major advantage of PSO is that it is particularly good for problems with many

local optima, as we can see in Figure 2b. However, in this situation, the convergence of
the swarm is slower, and each particle needs to “work harder” to identify the global
minimum, since there are many local minima.

Another advantage of PSO is its superior capability to find the global optimum when
the objective function is discrete. In Huang (2019), PSO is applied on the maximization of
the Sortino ratio. Different from the Sharpe ratio, the Sortino ratio only concerns the
“down-side risk” and as a result, the ratio is not a continuous function of the portfolio
weights.

Thirdly, PSO is insensitive to initial value. However, given the heuristic nature of
PSO (or any AI-based optimization), accuracies are not as good as competing parametric
methods. As a result, PSO is best used in high-dimensional problems where parametric
methods fail. In this paper, we demonstrate how PSO can be used in evaluating complex
derivatives. These complex derivatives usually require optimization through a high-

Figure 2. (a) Function (16). (b) Function (17). For an animated demonstration, see for example, https://en.wikipedia.org/
wiki/Particle_swarm_optimization#/media/File:ParticleSwarmArrowsAnimation.gif.

Another function, as follows, has multiple local minima.

f (x, y) =
x2 + y2

4000
− cos[x] cos

[
x√
2

]
+ 1 (17)

Results are shown in Figure 2b.
The major advantage of PSO is that it is particularly good for problems with many

local optima, as we can see in Figure 2b. However, in this situation, the convergence of the
swarm is slower, and each particle needs to “work harder” to identify the global minimum,
since there are many local minima.

Another advantage of PSO is its superior capability to find the global optimum when
the objective function is discrete. In Huang (2019), PSO is applied on the maximization
of the Sortino ratio. Different from the Sharpe ratio, the Sortino ratio only concerns the
“down-side risk” and as a result, the ratio is not a continuous function of the portfolio
weights.

Thirdly, PSO is insensitive to initial value. However, given the heuristic nature of PSO
(or any AI-based optimization), accuracies are not as good as competing parametric meth-
ods. As a result, PSO is best used in high-dimensional problems where parametric methods
fail. In this paper, we demonstrate how PSO can be used in evaluating complex derivatives.
These complex derivatives usually require optimization through a high-dimensional search,

https://en.wikipedia.org/wiki/Particle_swarm_optimization#/media/File:ParticleSwarmArrowsAnimation.gif
https://en.wikipedia.org/wiki/Particle_swarm_optimization#/media/File:ParticleSwarmArrowsAnimation.gif

J. Risk Financial Manag. 2021, 14, 57 12 of 22

which leads to failures (or highly inaccurate estimates) by the parametric methods. For the
sake of easy exposition, we demonstrate simple American-style options such as put, put
on min/max, and Asian options.

4. American-Style Derivative Pricing

As mentioned earlier, once the exercise boundary can be correctly specified, one can
perform Monte Carlo simulations to solve for American-style derivative prices. Moreover,
with this capability, one can further solve path-dependent options which are impossible
to be solved by lattice models. Also mentioned earlier is the difficulty, admitted in the
literature, of how to identify such a truly free exercise boundary. In this section, we
demonstrate how to take advantage of PSO to achieve this goal. In PSO, there is no need
to specify any functional form for the exercise boundary. Particles will collectively set
the exercise boundary with no constraints, which in theory gives the best American-style
derivative value.

We first demonstrate a simple American put option on one and two assets where there
are accurate estimates via a lattice model. Then, we demonstrate a path-dependent option
(Asian option) that cannot be evaluated easily by lattice models.

4.1. Univariate

We first demonstrate how PSO is used in a simple American put option without
dividends. In this simple example, we can have the lattice result (binomial model) as the
benchmark. With the help of the binomial model, we can clearly see the exercise boundary
of the option. The input information to the American put option is as follows:

Scheme 100. 100
strike price 100
volatility 0.3
risk-free rate 0.03
time to maturity 1
time steps 100
Monte Carlo paths 10,000

Given that the binomial model and the PSO use the same number of time steps, we
caution that the binomial model does not provide accurate enough results due to not
having enough steps (only 100).25

We use PSO to evaluate various boundary specifications. Specifically, for any given
boundary specification (i.e., flat, linear, exponential, piecewise flat, and restricted piecewise
flat), we maximize Equation (7) over

max
Θ

ξ(t) (18)

where Θ represents the set of parameters of the boundary function and ξ(t) is the option
value defined in Equation (7):

ξ(t) =
1
N

N

∑
j=1

e−rτj max
{

K− B(τj), 0
}

For example, in the linear boundary case, Θ = {a0, a1}. Hence, Equation (18) is a
two-dimensional search. Note that B(τj) is the boundary value of the jth path at time τj.
Take a concrete example. Given a boundary specification (e.g., linear B(t) = a0 + a1t), τ5
(the fifth path) could be time step 26, and τ42 (the forty-second path) could be time step

25 Certainly, we can increase the number of periods in the binomial model to achieve more accurate American values; however, this is not our main
focus.

J. Risk Financial Manag. 2021, 14, 57 13 of 22

74.26 The boundary values are consequently B(τ5) = a0 + a1T26 and B(τ42) = a0 + a1T74.
In other words, at the fifth path of Monte Carlo, the option is exercised early at step 26, and
the exercise value is equal to K− B(τ5) = K− (a0 + 0.26a1). Similarly, at the forty-second
path of the Monte Carlo, the option is exercised early at step 74, and the exercise value is
K− B(τ42) = K− (a0 + 0.74a1).

Note that in the piecewise flat boundary case, there is no formula, and each time
period has its own boundary value. In this case, Θ = {B1, · · · , B100} and Equation (18) is a
100-dimension search. In PSO, each particle is labeled with 100 coordinates. The particles
communicate with one another to update their coordinates (global best) at each iteration.
Iterations stop when all particles converge to the same set of coordinates and Equation (18)
is maximized.

We compare different boundary conditions. The results are given in Table 1.

Table 1. American put results taken from crr3d.xls. The option payoff is: max{K− S} , 0}.

stock price 100
strike price 100
volatility 0.3
risk-free rate 0.03
time to maturity 1
time steps 100
Monte Carlo paths 10,000

Put Option

European American

Black–Scholes 10.3278 N.A

binomial (CRR) 10.2984 10.5917

Longstaff–Schwartz 10.3656 10.6217

PSO-flat 10.3656 10.5591

PSO-linear 10.3656 10.5621

PSO-exponential 10.3656 10.6647

PSO-piecewise 10.3656 10.7714

PSO-piecewise(restricted) 10.3656 10.6908
Note: Monte Carlo results are based upon 10,000 paths and 100 time steps. The Longstaff–Schwartz model (1991)
uses a quadratic function in the regression. The PSO uses a swarm size of 500. The two parameters of the PSO are
(Equation (12)): w = 0.5, c1 = 0.5 and c2 = 0.5. The computation stops when the improvement of the value is less
than 10−6. The binomial model is from Cox et al. (1979) and is performed with 100 time steps. The performance
of PSO is provided in Table 4.

The European value is 10.3656 by the Monte Carlo method, which is a little higher than
the true value of 10.3278 by the Black–Scholes model. The binomial value for the European
option is 10.2984, which is lower than the Black–Scholes value. Hence, we can infer that
the American value, which is 10.5917 by the binomial model, should be underestimated.
Thus, we can view the binomial value as a lower bound.

The piecewise PSO value is 10.7714, which is the highest American value, as expected
as it imposes no restriction. The restricted (monotonically) piecewise PSO value is the next
highest at 10.6908. Given that the true exercise boundary is very close to an exponential
function (provided later in Figure 3), the exponential boundary result of 10.6647 should be
very close to the true value.

26 Note that time step 100, or T100, is equal to the maturity time, which is 1 (year) in the example. Hence, T26 = 0.26 and T74 = 0.74.

J. Risk Financial Manag. 2021, 14, 57 14 of 22

J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 14 of 23

function (provided later in Figure 3), the exponential boundary result of 10.6647 should
be very close to the true value.

The Longstaff–Schwartz value (regression, which uses Equation (5)) is 10.6217, which
is lower than the above three results but higher than the linear boundary result of 10.5621
and the flat boundary result of 10.5591. These results seem reasonable.

We then compare the exercise boundaries from the various specifications and
compare them to the “true exercise boundary” implied by the binomial model. The
exercise boundary is plotted in Figure 3.

Figure 3. Various exercise boundaries.

Figure 3 it is clear that the exercise boundaries implied by the binomial, exponential, and
piecewise-monotonic cases are close to one another. The unrestricted piecewise boundary is
also close if we ignore the low values but only focus on the high values. The unrestricted
piecewise boundary oscillates but clearly those low values have little impact on the valuation
(as we can see from the result that this boundary yields the highest American-style derivative
value in Table 1). The flat and linear boundaries perform poorly (Table 1) as no surprise as
they are far from the correct boundary.

Clearly, both PSO and binomial algorithms can be improved. First, the zigzag form
of the binomial boundary is disturbing.27 This could be due to insufficient number of
periods (which confirms the slow convergence of the binomial model). Second, there are
a substantial number of low values (at 60) by the unrestricted piecewise boundary. It is
clear that these values are bad values and yet it does not impact the valuation much, which
indicates that the exercise boundary does not need to be granular. This is a numerical issue
worthy of further investigation. Yet it is future research and beyond the scope of the
current paper.

4.2. Multivariate
There are a number of multivariate lattice models. In principle, the challenge in

building such a multi-dimensional lattice is the exploding memory usage and
computation time. In the simplest case where all assets are uncorrelated, the number of
nodes necessary for the lattice is ((1) 1)nm t- + , where m is the number of economic
states for any given asset, n is the number of assets, and t is the number of time steps

27 As mentioned in footnote 25, we can increase the number of steps in the binomial model to smooth the exercise boundary further.

50

55

60

65

70

75

80

85

90

95

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101

flat

linear

exponential

piece-wise

piece-wise(mono)

binomial

Figure 3. Various exercise boundaries.

The Longstaff–Schwartz value (regression, which uses Equation (5)) is 10.6217, which
is lower than the above three results but higher than the linear boundary result of 10.5621
and the flat boundary result of 10.5591. These results seem reasonable.

We then compare the exercise boundaries from the various specifications and com-
pare them to the “true exercise boundary” implied by the binomial model. The exercise
boundary is plotted in Figure 3.

Figure 3 it is clear that the exercise boundaries implied by the binomial, exponential,
and piecewise-monotonic cases are close to one another. The unrestricted piecewise
boundary is also close if we ignore the low values but only focus on the high values.
The unrestricted piecewise boundary oscillates but clearly those low values have little
impact on the valuation (as we can see from the result that this boundary yields the highest
American-style derivative value in Table 1). The flat and linear boundaries perform poorly
(Table 1) as no surprise as they are far from the correct boundary.

Clearly, both PSO and binomial algorithms can be improved. First, the zigzag form
of the binomial boundary is disturbing.27 This could be due to insufficient number of
periods (which confirms the slow convergence of the binomial model). Second, there are
a substantial number of low values (at 60) by the unrestricted piecewise boundary. It is
clear that these values are bad values and yet it does not impact the valuation much, which
indicates that the exercise boundary does not need to be granular. This is a numerical
issue worthy of further investigation. Yet it is future research and beyond the scope of the
current paper.

4.2. Multivariate

There are a number of multivariate lattice models. In principle, the challenge in
building such a multi-dimensional lattice is the exploding memory usage and computation
time. In the simplest case where all assets are uncorrelated, the number of nodes necessary
for the lattice is ((m− 1)t + 1)n, where m is the number of economic states for any given
asset, n is the number of assets, and t is the number of time steps in the lattice. For example,
in a trinomial lattice, using 100 time steps to evaluate a three-asset derivative requires over
8 million nodes at maturity.28

Another challenge for building a multivariate lattice is the difficulty in incorporating
the number of pair-correlations of assets. In other words, it is not possible to match the
number of equations (i.e., branches) and the number of unknowns (i.e., correlation pairs).29

27 As mentioned in footnote 25, we can increase the number of steps in the binomial model to smooth the exercise boundary further.
28 For 4 assets, it requires over 1.6 billion nodes.
29 This problem has been solved by Chen et al. (2002). Later, we adopt their model as the benchmark for options on multiple assets.

J. Risk Financial Manag. 2021, 14, 57 15 of 22

In the simplest case where assets are independent, we need 2n branches (where n is the
number of assets) in each time step. In order to incorporate correlation, Boyle (1988)
and then, modified by Kamrad and Ritchken (1991), devised a five-branch model. The
corner branches have the same stock prices as before and the middle branch assumes
the same stock prices as the current. By matching moments, there are six equations and
five unknowns. Hence, the solution is not so straightforward. Boyle (1988) shows that
the usual binomial setup with two assets X and Y,30 that is, Xu = X0uX = X0eσX

√
∆t and

Xd = X0dX = X0e−σX
√

∆t and similarly, for Y. Due to the mismatch of equations and
unknowns, the assumption must be altered to uX = eλσX

√
∆t and uY = eλσY

√
∆t, where λ is

a free parameter so that this can be solve for one stock first and then, the solution to the
second stock can be searched for.

The second model by Boyle et al. (1989) is a four-branch model. As we can see, if
we use four branches (i.e., four equations), we will not be able to match unknowns and
equations. Hence, Boyle, Evnine, and Gibbs turn to characteristic functions. They note that
the above probabilities can all be nonnegative only if the time step becomes sufficiently
small. Hence, this method is not very efficient.

Finally is the model by Chen et al. (2002). Their model is based upon complete
markets. In a complete market, the number of nodes does not grow exponentially but
factorially, which saves both computation time and memory usage. Furthermore, the
complete market setting is consistent with the binomial model in a single asset case and as
a result, risk-free no-arbitrage can be established. In other words, like the binomial model,
the Chen–Chung–Yang model is not just a numerical algorithm as with Boyle (1988), Boyle
et al. (1989), and Kamrad–Ritchken, but also an economic model.

In the complete market setting, Chen et al. (2002) discovered that the number of
branches in each time step exactly matches the number of equations. Consequently, one
can easily solve for the probabilities as in the binomial model. While the readers can find
all the details in their original paper, in the Appendix, we excerpt a two-asset example
where the two-dimensional “binomial tree” can be visualized.

We evaluate the following put option (note that the call option will never be exercised
early):

Vτ = max{K−max{S1τ , S2,τ}, 0} (19)

with the parameters of the two stocks given as:

asset 1 asset 2
price 40 40
volatility 0.2 0.3
strike 35
time to maturity 7/12
risk free rate 0.03
correlation 0.5

Implementing the PSO algorithm, we recognize that there is a certain relationship
between functions B1,τ and B2,τ . For example, it could be: B1,τ = a + bB2,τ (linear) or
a2B2

1,τ + b2B2
2,τ = c2 (elliptical/concave), where a, b, and c are arbitrary constants, along

with B2,τ to be decided by PSO. In the current execution, we assume B1,τ and B2,τ to be
independent.

The results are given in Table 2. In Table 2, we also implement the Longstaff–Schwartz
model with the following quadratic regression (compared to Equation (5)):

ξt+1 = a0 + a11S1t + a12S2
1t + a21S2t + a22S2

2t + a3S1tS2t (20)

30 We assume the readers are fairly familiar with the standard binomial model of Cox et al. (1979). The notation used here is quite standard (e.g., Hull
2015) and straightforward.

J. Risk Financial Manag. 2021, 14, 57 16 of 22

Table 2. Put option on Min/Max. The option payoff is max{K−max{S1, S2}, 0}.

asset 1 asset 2
price 40 40
volatility 0.2 0.3
strike 35
time to maturity 7/12
risk free rate 0.03
correlation 0.5

Min/Max Option

European American

BS 0.1948 N.A

binomial (CCY) 0.1884 0.2557

Longstaff–Schwartz 0.1974 0.2386

PSO-flat 0.1974 0.2318

PSO-linear 0.1974 0.2349

PSO-exponential 0.1974 0.2361

PSO-piecewise 0.1974 0.2426

PSO-piecewise(restricted) 0.1974 0.2352
Note: Monte Carlo results are based upon 10,000 paths and 100 time steps. The Longstaff–Schwartz model (1991)
uses a quadratic function in the regression. The PSO uses a swarm size of 500. The two parameters of the PSO are
(Equation (12)): w = 0.5, c1 = 0.5 and c2 = 0.5. The computation stops when the improvement of the value is less
than 10−6. The binomial model is Chen et al. (2002) and is performed with 100 time steps. The performance of
PSO is provided in Table 4.

Similar to Table 1, we find the PSO results and the Longstaff–Schwartz result to be
very close to each other. The Black–Scholes European value is 0.1948 and the binomial
American value (i.e., the Chen–Chung–Yang model) is 0.2557 with a European value as
0.1884. Hence, we know that the American value by the binomial model is underestimated.

The Monte Carlo European value is 0.1974, which is close to the Black–Scholes value.
The Longstaff–Schwartz value is 0.2386, which is lower than the binomial value. Among all
PSO values, again, the unrestricted piecewise boundary yields the highest value of 0.2426,
followed by the exponential boundary of 0.2361. The flat boundary continues to be the
worst case at a value of 0.2318. It is quite surprising to see that the exponential boundary
yields a higher option value than the piecewise monotonic boundary of 0.2352.

4.3. Path-Dependent

The lattice approach for the valuation of American-style derivatives does not apply to
those contracts whose payoffs depend on past values (i.e., path-dependent options). On
the other hand, Monte Carlo simulations are good for European path-dependent options.
Yet, there has been no good approach to evaluate American path-dependent options.

Asian (Averaging) Option

We use the simple Asian option as a demonstration. An Asian option is an option
whose payoff depends on a historical average (arithmetic or geometric, weighted or un-
weighted) of past values of the underlying asset. As a result, an Asian option cannot be
evaluated using the standard lattice method, in that a lattice does not keep track of the
historical values of the underlying asset. As a result, a Monte Carlo algorithm must be
employed. However, the Monte Carlo method cannot evaluate American-style options. As
a result, evaluating American-style Asian options remains a challenge.

To date, there has been no other alternative to the Longstaff and Schwartz (2001)
model which provides an approximation value to the American-style Asian option. In this
paper, a more superior alternative, using PSO, is proposed.

J. Risk Financial Manag. 2021, 14, 57 17 of 22

First, we have to turn the valuation to a free-boundary problem. As discussed earlier,
PSO is suitable to evaluate any free-boundary valuation problem. An American-style Asian
option has the following payoff:

Vτ = max{Aτ − K, 0} (21)

where τ is the (early) exercise date and

Aτ =
1
n

n−1

∑
i=0

Sτ−i

is the average of the stock price (in this example, the average is arithmetic). An American-
style Asian option is to compare the above exercise value against the continuation value.
This nature, which is same for all American options, now is applicable to Asian options. In
other words, there exists a critical value touching which triggers the early exercise. Hence,
we can now use PSO to locate the exercise boundary.

Note that now the exercise boundary is located along the averaging value path Aτ . In
Monte Carlo simulations, this can be handled along each path with no difficulty. Valuation
can be performed on Aτ just as it is on St. The results are in Table 3.

Table 3. Path-dependent Asian Option. Payoffs max
{

K− S(T1, T2), 0
}

, where S = 1
n ∑n

j=1 Sj.

Average Option

European American

Longstaff–Schwartz 9.0109 9.2415

PSO-flat 9.0109 9.0117

PSO-linear 9.0109 9.0117

PSO-exponential 9.0109 9.0117

PSO-piecewise 9.0109 9.1925

PSO-piecewise(restricted) 9.0109 9.1912
Note: Monte Carlo results are based upon 10,000 paths and 100 time steps. The Longstaff–Schwartz model (2001)
uses a quadratic function in the regression. The PSO uses a swarm size of 500. The two parameters of the PSO are
(Equation (12)): w = 0.5, c1 = 0.5 and c2 = 0.5. The computation stops when the improvement of the value is less
than 10−6. The binomial model is performed with 100 time steps. The performance of PSO is provided in Table 4.

There is no closed-form solution to the European-style Asian option evaluated here,
nor is there a benchmark American value by the lattice model. Without knowing a bench-
mark, we cannot assess the accuracy of various PSO results and the Longstaff–Schwartz
result. Hence, Table 3 can only provide a comparison between the results by Longstaff–
Schwartz and PSO.

First, we can see that flat, linear, and exponential boundaries can hardly be accurate
in that they generate an identical value to the American-style derivative (9.0117) which is
very close to the European value (9.0109). Secondly, piecewise boundaries, restricted and
unrestricted, both provide substantially higher values than the other three cases—9.1912
and 9.1925, respectively. This indicates that we obtain a substantially higher value once the
boundary function is flexible. Lastly, the Longstaff–Schwartz value is the highest (9.2415)
and yet, it is unclear if their value overestimates or underestimates the true value. Hence,
it is unable to assess the performance in this situation.

4.4. Computational Efficiency

In this section, we examine the issue of computation efficiency. In general, AI-based
algorithms are not fast. As a result, computational efficiencies can be gained only in high
dimensions. This is because the increase in dimensionalities and the increase in particles
are both linearly proportional to computation time. This is sharply different from the

J. Risk Financial Manag. 2021, 14, 57 18 of 22

traditional methods that suffer the well-known “dimensionality curse” where the increase
in dimensions results in exploding computational time. As a result, there is no benefit in
using an AI-based model in low dimensions.

Table 4 presents the results of (A) a simple American put option and (B) an American
put option on two assets in various simulations. For 100 particles, the computation time
ranges from 25.10 to 46.88 s (with different seeds). Note that there is no clear relationship
between the accuracy of values and speed. The fastest seed (#3143) takes 25.10 s but
produces the second highest value; while the slowest seed (#41675) takes 46.88 s but
produces the third highest value.

Table 4. Performance of PSO.

(A) Put Option (1-asset)

Value ($)
Seed 69,905 80,302 8249 26,795 967 12,128 81,917 26,488 3143 41,675 Mean Max Min

Swarm
Size
50 10.0368 9.7001 10.2470 10.1109 9.8039 10.1586 10.2712 10.5006 9.3164 9.4168 9.9562 10.5006 9.3164
100 10.0388 10.4329 9.2902 10.0156 10.5760 10.2345 10.5512 10.2584 9.8404 9.7683 10.1006 10.5760 9.2902
200 10.0744 9.7776 9.8149 10.5076 10.3039 10.6329 10.0999 10.7066 10.5164 9.8415 10.2276 10.7066 9.7776
500 10.5811 10.0202 10.5791 10.7459 10.7074 10.5237 10.4950 10.6977 10.7714 10.4127 10.5534 10.7714 10.0202

Computation Time (seconds)
Seed 69,905 80,302 8249 26,795 967 12,128 81,917 26,488 3143 41,675 Mean Max Min

Swarm
Size
50 19.6829 18.8187 18.8304 18.5710 18.3021 18.9599 18.8633 19.2746 18.8743 19.0645 18.9242 19.6829 18.3022
100 37.3748 36.9218 38.1397 36.7419 37.8845 37.1103 37.9693 37.1976 37.7589 37.7402 37.4839 38.1397 36.7419
200 75.1492 75.1461 77.2891 75.0346 74.6849 75.8589 76.6391 73.8078 76.6213 73.0110 75.3242 77.2891 73.0110
500 186.9830 185.8080 178.4430 182.4440 186.9290 185.8810 184.2930 183.5500 185.3380 178.0620 183.7732 186.9831 178.0624

(B) Min/Max Option (2-asset)

Value ($)
Seed 69,905 80,302 8249 26,795 967 12,128 81,917 26,488 3143 41,675 Mean Max Min

Swarm
Size
50 0.2268 0.2358 0.2350 0.2368 0.2374 0.2347 0.2383 0.2393 0.2257 0.2353 0.2345 0.2393 0.2257
100 0.2334 0.2344 0.2398 0.2379 0.2364 0.2342 0.2342 0.2381 0.2384 0.2382 0.2365 0.2398 0.2334
200 0.2383 0.2380 0.2368 0.2315 0.2374 0.2335 0.2338 0.2387 0.2409 0.2320 0.2361 0.2409 0.2315
500 0.2359 0.2342 0.2366 0.2412 0.2413 0.2426 0.2414 0.2392 0.2416 0.2362 0.2390 0.2426 0.2342

Computation Time (seconds)
Seed 69,905 80,302 8249 26,795 967 12,128 81,917 26,488 3143 41,675 Mean Max Min

Swarm
Size
50 10.7312 20.6707 20.5986 20.5549 20.7069 16.1223 20.6824 20.6649 6.97153 20.7073 17.8411 20.7073 6.9715
100 41.1003 44.5624 45.634 41.0282 41.201 40.7916 41.1614 40.6881 25.1049 46.8837 40.8156 46.8837 25.1049
200 87.6694 73.1363 78.1617 83.9155 86.7515 73.6531 81.172 86.2793 81.5649 40.9068 77.3211 87.6694 40.9068
500 203.568 202.788 219.504 229.666 222.398 202.404 210.968 203.651 207.758 202.525 210.5230 229.6660 202.4040

Note: The two parameters of the PSO are (Equation (12)): w = 0.5, c1 = 0.5 and c2 = 0.5. The computation stops when the improvement of
the value is less than 10−6. The Longstaff–Schwartz value is 0.2386 (Table 2). The binomial model value is 0.2557 (Table 2).

We have the following observations. First, given the heuristic nature of PSO, we
provide results with various Monte Carlo seeds. As we can see, the variation in results is
non-trivial. Different Monte Carlo paths affect the results quite substantially. Fortunately,
we can observe a pleasant pattern in mean (average across seeds), max (maximum across
seeds), and min (minimum across seeds). In these results, more particles (higher swarm
size) do take longer to compute and do converge to more accurate results (option values).

Secondly, and more interestingly, we do not find differences in computation times
between Panel A, which is the option on the single asset and Panel B, which is the option
on two assets. This confirms the conjecture that PSO is not significantly affected by the
number of assets. This is drastically different from previous models where dimensionality
matters. For example, for a swarm size of 100, the mean computation times are 37.48 s for
one asset and 40.82 s for two assets.

J. Risk Financial Manag. 2021, 14, 57 19 of 22

Lastly, note that one of the advantages of PSO is that computation time is linearly
related to swarm size (number of particles). Hence, to increase accuracy, we can simply
increase the swarm size, and the cost only increases linearly. For example, the average
speed for a swarm size of 50 is 20.71 s and for a swarm size of 500 is 229.67 which is roughly
10 times more (and similarly, a swarm size of 100 is roughly double (46.88 s) and a swarm
size of 200 is four times (87.67 s)).

5. Conclusions

In this paper, we demonstrate how complex (multi-asset or path-dependent) American-
style derivatives can benefit from an artificial intelligent tool—PSO (particle swarm op-
timization). These options are otherwise nearly impossible to evaluate accurately and
efficiently. In other words, PSO is particularly suitable for evaluating these complex
derivatives.

PSO is an optimization tool particularly suitable for high-dimensional problems.
Compared to other optimization tools (e.g., stochastic gradient descent), PSO is intelligence-
based. One can regard PSO (or any intelligence-based tools such as genetic algorithms
and neutral networks) as “non-parametric”, and other optimization tools (e.g., stochastic
gradient descend) as “parametric”. This analogy points out that PSO has more flexibility
and can more likely find the better value.

Another extraordinary advantage of PSO is its capability in parallel computing. In
other words, PSO can be GPU-ized (graphic processing unit). This indicates that the
computation time of PSO can be infinitely minimized (by adding GPUs). Experiments on
GPU computation are beyond the scope of this paper.

We also discover, presented in Table 4, PSO is quite sensitive to Monte Carlo paths.
Particles behave quite differently in a different environment. This opens the door for
another future research work.

Author Contributions: R.-R.C. and J.H. jointly developed the idea using PSO to price American
options. R.Y. helped derive the exercise boundaries in complex options. W.H. contributed in
experimenting various PSO varieties. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. American Call Option on Min/Max Will Never be Exercised Early

Jansen’s Inequality states that if f (x) is a convex function, then f (E[x]) ≤ E[f (x)] and
vice versa. Hence, the American call option will never be exercised early. It is well-known
that the simple call option’s continuation value is always greater than the exercise value:

e−r∆tE[max{ST − K, 0}] ≥ e−r∆tmax{E[ST]− K, 0}
= max

{
e−r∆tE[ST]− e−r∆tK, 0

}
> max{ST−1 − K, 0}

In addition, the exchange option will never be exercised.

e−r∆tE[max{S1,T − S2,T , 0}] ≥ e−r∆tmax{E[S1,T]− E[S2,T], 0}
= max

{
e−r∆tE[S1,T]− e−r∆tE[S2,T], 0

}
= max{S1,T−1 − S2,T−1, 0}

J. Risk Financial Manag. 2021, 14, 57 20 of 22

Finally, the min/max call option will never be exercised:

e−r∆tE[max{max{S1,T , S2,T} − K, 0}] ≥ e−r∆tmax{E[max{S1,T , S2,T}]− K, 0}
≥ e−r∆tmax{max{E[S1,T], E[S2,T} − K, 0}

> max{max{S1,T−1, S2,T−1} − K, 0}

Appendix A.2. Option on Min/Max

The closed-form solution to the put option on min/max can be derived from the call op-
tion solutions provided by Stulz (1982). Our objective is to derive the closed-form solution
to P = max{K−max{S1, S2}, 0} from the Stulz solution to C = max{max{S1, S2} − K, 0}.
The following payoff analysis demonstrates that:

C =
max{max{S1, S2} − K, 0}

P =
max{K−max{S1, S2}, 0}

C− P

S1 > S2 max{S1 − K, 0} max{K− S1, 0} S1 − K
S1 < S2 max{S2 − K, 0} max{K− S2, 0} S2 − K

max{max{S1, S2} − K, 0} max{K−max{S1, S2}, 0} max{S1, S2} − K

As a result, we have:

C(T)− P(T) = max{S1(T), S2(T)} − K
= S2(T) + max{S1(T)− S2(T), 0} − K

Given that this is a European option, we can discount it back to today and have:

P(t) = C(t)− S2(t)− X(S1, S2) + e−r(T−t)K

where X(S1, S2) is the standard exchange option. Stulz presents the call option on max/max
as follows:

max{max{S1, S2} − K, 0} = CBS(S1) + CBS(S2)−M(S1, S2)

where S1 and S2 are the two underlying assets, CBS(·) is the Black–Scholes call option on a
given underlying asset, and M(S1, S2) is given as:

M(S1, S2) = max{min{S1, S2} − K, 0}
= S1N2(a1, b1; ρ1) + S2N2(a2, b2; ρ2)− Ke−r(T−t)N2(g1, g2, ρ12)

where
aj = gj + σj

√
T − t

b1 =
ln S1−ln S2− 1

2 σ2(T−t)
σ
√

T−t

b2 =
ln S2−ln S1− 1

2 σ2(T−t)
σ
√

T−t

gj =
ln Sj − ln K + (r− 1

2 σ2
j (T − t))

σH
√

T − t

ρ1 = ρ12σ1−σ2
σ

ρ2 = ρ12σ2−σ1
σ

σ2 = σ2
1 + σ2

2 − 2ρ12σ1σ2

and ρ12 is the correlation between S1 and S2.

Appendix A.3. Illustration of the Chen–Chung–Yang Model

Here, we illustrate how to implement the Chen–Chung–Yang model to evaluate
American-style derivatives on multiple assets. A geometrical demonstration is provided
for the two-asset case as follows:

J. Risk Financial Manag. 2021, 14, 57 21 of 22

In the above demonstration, as we travel along the lattice forward, the number of
nodes increases in the following geometric series: j = (i+1)(i+2)

2! , where i = 1, 2, · · · , n as
the time steps of the lattice. The general case for m number of assets is: j = 1

m! Π
m
k=1(i + k)

as in the following table:31

num of assets m = 1 m = 2 m = 3 . . . m = m
i j j j j
0 1 1 1 1
1 2 3 4 5
2 3 6 10 15
3 4 10 20 35

. . .
n n + 1 (n+1)(n+2)

2!
(n+1)(n+2)(n+3)

3! . . . ∏m
k=1(n+k)

m!

To implement the model as described in Figure A1, we index the states as follows
(where the first subscript is time and the second is state):

J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 22 of 23

the time steps of the lattice. The general case for m number of assets is:
1

1! ()m
kmj i k== P + as in the following table:31

num of
assets

m = 1 m = 2 m = 3 ... m = m

i j j j j

0 1 1 1 1

1 2 3 4 5

2 3 6 10 15

3 4 10 20 35

...

n 1n + (1)(2)
2!

n n+ + (1)(2)(3)
3!

n n n+ + + ... 1
()

!

m

k
n k

m
=

+

To implement the model as described in Figure A1, we index the states as follows
(where the first subscript is time and the second is state):

Figure A1. A two-asset Chen–Chung–Yang Model.

01 01x yé ù
ê úë û

11 11

12 12

13 13

x y

x y

x y

é ù
ê ú
ê ú
ê ú
ê ú
ê úë û

21 21

22 22

23 23

24 24

25 25

26 26

x y

x y

x y

x y

x y

x y

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

In a general case where we move from any time i to time 1i + , state j will
become 0 1 2, ,j j j< > as follows:

0

1

2

(1,)

(,) (1,)

(1,)

i j

i j i j

i j

ìï +ïïïï +íïïï +ïïî

31 Note that even in the simplest independence case, the number of nodes at the time step n is (1)mn + . For example, for three

periods, a four-asset model has 256 nodes as opposed to 35 nodes in the CCY model.

<x1, y1>

<x3, y3>

<x2, y2>
<x, y>

Figure A1. A two-asset Chen–Chung–Yang Model.

[
x01 y01

] x11 y11
x12 y12
x13 y13

x21 y21
x22 y22
x23 y23
x24 y24
x25 y25
x26 y26

In a general case where we move from any time i to time i + 1, state j will become

< j0, j1, j2 > as follows:

(i, j)→

(i + 1, j0)
(i + 1, j1)
(i + 1, j2)

where
j0 = j

j1 = i(i+1)
2 + k

j2 = j1 + 1

As i = 1 ∼ n, we have:

j =
{

(i−1)i
2 + 1

}
∼
{

i(i+1)
2

}
k = k + 1 (1 ∼ i)

31 Note that even in the simplest independence case, the number of nodes at the time step n is (n + 1)m. For example, for three periods, a four-asset
model has 256 nodes as opposed to 35 nodes in the CCY model.

J. Risk Financial Manag. 2021, 14, 57 22 of 22

References
Boyle, Phelim P. 1988. A Lattice Framework for Option Pricing with Two State Variables. Journal of Financial And Quantitative Analysis

23: 1–12. [CrossRef]
Boyle, Phelim P., Jeremy Evnine, and Stephen Gibbs. 1989. Numerical Evaluation of Multivariate Contingent Claims. The Review of

Financial Studies 2: 241–50. [CrossRef]
Carr, Peter. 1998. Randomizing and the American Put. Review of Financial Studies 11: 597–626. [CrossRef]
Carr, Peter, Robert Jarrow, and Ravi Myneni. 2008. Alternative Characterizations of American Put Options. Financial Derivatives Pricing

2: 85–103.
Chen, Ren-Raw, San-Lin Chung, and Tyler T. Yang. 2002. Option Pricing in a Multi-Asset, Complete Market Economy. The Journal of

Financial and Quantitative Analysis 37: 649–66. [CrossRef]
Cox, John C., Stephen A. Ross, and Mark Rubinstein. 1979. Option Pricing, a Simplified Approach. Journal of Financial Economics 7:

229–63. [CrossRef]
Dorigo, Marco, and Luca Maria Gambardella. 1997. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman

Problem. IEEE Transactions on Evolutionary Computation 1: 53–66. [CrossRef]
Dorigo, Marco, Vittorio Maniezzo, and Alberto Colorni. 1991. Ant System: An Autocatalytic Optimizing Process. Technical Report.

Milano: Politecnico di Milano Department of Electronics, pp. 91–016.
Eberhart, Russell C., and James Kennedy. 1995. A New Optimizer Using Particle Swarm Theory. Paper presented at the Sixth

International Symposium on Micro Machine and Human Science, Nagoya, Japan, October 4–6.
Eberhart, Russell C., and Yuhui Shi. 1998. A Modified Particle Swarm Pptimizer. Paper presented at 1998 IEEE International Conference

on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage,
AK, USA, May 4–9.

Huang, Kaihua. 2019. Particle Swarm Optimization Central Mass on Portfolio Construction. New York: Gabelli School of Business, Fordham
University.

Hull, John. 2015. Options, Futures and Other Derivatives. Upper Saddle River: Prentice Hall.
Jamous, Razan A., Al-Aguizy Tharwat, Essam El Seidy, and Bayoumi Ibrahim Bayoumi. 2015. A New Particle Swarm with Center of

Mass Optimization. International Journal of Engineering Research and Technology 4: 312–17.
Kamrad, Bardia, and Peter Ritchken. 1991. Multinomial Approximating Models for Options with k State Variables. Management Science

37: 1640–52. [CrossRef]
Kumar, Sajjan, Susmita Sau, Diptendu Pal, Bhimsen Tudu, Swadhin K. Mandal, and Nilanjan Chakraborty. 2013. “Parametric

Performance Evaluation of Different Types of Particle Swarm Optimization Techniques Applied in Distributed Generation System.
Paper presented at the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), Odisa,
India, January 14–16; pp. 349–56.

Longstaff, Francis, and Eduardo Schwartz. 2001. Valuing American-style derivatives by Simulation. The Review of Financial Studies I 4:
113–47. [CrossRef]

Nunes, João Pedro Vidal. 2009. Pricing American options under the constant elasticity of variance model and subject to bankruptcy.
Journal of Financial and Quantitative Analysis 44: 1231–63. [CrossRef]

Reynolds, Craig. 1987. Flocks, herds and schools: A distributed behavioral model. Paper presented the 14th Annual Conference on
Computer Graphics and Interactive Techniques, Anaheim, CA, USA, July 27–31; Association for Computing Machinery. pp.
25–34.

Stulz, Rene. 1982. Options on the Minimum or the Maximum of Two Risky Assets: Analysis and Applications. Journal of Financial
Economics 10: 161–85. [CrossRef]

Zhang, Yudong, Shuihua Wang, and Genlin Ji. 2015. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its
Applications. Mathematical Problems in Engineering 2015: 38. [CrossRef]

http://doi.org/10.2307/2331019
http://doi.org/10.1093/rfs/2.2.241
http://doi.org/10.1093/rfs/11.3.597
http://doi.org/10.2307/3595015
http://doi.org/10.1016/0304-405X(79)90015-1
http://doi.org/10.1109/4235.585892
http://doi.org/10.1287/mnsc.37.12.1640
http://doi.org/10.1093/rfs/14.1.113
http://doi.org/10.1017/S0022109009990329
http://doi.org/10.1016/0304-405X(82)90011-3
http://doi.org/10.1155/2015/931256

	Introduction
	Monte Carlo in American-Style Derivative Pricing
	The Longstaff–Schwartz Model
	Explicit Boundary Method

	Swarm Intelligence
	What Is AI?
	Swarm Intelligence
	Particle Swarm Optimization

	American-Style Derivative Pricing
	Univariate
	Multivariate
	Path-Dependent
	Computational Efficiency

	Conclusions
	
	American Call Option on Min/Max Will Never be Exercised Early
	Option on Min/Max
	Illustration of the Chen–Chung–Yang Model

	References

