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Abstract: I investigate the question of how to construct a benchmark replicating portfolio consisting
of a subset of the benchmark’s components. I consider two approaches: a sequential stepwise
regression and another method based on factor models of security returns’ first and second
moments. The first approach produces the standard hedge portfolio that has the maximum feasible
correlation with the benchmark. The second approach produces weights that are proportional to
a "signal-to-noise" ratio of factor beta to idiosyncratic volatility. Using a factor model of securities
returns allows the use of a larger number of securities than the number of time periods used to
estimate the parameters of the factor model. I also consider a second objective that maximizes
expected returns subject to a target tracking error variance. The security selection criterion naturally
extends to the product of the information ratio and the signal-to-noise ratio. The optimal tracking
portfolio is either a one-fund or a two-fund portfolio rule consisting of the optimal hedging portfolio,
the tangent portfolio or the global minimum variance portfolio, depending on what constraints
are imposed on the objective function. I construct buy-and-hold replicating portfolios using the
algorithms presented in the paper to track a widely followed stock index with very good results both
in-sample and out-of-sample.
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JEL Classification: G11; G12

1. Introduction

A frequent question that arises in portfolio management is how on can construct a portfolio
of securities that will best mimic the performance of a benchmark index. A passive investment
strategy may indicate that the objective of the portfolio is to track the benchmark as closely as possible,
while an active investment strategy will mandate that the portfolio outperforms the benchmark.
The practitioner literature abounds with many approaches to this problem ranging from the standard
stepwise regression through neural networks to genetic algorithms. Unfortunately, most of these
applications are numerical in nature and do not yield much intuition regarding how to build a
replicating portfolio that is compact and correlates highly with its benchmark.

Roll (1992) is an example of an early paper targeted at practitioners arguing against some common
practices of fixing a target portfolio volatility while tracking a benchmark. He shows that unless
the portfolio manager gets the volatility right ex ante, the replicating portfolio will do a poor job
of tracking the index. In the same spirit, Jorion (2003) demonstrates how additional constraints
such as value-at-risk may be necessary to align the incentives of portfolio managers and investors.
Stutzer (2003) finds that in equilibrium the benchmarks may become priced risk factors when fund
managers try to replicate or outperform the benchmarks. Rudolf et al. (1999) argue against using a
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mean squared error loss function and in favor of mean absolute deviations between the benchmark
and the replicating portfolio returns. They show convincing evidence that this loss function results in
more stable portfolio weights that are less sensitive to outliers.

Various statistical techniques have been applied toward the objective of benchmark index
replication ranging from time series clustering (Focardi and Fabozzi 2004) to cointegration
(Dunis and Ho 2005). Many studies have also investigated the question of actively managing a
portfolio that replicates the performance of a benchmark index subject to limits on the tracking
error (Burmeister et al. 2004; El-Hassan and Kofman 2003; Israelsen and Cogswell 2006).

Corielli and Marcellino (2006) were among the first to introduce factor models in the analysis of
the benchmark replicating problem. Intuitively, factor models for the first two moments of securities
returns provide "shrinkage" and reduce the estimation error involved with modeling the expected
returns and variance-covariance matrix of returns. Stoyanov et al. (2008) provided an axiomatic
approach for general loss functions that are similar conceptually to higher-order lower partial moments
of the tracking error. This study included an empirical application with very good results, but
unfortunately the authors were forced to use numerical methods to obtain a solution.

Chan et al. (1999) applied multi-factor models to securities’ expected returns to find the minimum
variance portfolio and maximum information ratio benchmark tracking portfolio. They reported
that up to three factors were sufficient in describing the variance-covariance matrix of securities
returns and found an adequate minimum variance portfolio. More factors appeared to be needed
in order to find a portfolio that minimized the volatility of the tracking error. More recently,
Glabadanidis and Zolotoy (2013) proposed several different objective functions for an active portfolio
relative to a benchmark and provided optimal portfolio weights in closed-form under a mean-variance
framework. Glabadanidis (2014) applied an approximate factor structure to the mean and variance of
security returns, thereby providing more straightforward optimal portfolio weight solutions. A further
application to an industry standard, mean-variance, value-added function of delegated portfolio
management was solved explicitly in Glabadanidis (2020).

In the context of replicating hedge fund returns, Hasanhodzic and Lo (2007) apply linear
multi-factor regressions of hedge fund returns on the returns of several asset classes encompassing
a broad spectrum of risk exposures. They offer a good way of scaling the replicating portfolio
weights to match the volatility of the target in sample. However, the focus of their work is purely
on the performance of their replicating strategies relative to the target hedge fund returns and they
offer little intuition on how the optimal weights depend on the returns’ factor structure. In recent
work, Amenc et al. (2010) went beyond the case of linear portfolio weights, only to find that this
does not necessarily improve the replication power. However, more recent non-linear innovations
using machine-learning like the autoencoder-based strategies seem quite promising. Examples of this
approach include Ouyang et al. (2019) and Heaton et al. (2017), among others.

The contribution of this paper is three-fold. First, I extend the factor return framework to allow for
multiple pre-specified factors driving the securities returns. I show that in the context of minimizing
the tracking error variance, the replicating portfolio weights are proportional to the tangent portfolio
weights scaled by the benchmark beta. This approach allows for a number of securities that can be
much larger than the number of periods used to estimate the factor model parameters. Second, in a
step-down approach I use another objective of picking securities that result in the highest possible
deviation from the benchmark given the smallest possible tracking error variance from the previous
results. Thirdly, I apply the theoretical results to a widely followed US stock index, the Dow Jones
Industrial Average (DJIA). I use two time periods that consist of two years of daily data. The first year
is used to estimate the necessary parameters, while the second year is reserved for an out-of-sample
test of the replicating portfolio relative to the benchmark. For a narrow index, such as the DJIA, it is
possible to replicate their return performance with up to one third of the component stocks.

This paper proceeds as follows. Section 2 presents the theoretical framework and the algorithms
for finding subsets of securities that closely track benchmark returns. Section 3 provides an empirical
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illustration using a popular equity index as a benchmark. Section 4 offers a few concluding comments
and suggestions for future research.

2. Theoretical Motivation

Let Ry,t be the simple return on a benchmark index y in period t, Rj,t be the simple return on
basis security j in period t and R f ,t be the risk-free rate of return in period t. A tracking portfolio p is
composed of N basis securities and the risk-free asset. The simple rate of return of portfolio p in time
period t is given by

Rp,t =
j=N

∑
j=1

wjRj,t +

(
1−

j=N

∑
j=1

wj

)
R f ,t. (1)

The tracking error εt is defined as the difference between the simple returns of the tracking
portfolio and the index benchmark:

εt = Rp,t − Ry,t, (2)

=
j=N

∑
j=1

wjRj,t +

(
1−

j=N

∑
j=1

wj

)
R f ,t − Ry,t,

=
j=N

∑
j=1

wj

(
Rj,t − R f ,t

)
−
(

Ry,t − R f ,t

)
,

=
j=N

∑
j=1

wjrj,t − ry,t.

where ry,t and rj,t are the simple excess returns of the benchmark index and the basis securities,
respectively. Denoting by w the vector of tracking portfolio weights and using matrix notation we can
express the tracking error more compactly as

εt = w′rt − ry,t. (3)

Most of the analysis in the literature revolves around optimizing an objective function of the
sequence of tracking errors over the weights of the tracking portfolio.

2.1. Multiple Basis Securities and Fixed Portfolio Weights

2.1.1. General Mean-Variance Specification of Asset Returns

Problem 1. Choose
w? = argmin var

(
w′ r̃− r̃y

)
. (4)

Let the second moments of the basis and index assets be denoted by Σrr = cov(r̃), σry = cov(r̃, r̃y),
and σ2

y = var(r̃y). Then we can make the following proposition.

Proposition 1. The solution to (4) is given by:

w? = Σ−1
rr σry. (5)

Proof. See Appendix A.

The intuition behind the tracking problem and its solution is straightforward. Note that w? is the
minimum variance hedging portfolio for the index return using the basis asset returns as instruments
(Merton 1973; Ingersoll 1987). This portfolio has the highest feasible correlation with the instrument
that we need to hedge. Moreover, as the following corollary illustrates, the optimal replicating portfolio
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weights obtain, in a multivariate linear regression of the index, excess return on the set of basis asset
excess returns with an intercept.

Corollary 1. The solution in (5) is given by θ̂1 in the following multivariate linear regression:

ry,t = θ0 + rtθ1 + ut. (6)

Proof. See Appendix A.

Alternatively, (4) represents the solution to a projection of the returns of the basis assets on
the returns of the target benchmark. This is essentially a spanning problem which is related to the
mean-variance spanning literature (Huberman and Kandel 1987). The only difference is that in this
problem we are asking the reverse question of what the best way is to span a single return series with
a set of multiple basis return series. Namely, we are looking for the best way to span a single asset
return (an index) with a set of multiple basis assets.

Corollary 2. The solution in (5) is fully invested in the replicating securities and the replicating portfolio spans
the index in a mean-variance sense, if and only if:

θ̂0 = 0,

θ̂′11N = 1.

Proof. See Appendix A.

The intuition behind this result is that if an investor’s capital is fully (100%) invested in the
basis assets and θ̂0 = 0, then the mean-variance frontier remains unchanged after the addition of the
benchmark asset to the set of basis assets. Furthermore, if exact spanning fails, we are able to determine
whether the replicating portfolio outperforms the benchmark index, as the following corollary shows.

Corollary 3. The replicating portfolio in (5) outperforms the index in-sample provided that θ̂0 < 0.

Proof. See Appendix A.

If the intercept in the regression above is negative, then the excess return of the replicating
portfolio exceeds the excess return of the benchmark. Conversely, if the intercept happens to be
positive, we know that replicating portfolio’s return lags the benchmark index return.

The above results suggest an algorithm for finding the best set of spanning basis assets. One can
perform a stepwise linear regression of the excess return of the benchmark index on a set of candidate
basis asset excess returns until a predetermined level for the tracking error variance is reached.
This result provides validation for this common practice that is widely used by institutional investors
who are managing index funds.

Decompose the variance-covariance matrix of basis asset returns and the covariance vector
between the basis asset returns and the index return as follows:

Σrr = ΣrΦrΣr, (7)

σyr = Σrφyrσy, (8)

where Σr = diag[σi] is a diagonal matrix with the basis assets total return standard deviations along
the diagonal, Φr = [ρij] is the correlation matrix of the basis assets and φyr = [ρyi] is the vector of
correlations between the basis asset returns and the index return. A few linear algebraic manipulations
yield the optimal tracking portfolio weights as follows

w? = Σ−1
r (Φ−1

r φyr)σy. (9)
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Alternatively, we can conveniently express each individual optimal portfolio weight as

w?
i =

(
σy

σi

)
κi (10)

where κ = [κi] = Φ−1
r φyr is a vector containing the multivariate correlations between each security

and the index. Note that the special case of two basis assets considered in the next subsection has the
following values for κ:

κ1 =

(
ρ1y − ρ2yρ12

1− ρ2
12

)
, (11)

κ2 =

(
ρ2y − ρ1yρ12

1− ρ2
12

)
. (12)

The variance of the tracking error under the optimal portfolio weights, v(w?), is given by

v(w?) = σ2
y

(
1− φ′yrΦ−1

r φyr

)
. (13)

Basis securities that correlate more highly with the benchmark are more useful in reducing the
variance of the tracking error. On the contrary, basis securities the are highly correlated with each other
tend to increase the variance of the tracking error. Ideally, replicating the benchmark with low levels of
the tracking error variance will require securities that are more highly correlated with the index and
less so with each other. To see this more clearly, suppose we replace every correlation coefficient in
Φr with the average correlation between any two basis securities ρ̄ij and every correlation in φyr with
the average correlation between the index and any basis security ρ̄yr. The correlation structure of the
model then becomes:

Φr = (1− ρ̄ij)IN + ρ̄ij1N1′N , (14)

φyr = ρ̄iy1N , (15)

and the optimal tracking error variance becomes:

v(w?) = σ2
y

(
(N − 1)ρ̄ij + 1− ρ̄2

iyN

(N − 1)ρ̄ij + 1

)
. (16)

This quantity is clearly increasing in ρ̄ij and decreasing in ρ̄iy.

2.1.2. Market Model Specification of Returns

For simplicity we consider the case where the asset and index returns are driven by the market
model of Sharpe (1963). This may be useful in cases where the number of basis assets is very large.
Consider the following standard return variance decomposition

Σrr = βrβ′rσ2
m + D, (17)

σry = βrβyσ2
m, (18)

σ2
y = β2

yσ2
m + σ2

εy , (19)

where βr is the vector of market betas of the basis assets, βy is the market beta of the index, σ2
m is the

market return variance and D is a diagonal matrix consisting of the idiosyncratic return variances
along the diagonal.
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Problem 2. Choose
w? = argmin var

(
w′ r̃− r̃y

)
(20)

where the index and basis asset returns are driven by (17)–(19).

Given the specific structures of the variance-covariance matrix of asset returns and the covariance
of asset returns with the benchmark index, the following results can be obtained.

Proposition 2. The optimal index-tracking portfolio weights in this case are given by

w? =
D−1βrβy

1
σ2

m
+ (β′rD−1βr)

. (21)

The variance of the tracking error under the optimal portfolio strategy, v(w?), is as follows:

v(w?) = σ2
εy +

β2
y

1
σ2

m
+ (β′rD−1βr)

. (22)

Proof. See Appendix A.

Note that in this case, there is no need to solve for all replicating portfolio weights jointly as the
solution to Problem 1 in Proposition 1. When we impose the market model of returns we can obtain
that optimal weights are:

w?
i =

(
βi
σ2

εi

)
βy[(

1
σ2

m

)
+ ∑j

(
β2

j

σ2
εj

)] . (23)

Basis assets with high betas are expected to have high expected returns. Similarly, basis assets
with low idiosyncratic volatility are more valuable in terms of reducing the variance of the tracking
error of the replicating portfolio. Note that each security’s weight is proportional to a "signal-to-noise"
ratio of market beta to idiosyncratic variance, while the coefficient of proportionality (the second
fraction in the above equation) is common to all securities. Moreover, as a result of the fact that the
market model implies an approximation in the variance-covariance matrix decomposition ((17) and
(18)), we have the following corollary.

Corollary 4. The beta of the replicating portfolio is always less than the beta of the index benchmark.

Proof. See Appendix A.

Note that the shortfall between βp and βy is greatest when σ2
m, the market return volatility,

is low. Conversely, in times of high market return volatility, higher σ2
m leads to a replicating portfolio

beta that is much closer to the benchmark index beta. Finally, we can demonstrate that the optimal
replicating portfolio weights are proportional to the tangent portfolio weights that result from the set
of basis assets.

Corollary 5. The optimal replicating portfolio weights in (21) are proportional to the tangent portfolio weights
where the coefficient of proportionality is increasing in βy and decreasing in the factor’s reward-to-risk ratio.

Proof. See Appendix A.

The expression for the optimal tracking error clearly suggests an algorithm for picking the stocks
that enter the tracking portfolio: rank all candidate securities by their ratios of standardized systematic
risk (i.e., market betas βi) to standard deviation of idiosyncratic return risk (σεi ) and pick the top ones.
This will result in the highest possible value for (β′rD−1βr) in the denominator of (22).
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A more general comment is in order. The variance decomposition is valid for any mean-variance
return specification. The content of the market model is in the diagonal structure of D. However,
even if D is not diagonal (and we are no longer in the market model world) the above formulae are
still valid, even if the general algorithm needs to be modified to maximize the quantity (β′rD−1βr).
Furthermore, these results are not restricted to single-factor models. Multiple-factor models, along the
lines of the APT, can be similarly applied to this setting.

Consider the following K-factor model driving the second moments of the excess returns of the
index and the basis assets:

Σrr = BrVf B′r + D, (24)

σry = BrVf by, (25)

σ2
y = b′yVf by + σ2

εy . (26)

where Vf is a K× K variance-covariance matrix of factor returns, Br is an N × K matrix of the basis
assets’ factor loadings and by is a K vector of the factor loadings of the index.

Problem 3. Choose
w? = argmin var

(
w′ r̃− r̃y

)
(27)

where the index and basis asset returns are driven by (24)–(26).

The solution to this problem is stated in the following proposition.

Proposition 3. The optimal tracking portfolio weights for this model are

w? = D−1Br

[
V−1

f +
(

B′rD−1Br

)]−1
by. (28)

The variance of the tracking error under this portfolio strategy is given by:

v(w?) = b′y
[
V−1

f +
(

B′rD−1Br

)]−1
by + σ2

εy . (29)

Proof. See Appendix A.

This is the multi-factor generalization to the tracking error variance under the optimal tracking
portfolio strategy. It is intuitively similar in spirit to the expression for the variance of the tracking
error in the single-factor case in (22) above. Assuming that the index factor exposures are positive,
securities with high ratios of factor betas to idiosyncratic excess return variance will command higher
weights and be more useful in mimicking the excess returns of the index.

Coming up with an analytical way of identifying a tracking portfolio that minimizes v(w?) is
not easy, especially in light of the fact that the index may have factor loadings by of differing signs.
Therefore, a prudent way to identify the best tracking portfolio might be given by the following.

2.2. The Case of Two Basis Assets

Consider the problem of replicating a portfolio with return r̃y,t using a linear combination of two
stocks with returns r̃1,t and r̃2,t with portfolio weights w1 and w2. Denote the second moments of the
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excess returns as σ2
1 , σ2

2 and σ2
y ; and the excess return correlations as ρ12, ρ1y and ρ2y. The optimal

(unconstrained) y-tracking portfolio weights can be shown to be equal to:

w?
1 =

(
σy

σ1

)(
ρ1y − ρ2yρ12

1− ρ2
12

)
, (30)

w?
2 =

(
σy

σ2

)(
ρ2y − ρ1yρ12

1− ρ2
12

)
. (31)

Both w?
1 and w?

2 above are the OLS regression estimates that would be obtained in a multivariate
regression of the excess return of the benchmark index on the excess returns on both securities. We
can also interpret the weights as hedge ratios. If we are trying to hedge the values of the benchmark
index, we need hold w?

1 of the first security and w?
2 of the second. Note that both portfolio weights

are given by the ratio of the standard deviation of the index return to the standard deviation of each
security’s return, multiplied by the multivariate correlation between the excess return of the index and
the excess return of the security.

The variance of the tracking error under the optimal portfolio weights above is given as follows:

v(w?
1 , w?

2) = σ2
y

(
1− ρ2

1y − ρ2
2y + 2ρ1yρ2yρ12

1− ρ2
12

)
. (32)

Consider a hypothetical scenario with two basis securities (not necessarily components of the
benchmark index) that have ρ12 = 0 and ρ1y = ρ2y = 0.7. In this case, v(w?

1 , w?
2) = 0.02σ2

y and we can
almost perfectly replicate the index by holding the portfolio w?

1 = ρ1yσy/σ1 and w?
2 = ρ2yσy/σ2 with

any excess funds available to be invested in the risk-free asset. We cannot drive the tracking error
variance all the way down to zero though, since the correlation matrix needs to be positive definite.

To obtain further intuition from the OLS formula for the optimal tracking portfolio weights, let
us consider the case in which the benchmark index and the two basis asset returns are driven by the
market model:

r̃y = βy r̃m + ε̃y, (33)

r̃1 = β1r̃m + ε̃1, (34)

r̃2 = β2r̃m + ε̃2. (35)

The optimal index-tracking portfolio weights for the market-model-driven returns are

w?
1 =

(
β1

σ2
ε1

)
βy[(

1
σ2

m

)
+

(
β2

1
σ2

ε1
+

β2
2

σ2
ε2

)] , (36)

w?
2 =

(
β2

σ2
ε2

)
βy[(

1
σ2

m

)
+

(
β2

1
σ2

ε1
+

β2
2

σ2
ε2

)] . (37)

The market model shows that the optimal replicating portfolio essentially represents a scaled
position in the (un-normalized) tangent portfolio with a scaling factor given by the beta of the
benchmark index. The optimal tracking error variance simplifies to:

v(w?
1 , w?

2) = σ2
εy +

β2
y(

1
σ2

m

)
+

(
β2

1
σ2

ε1
+

β2
2

σ2
ε2

) , (38)
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where the motivation for Algorithm 2 is made clear by the appearance of the squared signal-to-noise
ratios in the denominator.

2.3. Index Beating Strategies

If we do not put any structure on the first two moments of the security and index returns, then
we are left with trying to select the best possible set of replicating securities which also maximizes the
following quantity:

∆ = µ′rΣ−1
rr σry − µy. (39)

Finding the best set of replicating securities that maximizes ∆ is a feasible combinatorial problem.
However, given the difficulties associated with predicting µr, a viable alternative would be to use a
factor model for the expected return vector. One such model for the expected excess returns of the
basis securities and the index could be the following:

µr = αr + βrµm, (40)

µy = αy + βyµm. (41)

Under this specific model for the first moments, the outperformance of the replicating portfolio
relative to the index is given by

∆ = βy

(α′rD−1βr
)
−
(

µm
σ2

m

)
(

1
σ2

m

)
+ (β′rD−1βr)

− αy, (42)

assuming that we use the optimal portfolio weights from the previous subsection.
In the following discussion, I will assume, without loss of generality, that the index is a broadly

diversified equity portfolio with αy = 0 and βy = 1. This simplifies the value of the index
outperformance ∆ as follows:

∆ =

(
α′rD−1βr

)
−
(

µm
σ2

m

)
(

1
σ2

m

)
+ (β′rD−1βr)

. (43)

The optimal replicating strategy is already designed to deliver the smallest possible tracking error
variance for a given set of basis securities. If, in addition, we want to maximize ∆, then we have to pick
the set of replicating securities so that the quantity (α′rD−1βr) is as large as possible. This suggests a
straightforward way of ranking each candidate security i by the value of αiβi/σ2

εi
. The strategy that

maximizes ∆ is the one that keeps adding securities with positive values of αiβi/σ2
εi

to the tracking
portfolio until

α′rD−1βr >
µm

σ2
m

. (44)

The denominator in (43) is strictly positive and we are guaranteed that ∆ > 0 in expectation.
The analysis suggests the following algorithm for selecting securities that, combined in a portfolio, will
outperform the benchmark in expectation. First, estimate the market model for all candidate securities
for the replicating portfolio. Next, pick the security with the highest value of ∆. Keep adding securities
to the replicating portfolio while ∆ > 0. Finally, terminate this process when the desired number of
securities in the portfolio is reached.

A similar approach can be taken within a multi-factor model for the security and index returns.
Suppose that the second moments are again driven by (24)–(26) while the expected excess returns are
given by:

µr = αr + BrµF, (45)

µy = αy + b′yµF, (46)
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where µF is a vector of the expected factor returns. The expected return differential between the
optimal tracking portfolio and the index is

∆MF =
[
(α′rD−1B)− µ′FV−1

F

]
·
[
V−1

F + (B′rD−1Br)
]−1

by − αy (47)

which is a natural extension of the ∆ obtained under the single-factor model in (43). One possible
way to sequentially pick candidate securities for a portfolio that minimizes the tracking error variance
while attempting the beat the index would be the following. First, estimate the respective multi-factor
model for all candidate securities for the replicating portfolio. Next, pick the security with the highest
value of ∆MF. Keep adding securities to the replicating portfolio while ∆MF > 0. Finally, terminate
this process when the desired number of securities in the portfolio is reached.

2.4. Further Results

In this section, I consider several extensions that are of further interest to the theorist and the
practitioner. I present the theoretical results and discuss the intuition behind them, along with their
implications. First, I develop the optimal replicating portfolio that is fully invested in the risky assets
without any position on the risk-free asset. Second, I present the results for the optimal portfolio in the
presence of a constraint on the total risk (i.e., return standard deviation) of the replicating portfolio.
Third, in the context of factor return models I derive the optimal portfolio weights when there is a
constraint on the factor loadings of the replicating portfolio. Finally, I make some suggestions for
solving this problem in the presence of multiple linear and/or quadratic constraints on the replicating
portfolio weights.

2.4.1. Fully Invested Replicating Portfolio Weights

Let us go back to the simple replicating portfolio return, except now we will require that the
portfolio is fully invested in the risky benchmark assets:

Rp,t =
j=N

∑
j=1

wjRj,t. (48)

The tracking error εt is defined as the difference between the simple returns of the tracking
portfolio and the index benchmark:

εt = Rp,t − Ry,t, (49)

=
j=N

∑
j=1

wjRj,t − Ry,t,

where Ry,t and Rj,t are the simple total returns of the benchmark index and the basis securities,
respectively. Denoting by w the vector of tracking portfolio weights and using matrix notation, we can
express the tracking error more compactly as

εt = w′Rt − Ry,t. (50)

Problem 4. Choose

w? = argmin var
(
w′R̃− R̃y

)
(51)

s.t. w′1N = 1.
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Proposition 4. The solution to (51) is given by:

w? = Σ−1
RRσRy +

(
1− 1′NΣ−1

RRσRy

)( Σ−1
RR1N

1′NΣ−1
RR1N

)
. (52)

Proof. See Appendix A.

The intuition behind the result in Proposition 4 is quite straightforward. The optimal replicating
portfolio weights follow the same strategy as in the unconstrained case (with ΣRR and σRy in place of
Σrr and σry, respectively), and any remaining funds are invested in the minimum variance portfolio
generated by the returns of the benchmark assets.

2.4.2. Replicating Portfolio Weights with Constraints on Total Risk

Another useful alternative to consider here is to find the best replicating portfolio under a
constraint on the total risk σ2

0 of the portfolio, which may or may not equal the total risk of the
underlying benchmark σ2

y .

Problem 5. Choose

w? = argmin var
(
w′ r̃− r̃y

)
(53)

s.t. w′Σrrw = σ2
0 .

Proposition 5. The solution to (53) is given by:

w? =

 σ0√
σ′ryΣ−1

rr σry

Σ−1
rr σry. (54)

Proof. See Appendix A.

The intuition behind the result in Proposition 5 is easy to follow. The optimal replicating portfolio
weights follow the same strategy as in the unconstrained case presented in Proposition 1 with a
scaling factor that brings the return variance of the replicating portfolio down or up to σ2

0 . Note that
σ′ryΣ−1

rr σry is the total risk of the unconstrained maximum correlation portfolio. Hence, if the target
risk control exceeds that value, we need to invest more than 100% of our funds in the unconstrained
portfolio in order to meet the risk target, and vice versa; if the risk target is below the total risk of the
unconstrained portfolio, we need to invest less than 100% in the unconstrained portfolio if we are to
meet the risk target.

2.4.3. Replicating Portfolio Weights with a Linear and a Quadratic Constraint

Consider combining the two constraints in the previous subsections. Specifically, investors may
require that the replicating portfolio is fully invested in the risky assets and that there is a limit of
the replicating portfolio’s return standard deviation. Such joint constraints have been implemented
empirically in the context of cloning hedge fund returns by Hasanhodzic and Lo (2007). Next, I state
the problem more formally and offer an analytical solution:
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Problem 6. Choose

w? = argmin var
(
w′R̃− R̃y

)
(55)

s.t. w′1N = 1,

w′ΣRRw = σ2
0 .

Proposition 6. The solution to (55) is given by:

w? =

√
σ2

0 − σ2
mv

Q
Σ−1

RRσRy +

1−

√
σ2

0 − σ2
mv

Q
(1′NΣ−1

RRσRy)

( Σ−1
RR1N

1′NΣ−1
RR1N

)
, (56)

where

Q = (σ′RyΣ−1
RRσRy)−

(1′NΣ−1
RRσRy)

(1′NΣ−1
RR1N)

,

σ2
mv =

1
1′NΣ−1

RR1N
.

Proof. See Appendix A.

The intuition behind the result in Proposition 6 is as follows. The optimal replicating portfolio
is still split between the minimum variance portfolio and the maximum correlation portfolio from
previous sections. Furthermore, the investment in the unconstrained portfolio is scaled as necessary
to meet the risk target as in the previous proposition, while any remaining funds are invested in the
global minimum variance portfolio.

2.4.4. Replicating Portfolio Weights with Constraints on Factor Loadings

In the context of factor models for the first two moments of asset returns, investors may insist that
the replicating portfolio has certain exposures to the factors. This presents a natural extension to the
single-factor results presented previously, leading to the following:

Problem 7. Choose

w? = argmin var
(
w′ r̃− r̃y

)
(57)

s.t. w′βr = β0,

σry = βrβyσ2
m,

Σrr = βrβ′rσ2
m + D.

Proposition 7. The solution to (57) is given by:

w? =
D−1βr

β′rD−1βr
β0. (58)

Proof. See Appendix A.

Note the similarity between the above portfolio rule and the result in Proposition 2 before.
The result in Proposition in 7A is a cleaner version of the previous portfolio rule which scales the
beta of the portfolio to the target β0. The inverse of the market’s total risk, σ2

m, disappears from the
denominator for technical reasons (please see proof in the Appendix A), and we are left with a simple
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beta scaling factor which meets the required factor loading. Note that β0 need not necessarily be equal
to βy, the benchmark’s factor exposure to the market factor.

A natural extension to multi-factor models of asset returns leads to the following:

Problem 8. Choose

w? = argmin var
(
w′ r̃− r̃y

)
(59)

s.t. B′rw = b0,

σry = BrVf by,

Σrr = BrVf B′r + D.

Proposition 8. The solution to (59) is given by:

w? = D−1Br(B′rD−1Br)
−1b0. (60)

Proof. See Appendix A.

Again, this is quite similar and simpler than the result in Proposition 3 before with the inverse of
the factor variance-covariance matrix conveniently disappearing from the expression. The rule involves
a scaling factor combination of the target factor loadings in the vector b0 with the interpretation of
factor signal-to-noise ratios contained in the N × K matrix D−1Br.

3. An Empirical Example: Replicating DJIA

In this section, I apply the theoretical results to the Dow Jones Industrial Average (DJIA). I use a
two-year window of daily stock return data. The test time period uses 2018 data for the estimation and
2019 data for the out-of-sample performance. During the estimation period, I use daily stock returns
for various subsets of the index components in order to estimate all the parameters that are needed
to compute the optimal portfolio weights of the benchmark replicating portfolios. Throughout the
rest of this section I construct buy-and-hold replicating portfolios. In the test period, I assume that the
estimates are unbiased predictors of the true parameter values and track the returns of the benchmark
portfolio relative to the index.

The benchmark index return data consist of total return series for DJIA. The data were obtained
directly from Dow Jones indexes. The individual stock return data were obtained from the Center for
Research in Securities Prices. Historical daily factor returns and risk-free rates were obtained from Ken
French’s Data Library online.

Empirical results from the replications of DJIA usingAlgorithm 1 are reported in Table 1.
Straight replication-only Algorithms 1 through 3 are the same as in the previous section. Algorithm 3A
uses the three-factor Fama and French (1992) model while Algorithm 3B uses the four-factor
Carhart (1997) model. Algorithm 4 uses the single-factor market model, Algorithm 5A uses the
three-factor Fama-French model and Algorithm 5B uses the four-factor Carhart model.
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Table 1. Optimal tracking portfolios for DJIA index: Algorithm 1.

Number of In-Sample Out-of-Sample
Stocks ρpy

√
v? RAR αp βp ρpy

√
v? RAR αp βp

1 0.8241 0.0086 −0.1273 −0.0006 1.1439 0.5929 0.0129 −0.3359 −0.0015 1.2640
2 0.8983 0.0056 −0.0073 −0.0001 1.0545 0.6499 0.0096 −0.1864 −0.0008 1.1033
3 0.9276 0.0044 0.0000 −0.0001 1.0144 0.7483 0.0068 −0.0824 −0.0004 1.0364
4 0.9457 0.0037 −0.0164 −0.0001 0.9959 0.8248 0.0054 −0.0051 −0.0001 1.0631
5 0.9672 0.0031 0.0166 −0.0000 1.0733 0.8840 0.0043 −0.0589 −0.0003 1.0823
6 0.9749 0.0026 0.0259 0.0000 1.0377 0.9012 0.0038 −0.0391 −0.0002 1.0487
7 0.9779 0.0023 0.0354 0.0001 0.9964 0.9143 0.0033 −0.0365 −0.0002 1.0018
8 0.9852 0.0020 0.0509 0.0001 1.0380 0.9490 0.0025 0.0330 0.0000 1.0269
9 0.9870 0.0017 0.0628 0.0002 1.0092 0.9543 0.0023 0.0463 0.0001 0.9975

10 0.9892 0.0016 0.0639 0.0002 1.0031 0.9648 0.0020 0.0243 0.0000 0.9979
11 0.9912 0.0014 0.0558 0.0001 1.0061 0.9745 0.0017 0.0505 0.0001 1.0202
12 0.9925 0.0013 0.0525 0.0001 1.0025 0.9781 0.0017 0.0551 0.0001 1.0338
13 0.9934 0.0012 0.0500 0.0001 0.9972 0.9804 0.0015 0.0576 0.0001 1.0193
14 0.9944 0.0011 0.0394 0.0001 0.9993 0.9833 0.0014 0.0519 0.0001 1.0257
15 0.9954 0.0010 0.0377 0.0001 1.0068 0.9857 0.0013 0.0658 0.0001 1.0271
16 0.9962 0.0009 0.0292 0.0000 1.0086 0.9889 0.0012 0.0571 0.0001 1.0292
17 0.9968 0.0008 0.0323 0.0001 1.0073 0.9896 0.0012 0.0574 0.0001 1.0358
18 0.9973 0.0008 0.0332 0.0001 1.0035 0.9900 0.0011 0.0591 0.0001 1.0306
19 0.9976 0.0007 0.0360 0.0001 1.0007 0.9918 0.0010 0.0595 0.0001 1.0228
20 0.9981 0.0006 0.0341 0.0001 0.9985 0.9925 0.0009 0.0614 0.0001 1.0178
21 0.9984 0.0006 0.0309 0.0000 0.9978 0.9953 0.0007 0.0590 0.0001 1.0078
22 0.9986 0.0005 0.0408 0.0001 0.9928 0.9960 0.0007 0.0565 0.0001 1.0010
23 0.9988 0.0005 0.0423 0.0001 0.9942 0.9968 0.0006 0.0551 0.0001 1.0040
24 0.9990 0.0004 0.0431 0.0001 0.9963 0.9973 0.0006 0.0533 0.0001 1.0063
25 0.9991 0.0004 0.0425 0.0001 0.9917 0.9975 0.0005 0.0511 0.0001 1.0049
26 0.9992 0.0004 0.0411 0.0001 0.9923 0.9980 0.0005 0.0464 0.0001 1.0075
27 0.9992 0.0004 0.0396 0.0001 0.9889 0.9980 0.0005 0.0492 0.0001 1.0042
28 0.9992 0.0004 0.0397 0.0001 0.9896 0.9984 0.0004 0.0450 0.0001 1.0071
29 0.9993 0.0004 0.0388 0.0001 0.9886 0.9986 0.0004 0.0414 0.0001 1.0061
30 0.9997 0.0004 0.0381 0.0001 0.9893 0.9989 0.0004 0.0353 0.0001 1.0031

This table reports the in-sample and out-of-sample correlation of the tracking portfolio return with the index return
ρpy, daily tracking error

√
v? and cumulative out-of-sample return differential between the tracking portfolio and

the index RAR, and the intercept αp and the slope βp of a simple linear regression of the portfolio excess return
on the benchmark index excess return. The estimation period covers 2 January 2018 until 31 December 2018. The
out-of-sample test period starts 2 January 2019 and ends on 31 December 2019. RAR is the cumulative realized
active return given by Πt=T

t=1 (1 + rp,t)−Πt=T
t=1 (1 + ry,t).

Table 1 reports the results for the replicating strategies with 2011 as the out-of-sample test period.
In this instance, the stepwise regression model (Algorithm 1) does a better job than most of the other
algorithms proposed in the paper. One possible reason for this superiority in this case could be the fact
that all the replicating portfolios based on Algorithm 1 have the highest market betas compared with
all the other replicating portfolios based on the remaining four algorithms.

Broadly speaking, the empirical results indicate that replication strategies that use factor models to
track a benchmark perform just as well and sometimes better out-of-sample than the standard stepwise
regression model (Algorithm 1). One reason behind this could potentially be the difficulty in estimating
a larger set of stock return covariances with the same amount of historical data. The annualized
standard deviation of the replication error ranges between 0.64% and 1.60% when more than half
of the index components have been included in the replicating portfolio. The correlation between
the replicating portfolio and the benchmark quickly increases and reaches almost 1 as we increase
the number of securities in the replicating portfolio. Similarly, the portfolio beta with the benchmark
approaches 1 while the abnormal return hovers around zero, though does remain positive at about 1
basis point per day. This performance is consistent both in-sample and out-of-sample.

Next, I consider using a single-factor model as the model of securities’ expected returns, variances
and covariances. The empirical performance of Algorithm 2 is presented in Table 2. Comparing the
performance of Algorithm 2 to Algorithm 1, we note a few minor differences. First, the tracking
error is a little higher with Algorithm 2, though less so out-of-sample than in-sample. The relative
outperformance is greater now while the abnormal return virtually disappears especially out-of-sample.
The replicating portfolio beta stabilizes eventually, though at a value slightly above 1 once all 30 stocks
are included in the portfolio. Overall, Algorithm 2 performed well to the task that it was designed to
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perform, namely, to get as close as possible to perfect correlation with the benchmark while using a
single-factor model of stock returns’ first and second moments.

Table 2. Optimal tracking portfolios for DJIA index: Algorithm 2.

Number of In-Sample Out-of-Sample
Stocks ρpy

√
v? RAR αp βp ρpy

√
v? RAR αp βp

1 0.8239 0.0061 −0.1227 −0.0005 1.1427 0.5924 0.0129 −0.3359 −0.0016 1.2625
2 0.9063 0.0048 0.0032 −0.0001 1.2329 0.8169 0.0066 0.0558 0.0000 1.2272
3 0.9445 0.0041 0.0498 0.0001 1.2877 0.8592 0.0056 −0.0457 −0.0003 1.2135
4 0.9467 0.0037 0.0684 0.0002 1.2618 0.8795 0.0053 −0.0716 −0.0005 1.2488
5 0.9422 0.0034 0.0856 0.0002 1.2398 0.9031 0.0044 0.0092 −0.0001 1.1920
6 0.9490 0.0031 0.0599 0.0001 1.2783 0.9263 0.0041 -0.0027 −0.0002 1.2266
7 0.9594 0.0029 0.0374 0.0001 1.2324 0.9435 0.0036 0.0313 −0.0001 1.2182
8 0.9620 0.0028 0.0417 0.0001 1.2036 0.9514 0.0033 0.0458 −0.0000 1.2061
9 0.9636 0.0027 0.0139 −0.0000 1.1994 0.9549 0.0033 0.0506 −0.0000 1.2224

10 0.9682 0.0026 0.0142 −0.0000 1.1725 0.9624 0.0029 0.0628 0.0000 1.1909
11 0.9755 0.0025 0.0258 0.0000 1.1519 0.9706 0.0025 0.0588 0.0000 1.1692
12 0.9785 0.0024 0.0225 0.0000 1.1383 0.9743 0.0024 0.0605 0.0000 1.1767
13 0.9792 0.0024 0.0202 −0.0000 1.1457 0.9761 0.0024 0.0952 0.0001 1.1935
14 0.9826 0.0023 0.0128 −0.0000 1.1209 0.9803 0.0021 0.0834 0.0001 1.1538
15 0.9851 0.0023 0.0141 −0.0000 1.1055 0.9814 0.0020 0.0609 0.0000 1.1451
16 0.9863 0.0022 0.0164 −0.0000 1.0887 0.9818 0.0019 0.0624 0.0001 1.1299
17 0.9856 0.0022 0.0190 −0.0000 1.0947 0.9808 0.0020 0.0656 0.0001 1.1354
18 0.9863 0.0022 0.0214 0.0000 1.0854 0.9811 0.0019 0.0566 0.0000 1.1251
19 0.9873 0.0021 0.0172 −0.0000 1.0812 0.9820 0.0018 0.0551 0.0000 1.1222
20 0.9878 0.0021 0.0231 0.0000 1.0644 0.9826 0.0017 0.0433 0.0000 1.1037
21 0.9883 0.0021 0.0389 0.0001 1.0469 0.9832 0.0016 0.0387 0.0000 1.0812
22 0.9888 0.0021 0.0431 0.0001 1.0455 0.9837 0.0016 0.0402 0.0000 1.0833
23 0.9899 0.0020 0.0426 0.0001 1.0352 0.9848 0.0015 0.0389 0.0000 1.0666
24 0.9902 0.0020 0.0414 0.0001 1.0312 0.9854 0.0015 0.0315 −0.0000 1.0667
25 0.9910 0.0020 0.0415 0.0001 1.0228 0.9863 0.0014 0.0324 0.0000 1.0554
26 0.9920 0.0020 0.0433 0.0001 1.0134 0.9868 0.0013 0.0331 0.0000 1.0450
27 0.9923 0.0020 0.0433 0.0001 1.0012 0.9868 0.0013 0.0367 0.0000 1.0316
28 0.9925 0.0020 0.0461 0.0001 0.9924 0.9871 0.0012 0.0386 0.0000 1.0221
29 0.9925 0.0020 0.0474 0.0001 0.9848 0.9871 0.0012 0.0375 0.0000 1.0152
30 0.9925 0.0020 0.0475 0.0001 0.9851 0.9871 0.0012 0.0377 0.0000 1.0156

This table reports the in-sample and out-of-sample correlation of the tracking portfolio return with the index return
ρpy, daily tracking error

√
v? and cumulative out-of-sample return differential between the tracking portfolio and

the index RAR, and the intercept αp and the slope βp of a simple linear regression of the portfolio excess return
on the benchmark index excess return. The estimation period covers 2 January 2018 until 31 December 2018.
The out-of-sample test period starts 2 January 2019 and ends on 31 December 2019. RAR is the cumulative realized
active return given by Πt=T

t=1 (1 + rp,t)−Πt=T
t=1 (1 + ry,t).

In order to consider exposures to the size and value effect, I turn to the Fama and French
three-factor model (Algorithm 3A) as a descriptor of stock returns. Table 3 reports the findings
regarding the performance of the strict replication Algorithm 3A. One new feature that appears for
this Algorithm is how smaller portfolios tend to disappoint out-of-sample both in terms of having
lower correlations with the benchmark but also in terms of delivering lower absolute returns relative
to the benchmark return. However, it is worthwhile noting that once most of the component stocks
were included in the replicating portfolio, its performance improved considerably. Note also that
this performance improvement did not happen at the expense of taking on an inordinate amount of
systematic risk.
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Table 3. Optimal tracking portfolios for DJIA index: Algorithm 3A.

Number of In-Sample Out-of-Sample
Stocks ρpy

√
v? RAR αp βp ρpy

√
v? RAR αp βp

1 0.8241 0.0073 −0.125 −0.0006 1.1436 0.5928 0.0129 −0.3359 −0.0015 1.2635
2 0.9062 0.0048 0.0032 −0.0001 1.2329 0.8169 0.0066 0.0558 0.0000 1.2272
3 0.9446 0.0041 0.0497 0.0001 1.2877 0.8591 0.0056 −0.0461 −0.0003 1.2135
4 0.9468 0.0037 0.0680 0.0002 1.2617 0.8795 0.0053 −0.0724 −0.0005 1.2488
5 0.9424 0.0033 0.0851 0.0002 1.2397 0.9032 0.0044 0.0085 −0.0001 1.1920
6 0.9490 0.0031 0.0598 0.0001 1.2781 0.9262 0.0041 −0.0031 −0.0002 1.2265
7 0.9594 0.0029 0.0369 0.0001 1.2320 0.9434 0.0036 0.0307 −0.0001 1.2183
8 0.9620 0.0028 0.0413 0.0001 1.2035 0.9513 0.0033 0.0452 −0.0000 1.2063
9 0.9636 0.0027 0.0137 −0.0000 1.1992 0.9548 0.0033 0.0507 −0.0000 1.2224

10 0.9682 0.0026 0.0142 −0.0000 1.1722 0.9623 0.0029 0.0630 0.0000 1.1909
11 0.9755 0.0025 0.0256 0.0000 1.1516 0.9706 0.0025 0.0588 0.0000 1.1692
12 0.9786 0.0024 0.0223 0.0000 1.1381 0.9742 0.0024 0.0604 0.0000 1.1767
13 0.9792 0.0024 0.0198 −0.0000 1.1455 0.9761 0.0024 0.0949 0.0001 1.1937
14 0.9826 0.0023 0.0128 −0.0000 1.1206 0.9803 0.0021 0.0838 0.0001 1.1538
15 0.9851 0.0023 0.0140 −0.0000 1.1055 0.9814 0.0020 0.0612 0.0000 1.1452
16 0.9845 0.0022 0.0165 −0.0000 1.1112 0.9799 0.0021 0.0642 0.0001 1.1505
17 0.9856 0.0022 0.0187 −0.0000 1.0949 0.9808 0.0020 0.0657 0.0001 1.1357
18 0.9863 0.0022 0.0211 0.0000 1.0857 0.9811 0.0019 0.0569 0.0000 1.1255
19 0.9872 0.0021 0.0172 −0.0000 1.0819 0.9820 0.0018 0.0559 0.0000 1.1229
20 0.9878 0.0021 0.0228 0.0000 1.0645 0.9826 0.0017 0.0433 0.0000 1.1039
21 0.9883 0.0021 0.0385 0.0001 1.0471 0.9832 0.0016 0.0387 0.0000 1.0813
22 0.9895 0.0021 0.0379 0.0001 1.0364 0.9843 0.0015 0.0372 0.0000 1.0643
23 0.9900 0.0020 0.0417 0.0001 1.0354 0.9848 0.0015 0.0386 0.0000 1.0669
24 0.9903 0.0020 0.0405 0.0001 1.0316 0.9854 0.0015 0.0313 −0.0000 1.0671
25 0.9911 0.0020 0.0406 0.0001 1.0239 0.9862 0.0014 0.0324 0.0000 1.0564
26 0.9920 0.0020 0.0426 0.0001 1.0137 0.9867 0.0013 0.0331 0.0000 1.0453
27 0.9923 0.0020 0.0427 0.0001 1.0011 0.9867 0.0013 0.0368 0.0000 1.0314
28 0.9925 0.0020 0.0456 0.0001 0.9919 0.9870 0.0012 0.0387 0.0000 1.0217
29 0.9926 0.0020 0.0469 0.0001 0.9838 0.9870 0.0012 0.0374 0.0000 1.0143
30 0.9926 0.0020 0.0471 0.0001 0.9842 0.9870 0.0012 0.0377 0.0000 1.0147

This table reports the in-sample and out-of-sample correlation of the tracking portfolio return with the index return
ρpy, daily tracking error

√
v? and cumulative out-of-sample return differential between the tracking portfolio and

the index RAR, and the intercept αp and the slope βp of a simple linear regression of the portfolio excess return
on the benchmark index excess return. The estimation period covers 2 January 2018 until 31 December 2018.
The out-of-sample test period starts in 2 January 2019 and ends on 31 December 2019. RAR is the cumulative
realized active return given by Πt=T

t=1 (1 + rp,t)−Πt=T
t=1 (1 + ry,t).

The last important factor to include in the replication algorithm is the momentum effect.
I present the findings regarding the performance of Algortihm 3B which uses the four-factor model
of Carhart (1997) in Table 4. One potential reason for considering the momentum effect is to take
advantage of component stocks that may have large exposure to the momentum factor, whose inclusion
in the replicating portfolio might result in a better performance out-of-sample. This certainly appears
to the case, though once again we needed to include at least half of the component stocks before any
consistent outperformance began to take place. However, it must be emphasized that this algorithm’s
objective is to maximize correlation with the benchmark, and in that way it meets its objective very
well both in-sample and out-of-sample.
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Table 4. Optimal tracking portfolios for DJIA index: Algorithm 3B.

Number of In-Sample Out-of-Sample
Stocks ρpy

√
v? RAR αp βp ρpy

√
v? RAR αp βp

1 0.8241 0.0075 −0.1261 −0.0006 1.1436 0.5928 0.0129 −0.3359 −0.0015 1.2636
2 0.9062 0.0048 0.0033 −0.0001 1.2329 0.8169 0.0066 0.0560 0.0000 1.2272
3 0.9445 0.0041 0.0496 0.0001 1.2875 0.8594 0.0056 −0.0452 −0.0003 1.2135
4 0.9468 0.0037 0.0674 0.0002 1.2612 0.8792 0.0054 −0.0734 −0.0005 1.2490
5 0.9425 0.0033 0.0845 0.0002 1.2394 0.9030 0.0044 0.0072 −0.0001 1.1925
6 0.9490 0.0031 0.0597 0.0001 1.2777 0.9260 0.0041 −0.0035 −0.0002 1.2269
7 0.9594 0.0029 0.0366 0.0001 1.2319 0.9432 0.0036 0.0299 −0.0001 1.2187
8 0.9621 0.0028 0.0408 0.0001 1.2036 0.9511 0.0033 0.0441 −0.0000 1.2067
9 0.9637 0.0027 0.0133 −0.0000 1.1995 0.9546 0.0033 0.0491 −0.0000 1.2228
10 0.9683 0.0026 0.0139 −0.0000 1.1720 0.9622 0.0029 0.0624 0.0000 1.1909
11 0.9755 0.0025 0.0254 0.0000 1.1515 0.9705 0.0025 0.0584 0.0000 1.1694
12 0.9785 0.0024 0.0221 0.0000 1.1380 0.9741 0.0024 0.0601 0.0000 1.1769
13 0.9792 0.0024 0.0196 −0.0000 1.1454 0.9760 0.0024 0.0945 0.0001 1.1938
14 0.9827 0.0023 0.0124 −0.0000 1.1205 0.9803 0.0021 0.0827 0.0001 1.1534
15 0.9852 0.0023 0.0137 −0.0000 1.1054 0.9814 0.0020 0.0603 0.0000 1.1449
16 0.9864 0.0022 0.0161 −0.0000 1.0887 0.9818 0.0019 0.0621 0.0001 1.1298
17 0.9858 0.0022 0.0184 −0.0000 1.0948 0.9808 0.0020 0.0648 0.0001 1.1353
18 0.9864 0.0022 0.0208 0.0000 1.0854 0.9811 0.0019 0.0560 0.0000 1.1249
19 0.9873 0.0021 0.0169 −0.0000 1.0816 0.9820 0.0018 0.0550 0.0000 1.1224
20 0.9879 0.0021 0.0225 0.0000 1.0641 0.9826 0.0017 0.0425 0.0000 1.1032
21 0.9884 0.0021 0.0382 0.0001 1.0467 0.9831 0.0016 0.0380 0.0000 1.0808
22 0.9896 0.0021 0.0376 0.0001 1.0362 0.9842 0.0015 0.0365 0.0000 1.0639
23 0.9900 0.0020 0.0414 0.0001 1.0352 0.9848 0.0015 0.0376 0.0000 1.0664
24 0.9903 0.0020 0.0402 0.0001 1.0313 0.9854 0.0015 0.0305 −0.0000 1.0666
25 0.9911 0.0020 0.0403 0.0001 1.0236 0.9862 0.0014 0.0315 −0.0000 1.0560
26 0.9921 0.0020 0.0423 0.0001 1.0137 0.9867 0.0013 0.0320 0.0000 1.0451
27 0.9923 0.0020 0.0423 0.0001 1.0010 0.9867 0.0013 0.0359 0.0000 1.0311
28 0.9926 0.0020 0.0453 0.0001 0.9918 0.9870 0.0012 0.0378 0.0000 1.0214
29 0.9926 0.0020 0.0466 0.0001 0.9837 0.9870 0.0012 0.0366 0.0000 1.0140
30 0.9926 0.0020 0.0467 0.0001 0.9838 0.9870 0.0012 0.0367 0.0000 1.0142

This table reports the in-sample and out-of-sample correlation of the tracking portfolio return with the index return
ρpy, daily tracking error

√
v? and cumulative out-of-sample return differential between the tracking portfolio and

the index RAR, and the intercept αp and the slope βp of a simple linear regression of the portfolio excess return
on the benchmark index excess return. The estimation period covers 2 January 2018 until 31 December 2018.
The out-of-sample test period starts in 2 January 2019 and ends on 31 December 2019. RAR is the cumulative
realized active return given by Πt=T

t=1 (1 + rp,t)−Πt=T
t=1 (1 + ry,t).

Next, I turn toward the outperformance algorithm. I consider three versions of the algorithm
depending on which factor model is used to describe security returns, variances and covariances.
Using the market model of stock return gives rise to Algorithm 4. Choosing the three-factor Fama and
French model produces Algorithm 5A, while the four-factor Carhart model I denote Algorithm 5B.
I report the performance of Algorithm 4 in Table 5. This algorithm by design tries to maximize ex ante
the active portfolio relative to the benchmark. It is worth noting that the algorithm reached a very
high correlation with the benchmark very quickly and performed quite well in terms of the realized
active return and the abnormal return both in-sample and out-of-sample. It is also interesting that the
outperformance was similar to that of Algorithm 2 but was achieved at the cost of less systematic risk,
as the active portfolio beta was slightly lower than 1, as opposed to being slightly greater than 1 in
Table 2.
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Table 5. Optimal tracking portfolios for DJIA index: Algorithm 4.

Number of In-Sample Out-of-Sample
Stocks ρpy

√
v? RAR αp βp ρpy

√
v? RAR αp βp

1 0.6103 0.0080 0.4661 0.0015 0.6779 0.3064 0.0117 −0.0810 −0.0000 0.4765
2 0.8447 0.0059 0.2857 0.0009 0.9366 0.6317 0.0074 0.1605 0.0006 0.7987
3 0.8708 0.0048 0.2446 0.0008 1.0658 0.7291 0.0066 0.3018 0.0009 0.9443
4 0.8998 0.0043 0.2221 0.0007 1.0369 0.7626 0.0059 0.2299 0.0007 0.9330
5 0.9373 0.0039 0.2125 0.0007 1.1012 0.8379 0.0047 0.1303 0.0004 0.9696
6 0.9383 0.0037 0.2071 0.0007 1.0411 0.8355 0.0045 0.0751 0.0002 0.9188
7 0.9399 0.0034 0.1932 0.0006 1.0636 0.8672 0.0042 0.0382 0.0001 0.9892
8 0.9437 0.0033 0.1958 0.0006 1.0241 0.8703 0.0040 0.0464 0.0001 0.9519
9 0.9459 0.0032 0.1973 0.0006 1.0220 0.8857 0.0038 0.0497 0.0001 0.9651

10 0.9501 0.0032 0.1947 0.0006 0.9917 0.8838 0.0037 0.0511 0.0001 0.9347
11 0.9572 0.0030 0.1817 0.0006 0.9915 0.9017 0.0034 0.0630 0.0002 0.9561
12 0.9567 0.0030 0.1809 0.0006 0.9655 0.9031 0.0033 0.0578 0.0002 0.9332
13 0.9618 0.0029 0.1740 0.0006 0.9592 0.9136 0.0031 0.0427 0.0001 0.9281
14 0.9643 0.0028 0.1647 0.0005 0.9461 0.9204 0.0030 0.0465 0.0001 0.9236
15 0.9651 0.0027 0.1623 0.0005 0.9591 0.9300 0.0028 0.0513 0.0001 0.9388
16 0.9652 0.0027 0.1561 0.0005 0.9316 0.9268 0.0028 0.0599 0.0002 0.9095
17 0.9675 0.0026 0.1478 0.0005 0.9265 0.9368 0.0026 0.0340 0.0001 0.9135
18 0.9684 0.0026 0.1437 0.0005 0.9162 0.9391 0.0026 0.0357 0.0001 0.8994
19 0.9682 0.0025 0.1379 0.0004 0.9068 0.9386 0.0026 0.0337 0.0001 0.8817
20 0.9718 0.0024 0.1295 0.0004 0.9071 0.9465 0.0024 0.0435 0.0001 0.8836
21 0.9713 0.0024 0.1255 0.0004 0.9050 0.9505 0.0023 0.0331 0.0001 0.8874
22 0.9739 0.0024 0.1200 0.0004 0.9183 0.9573 0.0021 0.0600 0.0002 0.9130
23 0.9740 0.0024 0.1182 0.0004 0.9143 0.9572 0.0021 0.0573 0.0002 0.9081
24 0.9781 0.0023 0.1110 0.0003 0.9168 0.9631 0.0020 0.0586 0.0002 0.9277
25 0.9787 0.0023 0.1037 0.0003 0.9177 0.9654 0.0019 0.0571 0.0002 0.9312
26 0.9836 0.0022 0.0950 0.0003 0.9400 0.9732 0.0017 0.0515 0.0001 0.9508
27 0.9858 0.0021 0.0849 0.0002 0.9322 0.9709 0.0018 0.0448 0.0001 0.9341
28 0.9880 0.0021 0.0751 0.0002 0.9332 0.9768 0.0016 0.0552 0.0001 0.9476
29 0.9899 0.0020 0.0625 0.0002 0.9449 0.9825 0.0014 0.0308 0.0000 0.9637
30 0.9914 0.0020 0.0506 0.0001 0.9505 0.9848 0.0013 0.0333 0.0000 0.9786

This table reports the in-sample and out-of-sample correlation of the tracking portfolio return with the index return
ρpy, daily tracking error

√
v? and cumulative out-of-sample return differential between the tracking portfolio and

the index RAR, and the intercept αp and the slope βp of a simple linear regression of the portfolio excess return
on the benchmark index excess return. The estimation period covers 2 January 2018 until 31 December 2018.
The out-of-sample test period starts in 2 January 2019 and ends on 31 December 2019. RAR is the cumulative
realized active return given by Πt=T

t=1 (1 + rp,t)−Πt=T
t=1 (1 + ry,t).

In Table 6 I document the performance of the outperformance Algorithm 5A which uses the
Fama and French (1992) three-factor model of stock returns. This allows the algorithm to control for
differences in the loadings of the component stocks on the market return, the SMB factor and the HML
factor. Thus, we have an improvement on the single-factor model of the empirical implementation
previously reported in Table 5. The performance here was in line with what was reported in Table 5
previously, namely, the portfolios were once again more concentrated on lower beta stocks which
also have lower idiosyncratic risks and that tends to deliver good returns with less systematic risk.
When comparing the performance of Algorithm 5A to that of Algorithm 4, we notice that the realized
active return and the abnormal return become slightly more volatile after the addition of every new
stock. This is perhaps due to the additional parameters that need to be estimated—namely, the three
factor exposures for each additional stock—and that appear to add some estimation noise to the
performance results.
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Table 6. Optimal tracking portfolios for DJIA index: Algorithm 5A.

Number of In-Sample Out-of-Sample
Stocks ρpy

√
v? RAR αp βp ρpy

√
v? RAR αp βp

1 0.6104 0.0088 0.4658 0.0015 0.6780 0.3065 0.0117 −0.0810 −0.0000 0.4766
2 0.7650 0.0068 0.2276 0.0008 0.7662 0.6432 0.0068 −0.2124 −0.0007 0.7376
3 0.7917 0.0063 0.1872 0.0006 0.7411 0.7064 0.0056 −0.1474 −0.0005 0.6937
4 0.8061 0.0059 0.1537 0.0005 0.7535 0.7465 0.0053 −0.1810 −0.0006 0.7435
5 0.8013 0.0058 0.1545 0.0005 0.7142 0.7472 0.0051 −0.1693 −0.0006 0.7047
6 0.9077 0.0048 0.1542 0.0005 0.8483 0.8204 0.0044 −0.0137 −0.0000 0.8094
7 0.9231 0.0043 0.1543 0.0005 0.8689 0.8242 0.0044 −0.0080 −0.0000 0.8268
8 0.9371 0.0040 0.1120 0.0004 0.8568 0.8144 0.0045 −0.0185 −0.0000 0.7972
9 0.9537 0.0037 0.0948 0.0003 0.8706 0.8696 0.0038 −0.0047 −0.0000 0.8635
10 0.9521 0.0037 0.1016 0.0003 0.8497 0.8681 0.0038 0.0035 0.0000 0.8422
11 0.9458 0.0035 0.1078 0.0003 0.8344 0.8615 0.0038 −0.0200 −0.0001 0.8199
12 0.9500 0.0034 0.1139 0.0004 0.8429 0.8780 0.0036 −0.0131 −0.0000 0.8390
13 0.9576 0.0031 0.1195 0.0004 0.9018 0.8923 0.0034 0.0562 0.0002 0.8888
14 0.9680 0.0029 0.0860 0.0003 0.9316 0.9228 0.0029 0.0024 −0.0000 0.9318
15 0.9690 0.0029 0.0883 0.0003 0.9171 0.9208 0.0029 0.0046 −0.0000 0.9158
16 0.9675 0.0028 0.0868 0.0003 0.8984 0.9167 0.0030 0.0124 0.0000 0.8954
17 0.9737 0.0027 0.0708 0.0002 0.9020 0.9364 0.0026 0.0322 0.0001 0.9204
18 0.9721 0.0027 0.0686 0.0002 0.8934 0.9381 0.0026 0.0304 0.0001 0.9023
19 0.9732 0.0026 0.0696 0.0002 0.9068 0.9450 0.0024 0.0351 0.0001 0.9162
20 0.9742 0.0025 0.0626 0.0002 0.9082 0.9481 0.0024 0.0344 0.0001 0.9212
21 0.9772 0.0025 0.0594 0.0002 0.9087 0.9532 0.0022 0.0439 0.0001 0.9206
22 0.9807 0.0024 0.0421 0.0001 0.9188 0.9607 0.0021 0.0471 0.0001 0.9455
23 0.9804 0.0023 0.0431 0.0001 0.9123 0.9620 0.0020 0.0492 0.0001 0.9415
24 0.9804 0.0023 0.0433 0.0001 0.9128 0.9620 0.0020 0.0495 0.0001 0.9422
25 0.9816 0.0023 0.0448 0.0001 0.9112 0.9642 0.0020 0.0416 0.0001 0.9389
26 0.9808 0.0022 0.0491 0.0001 0.9283 0.9656 0.0019 0.0296 0.0000 0.9641
27 0.9844 0.0021 0.0420 0.0001 0.9528 0.9710 0.0018 0.0247 0.0000 0.9846
28 0.9910 0.0021 0.0480 0.0001 0.9744 0.9849 0.0013 0.0089 −0.0001 0.9918
29 0.9911 0.0020 0.0495 0.0001 0.9751 0.9851 0.0013 0.0158 −0.0000 0.9980
30 0.9926 0.0020 0.0468 0.0001 0.9843 0.9870 0.0012 0.0377 0.0000 1.0148

This table reports the in-sample and out-of-sample correlation of the tracking portfolio return with the index return
ρpy, daily tracking error

√
v? and cumulative out-of-sample return differential between the tracking portfolio and

the index RAR, and the intercept αp and the slope βp of a simple linear regression of the portfolio excess return
on the benchmark index excess return. The estimation period covers 2 January 2018 until 31 December 2018.
The out-of-sample test period starts in 2 January 2019 and ends on 31 December 2019. RAR is the cumulative
realized active return given by Πt=T

t=1 (1 + rp,t)−Πt=T
t=1 (1 + ry,t).

Table 7 presents the in-sample and out-of-sample performance of Algorithm 5B which uses the
Carhart (1997) four-factor model of security returns. This allows the algorithm to control for exposure
to the Fama and French factors and loadings on the momentum factor for each component stock.
The performance of Algorithm 5B was largely in line that of Algorithm 5A. One thing that they both
have in common that is different from the market model is that it takes far less concentrated portfolios
in order for the out-of-sample performance to improve. Namely, very concentrated portfolios with
up to 10 component stocks tended to underperform out-of-sample. However, once all 30 component
stocks were included, both Algorithms 5A and 5B delivered a steady out-of-sample performance.
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Table 7. Optimal tracking portfolios for DJIA index: Algorithm 5B.

Number of In-Sample Out-of-Sample
Stocks ρpy

√
v? RAR αp βp ρpy

√
v? RAR αp βp

1 0.6104 0.0090 0.4655 0.0015 0.6780 0.3065 0.0117 −0.0810 −0.0000 0.4768
2 0.7650 0.0068 0.2276 0.0008 0.7662 0.6432 0.0068 −0.2124 −0.0007 0.7376
3 0.7917 0.0063 0.1872 0.0006 0.7411 0.7064 0.0056 −0.1474 −0.0005 0.6937
4 0.8061 0.0059 0.1536 0.0005 0.7535 0.7466 0.0053 −0.1810 −0.0006 0.7436
5 0.8014 0.0058 0.1545 0.0005 0.7144 0.7473 0.0051 −0.1693 −0.0006 0.7049
6 0.9077 0.0048 0.1542 0.0005 0.8484 0.8204 0.0044 −0.0137 −0.0000 0.8095
7 0.9231 0.0043 0.1543 0.0005 0.8691 0.8243 0.0044 −0.0079 −0.0000 0.8269
8 0.9370 0.0040 0.1113 0.0004 0.8564 0.8142 0.0045 −0.0192 −0.0000 0.7970
9 0.9535 0.0037 0.0943 0.0003 0.8702 0.8693 0.0038 −0.0053 −0.0000 0.8631
10 0.9519 0.0036 0.1011 0.0003 0.8494 0.8678 0.0038 0.0029 0.0000 0.8419
11 0.9457 0.0035 0.1072 0.0003 0.8340 0.8609 0.0038 −0.0205 −0.0001 0.8193
12 0.9498 0.0034 0.1135 0.0004 0.8424 0.8776 0.0036 −0.0139 −0.0000 0.8385
13 0.9574 0.0031 0.1193 0.0004 0.9008 0.8922 0.0034 0.0547 0.0002 0.8880
14 0.9681 0.0029 0.0852 0.0003 0.9315 0.9226 0.0029 0.0013 −0.0000 0.9315
15 0.9690 0.0029 0.0875 0.0003 0.9171 0.9206 0.0029 0.0033 −0.0000 0.9158
16 0.9674 0.0028 0.0860 0.0003 0.8984 0.9165 0.0030 0.0113 0.0000 0.8953
17 0.9736 0.0027 0.0702 0.0002 0.9019 0.9361 0.0026 0.0307 0.0001 0.9203
18 0.9720 0.0027 0.0680 0.0002 0.8934 0.9379 0.0026 0.0289 0.0001 0.9024
19 0.9731 0.0026 0.0690 0.0002 0.9066 0.9447 0.0024 0.0333 0.0001 0.9162
20 0.9741 0.0025 0.0621 0.0002 0.9080 0.9478 0.0024 0.0326 0.0001 0.9212
21 0.9772 0.0025 0.0589 0.0002 0.9086 0.9530 0.0023 0.0430 0.0001 0.9205
22 0.9806 0.0024 0.0417 0.0001 0.9186 0.9605 0.0021 0.0459 0.0001 0.9453
23 0.9803 0.0023 0.0428 0.0001 0.9122 0.9618 0.0020 0.0483 0.0001 0.9413
24 0.9803 0.0023 0.0429 0.0001 0.9124 0.9619 0.0020 0.0484 0.0001 0.9416
25 0.9816 0.0023 0.0444 0.0001 0.9110 0.9640 0.0020 0.0409 0.0001 0.9385
26 0.9808 0.0022 0.0487 0.0001 0.9275 0.9655 0.0019 0.0283 0.0000 0.9632
27 0.9844 0.0021 0.0416 0.0001 0.9526 0.9709 0.0018 0.0238 0.0000 0.9841
28 0.9910 0.0021 0.0476 0.0001 0.9741 0.9848 0.0013 0.0082 −0.0001 0.9914
29 0.9911 0.0020 0.0491 0.0001 0.9746 0.9850 0.0013 0.0148 −0.0000 0.9974
30 0.9926 0.0020 0.0465 0.0001 0.9839 0.9870 0.0012 0.0367 0.0000 1.0143

This table reports the in-sample and out-of-sample correlation of the tracking portfolio return with the index return
ρpy, daily tracking error

√
v? and cumulative out-of-sample return differential between the tracking portfolio and

the index RAR, and the intercept αp and the slope βp of a simple linear regression of the portfolio excess return
on the benchmark index excess return. The estimation period covers January 2, 2018 until December 31, 2018.
The out-of-sample test period starts in 2 January 2019 and ends on 31 December 2019. RAR is the cumulative
realized active return given by Πt=T

t=1 (1 + rp,t)−Πt=T
t=1 (1 + ry,t).

4. Conclusions

In this paper I have addressed the question of how best to build a replicating portfolio of
a component set of securities with which to efficiently track a stock market benchmark index.
The analysis is by no means limited to an equity index or a traded portfolio of securities but could
be applied to ways of tracking various state variables of interest, such as commodities prices or
macroeconomic time series, among others. I applied this analysis for a general specification of security
returns and for single and multi-factor models of security returns. The results are quite intuitive and
suggest that the securities that make it into the tracking portfolio have the highest ratios of factor beta
to residual error variance. This is a new and interesting result. This ratio has important economic
significance, as tangency portfolio weights under a single-factor model are proportional to it. Within
the context of factor models for securities returns, the replicating portfolio is proportional to the highest
Sharpe ratio (tangent) portfolio scaled by the benchmark beta. This result holds regardless of the
number of factors employed. It is also straightforward to extend the results to the case wherein the
parameters are time-varying along the lines of a multivariate GARCH model, for example, which then
leads to conditional time-varying tracking portfolio weights.

Concerning the practical implications of the theoretical results of this paper, the main advantage
to the use of a factor model of stock returns is that the computational effort is reduced to a linear
function of the number of stocks in the replicating portfolio. This can be of particular importance for
large portfolios consisting of hundreds or even thousands of stocks. Furthermore, the algorithm
using factor models is not as data-hungry as the algorithms that use only variance-covariance
matrices. Note that the latter require a longer time series than the number of assets in order for
a positive-definite covariance matrix to be obtained. At the same time, estimating the parameters of
the factor model requires a fixed amount of historical returns, regardless of the size of the cross-section
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under consideration. This can be of great convenience to both individual investors and delegated
portfolio managers alike.

In regard to future work, several open questions remain to be addressed. In particular,
constructing fixed-weight replicating portfolios with rebalancing and proportional transaction costs
will change the performance results of the replicating portfolio relative to the benchmark. Similarly,
the issue of time-variation in betas and idiosyncratic volatilities would suggest that the investor should
periodically re-estimate these parameters and re-balance the tracking portfolio. The optimal frequency
at which this should be done remains an open question.

Several extensions to the analysis in this paper are possible. First, the inter-temporal optimal
strategy over a preset horizon would be of considerable practitioner interest. Second, the explicit
incorporation of transaction costs and capital gains taxes and their effect on the optimal strategy
is another possibility. Numerical solutions for small sets of stocks should be feasible, though
time-consuming. Similarly, the question of what the minimum number of stocks depends on is
of further interest and is left for future work.
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Appendix A

Proof of Proposition 1. Using the notation in the paper we can express the variance of the tracking
error as:

σ2
ε = σ2

y + w′Σrrw− 2w′σry (A1)

The first-order necessary condition for optimality is:

2Σrrw− 2σry = 0 (A2)

which yields the optimal portfolio weights as:

w? = Σ−1
rr σry. (A3)

The second-order condition for obtaining a minimum of the objective function is Σrr > 0, which is
trivially satisfied by any positive-definite variance-covariance matrix.

Proof of Corollary 1. Let us re-write the regression equation in (6) more compactly as follows:

ry = [1T , r]

[
θ0

θ1

]
+ u. (A4)

Let µ̂y = 1
T ∑t=T

t=1 ry,t, µ̂ = 1
T ∑t=T

t=1 r′t, Σ̂rr = 1
T ∑t=T

t=1 (rt − µ̂′)(rt − µ̂)′, and σ̂ry = 1
T ∑t=T

t=1 (ry,t −
µ̂′y)(rt − µ̂)′. The ordinary least squares (OLS) estimate θ̂ is given by:
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θ̂ =
(
[1T , r]′ [1T , r]

)−1
[1T , r]′ ry, (A5)

=

(
T

[
1 µ̂′

µ̂ µ̂µ̂′ + Σ̂rr

])−1

T

[
µ̂y

µ̂yµ̂ + σ̂ry

]
,

=
1
T

[
1 + µ̂′Σ̂−1

rr µ̂ −µ̂′Σ̂−1
rr

−Σ̂−1
rr Σ̂−1

rr

]
T

[
µ̂y

µ̂yµ̂ + σ̂ry

]
,

=

[
µ̂y − µ̂′Σ̂−1

rr σ̂ry

Σ̂−1
rr σ̂ry

]
,

or θ̂0 = µ̂y − µ̂′ θ̂1 and θ̂1 = Σ̂−1
rr σ̂ry.

Proof of Corollary 2. For a detailed proof see, for example, Huberman and Kandel (1987). When
θ̂0 = 0 and 1′N θ̂1 = 1, the mean-variance frontier generated by the replicating securities coincides
with the augmented mean-variance frontier that includes the benchmark index and the replicating
securities.

Proof of Corollary 3. From the OLS estimates in the proof of Corollary 1 above, it follows that if
θ̂0 < 0 then

µ̂y < µ̂′Σ̂−1
rr σ̂ry = µ̂′w? = µ̂p, (A6)

which implies that the replicating portfolio has a higher excess return in-sample than the benchmark
index.

Proof of Proposition 2. The inverse of the variance-covariance matrix of securities’ excess return
in (17) is given by:

Σ−1
rr = D−1 − D−1βr

(
1

σ2
m
+ β′rD−1βr

)−1
β′rD−1. (A7)

Substituting (A7) and (18) into (5) yields:

w? = D−1βrβyσ2
m −

D−1βr(β′rD−1βr)βyσ2
m

1
σ2

m
+ β′rD−1βr

. (A8)

Collecting terms in the previous line produces the final result in (21). The expression for the
variance of the tracking error under the optimal weights follows immediately by substituting the latter
into v(w) = σ2

y + w′Σrr − 2w′σry and collecting terms.

Proof of Corollary 4. The beta of the replicating portfolio can be obtained by using the optimal
portfolio weights in (21):

βp = β′rw?, (A9)

=
β′rD−1βr

1
σ2

m
+ β′rD−1βr

βy,

< βy.

Proof of Corollary 5. The tangent portfolio weights in the framework of an exact single-factor
model are:
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wtg = Σ−1
rr µr, (A10)

=

[
D−1 − D−1βr

(
1

σ2
m
+ β′rD−1βr

)−1
β′rD−1

]
βrµm,

=
D−1βr

1
σ2

m
+ β′rD−1βr

· µm

σ2
m

.

Clearly the solution (21) differs from wtg only up to the beta of the benchmark index, βy, and the
factor premium per unit of factor risk, µm/σ2

m:

w? = wtgβy
σ2

m
µm

, (A11)

which demonstrates the claim made in the corollary.

Proof of Proposition 3. Following the same steps as in the proof of proposition 2 above, the inverse
of the variance-covariance matrix in (24) is:

Σ−1
rr = D−1 − D−1Br(V−1

f + B′rD−1Br)
−1B′rD−1. (A12)

Substituting (A12) and (25) into (5) we get:

w? = D−1BrVf by − D−1Br(V−1
f + B′rD−1Br)

−1BrD−1BrVf by, (A13)

= D−1Br

[
IK − (V−1

f + B′rD−1Br)
−1BrD−1Br

]
Vf by,

= D−1Br

[
(V−1

f + B′rD−1Br)
−1(V−1

f + B′rD−1Br)− (V−1
f + B′rD−1Br)

−1BrD−1Br

]
Vf by,

= D−1Br(V−1
f + B′rD−1Br)

−1V−1
f Vf by,

= D−1Br(V−1
f + B′rD−1Br)

−1by,

which is the proposed solution. The variance of the tracking error under the optimal portfolio weights
is obtained in the same way as in the proof of proposition 2 above.

Proof of Proposition 4. Using the notation in the paper we can express the Lagrangian as:

L = σ2
y + w′ΣRRw− 2w′σRy + λ

(
1− w′1N

)
(A14)

The first-order necessary condition for optimality is:

2ΣRRw− 2σRy − λ1N = 0 (A15)

which yields the optimal portfolio weights as:

w?(λ) = Σ−1
RRσRy + (λ/2)Σ−1

RR1N . (A16)

Substituting w?(λ) into the budget constraint we can solve for the shadow price:

1 = 1′NΣ−1
RRσRy + (λ/2)1′NΣ−1

RR1N ,

(λ/2) =
1− 1′NΣ−1

RRσRy

1′NΣ−1
RR1N

.
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Substituting the above into (A16) produces the stated result. The second-order condition for
obtaining a minimum of the objective function is ΣRR > 0, which is trivially satisfied by any
positive-definite variance-covariance matrix.

Proof of Proposition 5. Using the notation in the paper we can express the Lagrangian as:

L = σ2
y + w′Σrrw− 2w′σry + λ

(
σ2

0 − w′Σrrw
)

(A17)

The first-order necessary condition for optimality is:

2Σrrw− 2σry − 2λΣrrw = 0 (A18)

which yields the optimal portfolio weights as:

w?(λ) =

(
1

1− λ

)
Σ−1

rr σry. (A19)

By substituting w?(λ) into the variance constraint we can solve for the shadow price:

σ2
0 =

(
1

1− λ

)2
(σ′ryΣ−1

rr σry),(
1

1− λ

)
=

σ0√
σ′ryΣ−1

rr σry

.

Substituting the above into (A19) produces the stated result. The second-order condition for
obtaining a minimum of the objective function is (1− λ)Σrr > 0, which is trivially satisfied by any
positive-definite variance-covariance matrix and σ0 > 0.

Proof of Proposition 6. Using the notation in the paper we can express the Lagrangian as:

L = σ2
y + w′ΣRRw− 2w′σRy + λ1(1− w′1N) + λ2

(
σ2

0 − w′ΣRRw
)

. (A20)

The first-order necessary condition for optimality is:

2ΣRRw− 2σRy − λ11N − 2λ2ΣRRw = 0. (A21)

Substituting the above in the two constraints leads to the following system of equations in the
shadow prices λ1 and λ2: (

1
1− λ2

) [
(1′NΣ−1

RRσRy) + (λ1/2)(1NΣ−1
RR1N)

]
= 1,(

1
1− λ2

)2 [
(σ′RyΣ−1

RRσRy) + 2σ′RyΣ−1
RR1N(λ1/2) + (λ1/2)2(1′NΣ−1

RR1N)
]

= σ2
0 .

The solution to the above system of equations is:(
1

1− λ2

)
=

σ2
0 − σ2

mv
Q

,

λ1/2 = σ2
mv

[√
Q

σ2
0 − σ2

mv
− (1′NΣ−1

RRσRy)

]
,
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where

Q = (σ′RyΣ−1
RRσRy)−

(1′NΣ−1
RRσRy)

(1′NΣ−1
RR1N)

,

σ2
mv =

1
1′NΣ−1

RR1N
.

For substituting λ1 and λ2 into the first order condition in (A21) above and simplifying the yield,
the result is stated in the text. The second-order condition for obtaining a minimum of the objective
function is (1− λ2)ΣRR > 0 which is trivially satisfied by any positive-definite variance-covariance
matrix and σ2

0 > σ2
mv.

Proof of Proposition 7. Using the notation in the paper we can express the Lagrangian as:

L = σ2
y + w′Σrrw− 2w′σry + λ(β0 − w′βr). (A22)

The first-order necessary condition for optimality is:

2Σrrw− 2σry − λβr = 0. (A23)

Substituting the above in the factor loading constraint leads to the following equation for the
shadow price λ/2:

β0 = β′rΣ−1
rr σry + (λ/2)(β′rΣ−1

rr βr).

The solution to the above yields the following value for the Lagrangian multiplier λ/2:

λ/2 =
β0 − β′rΣ−1

rr σry

β′rΣ−1
rr βr

.

Substituting λ/2 into the first order condition in (A23) above and using the factor structure of
σry and Σrr yields the stated result after collecting terms. The second-order condition for obtaining
a minimum of the objective function is Σrr > 0 which is trivially satisfied by any positive-definite
variance-covariance matrix.

Proof of Proposition 8. Using the notation in the paper we can express the Lagrangian as:

L = σ2
y + w′Σrrw− 2w′σry + λ′(b0 − B′rw). (A24)

The first-order necessary condition for optimality is:

2Σrrw− 2σry − Brλ = 0. (A25)

Substituting the above in the beta constraint leads to the following equation in the shadow price
vector λ/2:

b0 = B′rΣ−1
rr σry + (B′rΣ−1

rr Br)(λ/2).

Using the factor structure of σry and Σrr, the solution to the above yields the following value for
the Lagrangian multiplier vector λ/2:

λ/2 = (B′rD−1Br)
−1b0 + Vf (b0 − by).
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Substituting λ/2 into the first order condition in (A25) above yields the stated result after collecting
terms. The second-order condition for obtaining a minimum of the objective function is Σrr > 0, which
is trivially satisfied by any positive-definite variance-covariance matrix.
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