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Abstract: This work aims to illustrate an advanced quantitative methodology for measuring the
credit risk of a loan portfolio allowing for diversification effects. Also, this methodology can allocate
the credit capital coherently to each counterparty in the portfolio. The analytical approach used
for estimating the portfolio credit risk is a binomial type based on a Monte Carlo Simulation. This
method takes into account the default correlations among the credit counterparties in the portfolio by
following a copula approach and utilizing the asset return correlations of the obligors, as estimated
by rigorous statistical methods. Moreover, this model considers the recovery rates as stochastic and
dependent on each other and on the time until defaults. The methodology utilized for coherently
allocating credit capital in the portfolio estimates the marginal contributions of each obligor to the
overall risk of the loan portfolio in terms of Expected Shortfall (ES), a risk measure more coherent and
conservative than the traditional measure of Value-at-Risk (VaR). Finally, this advanced analytical
structure is implemented to a hypothetical, but typical, loan portfolio of an Italian commercial
bank operating across the overall national country. The national loan portfolio is composed of 17
sub-portfolios, or geographic clusters of credit exposures to 10,500 non-financial firms (or corporates)
belonging to each geo-cluster or sub-portfolio. The outcomes, in terms of correlations, portfolio risk
measures and capital allocations obtained from this advanced analytical framework, are compared
with the results found by implementing the Internal Rating Based (IRB) approach of Basel II and III.
Our chief conclusion is that the IRB model is unable to capture the real credit risk of loan portfolios
because it does not take into account the actual dependence structure among the default events, and
between the recovery rates and the default events. We underline that the adoption of this regulatory
model can produce a dangerous underestimation of the portfolio credit risk, especially when the
economic uncertainty and the volatility of the financial markets increase.

Keywords: portfolio credit risk; asset correlation; coherent capital allocation; copula function; Monte
Carlo simulation; time until default

1. Introduction

Currently, the financial system has become more volatile due to increasing globalization and
financial integration. In such a context, financial intermediaries bear a greater amount of risk because
of the growing interconnectedness of financial markets. Various kinds of risks affect the balance-sheets
of financial intermediaries, but the most important is credit risk, particularly for commercial banks.
For most banks, the loans to the real economy are the largest source of credit risk. For these reasons,
banks need to adopt accurate methodologies for consistently assessing the credit risk of their loan
portfolio and for allocating economic capital coherently to each counterparty in the portfolio. Bank
capital plays a fundamental role in the safety and soundness of the banking system, since the main role
of bank capital is to absorb large unexpected losses.
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It is well known that the worth of a portfolio model lies in its ability to take into account
the effects of diversification, namely the default correlations among the credit assets in a portfolio
(Crouhy et al. 2000, 2014; Gordy 2000).

On the other hand, the regulatory approach based on internal ratings, namely the IRB-model
proposed by Basel II and III, founded on the hypothesis of the “portfolio invariant” model
(Gordy 2000, 2003), assumes that banking portfolios are perfectly fine grained; namely, that idiosyncratic
risks have been diversified away. Consequently, the IRB model calculates the banking capital
requirements to cover the unexpected credit losses on banking loans as a function of the characteristics
of the borrower and the credit line only, ignoring the empirical portfolio composition and, in particular,
the real level of diversification among the credit assets in the portfolio.

More specifically, the two theoretical and restrictive hypotheses underlying Basel’s IRB model are
the following:

(i) the infinite granularity of the credit portfolio and, therefore, the asymptotic approximation of
the overall portfolio risk to the only non-diversifiable risk. In other words, the loan portfolio is
highly diversified.

(ii) the existence of only a single systematic risk factor, and the subsequent quantification of this risk
using the correlation between the economic assets of each counterparty in the portfolio and the
index of the general economic condition.

The adoption of a portfolio invariant model by Basel II and III offers obvious analytical advantages
to regulatory authorities. In particular, this approach permits the calculation of regulatory capital
requirements analytically, without considering the real composition and the granularity of the empirical
loan portfolios.

On the other hand, real-world portfolios are not perfectly fine grained. The asymptotic assumption
might be approximately valid for some large bank portfolios, but could be much less acceptable for
portfolios of smaller or more specialized institutions (Gordy and Lütkebohmert 2013).

The IRB model can underestimate the real credit risk amount of undiversified loan portfolios,
omitting the contribution of the idiosyncratic risks in the portfolio.

Moreover, Basel sets for the category “corporate exposures” a regulatory value of the correlation
between 12% and 24%. The values of the correlation obtained utilizing the regulatory formula, although
inclosing an adjustment for small and medium enterprises, appear empirically conservative; that is,
too high (De Servigny and Renault 2002; Duellmann and Scheule 2003; Duellmann and Koziol 2014;
Hamerle and Rösch 2006; Sironi and Zazzara 2003; Dietsch and Petey 2004; Lopez 2004; Kitano 2007).

It is well known that asset correlations play a critical role in measuring portfolio credit risk, and in
determining both economic and regulatory capital. In a credit portfolio, having many components does
not assure good diversification, because the components may be highly correlated to each other, and
the default of one may lead to default of the rest of the portfolio. This concept is called concentration
risk in credit risk management.

Another reason is the incremental risk. Incremental risk measures the portfolio’s risk sensibility
to any changes in the portfolio’s components. Therefore, correlation indicates the movement direction
of the portfolio’s assets with each other and with economic events.

An additional purpose for studying the correlations is to achieve a better allocation of assets
in the portfolio. Optimal allocation means the minimization of the volatility of the portfolio, which
depends on correlations (Mausser and Rosen 2008). Any change in the correlations of the portfolio
changes the optimal asset allocation (Mizgier and Pasia 2015). The empirical results (Zhou 2001;
De Servigny and Renault 2002) show that the default correlation between the components of the
portfolio increases when the market does not perform well, or when there is an event that affects the
market adversely. Also, De Servigny and Renault (2002) examined the effect of the time horizon on the
default correlation, and showed that the correlation increases with time.

The standard approach for allocating capital in terms of Value-at-Risk (VaR) is founded on the
traditional mean-variance approach (Markowitz 1952). However, a lot of recent academic studies
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(Artzner et al. 1999; Acerbi and Tasche 2002) proved that the mean-variance capital allocation presents
many shortcomings. The most important drawback is that the capital amount allocated to the whole
portfolio may be greater than the capital amounts allocated to the individual sub-portfolios when
the return distributions are not Gaussian (this is the case in credit assets). These problems can be
overcome by allocating the capital in terms of Expected Shortfall (ES) as described, for instance, in
Kalkbrener et al. (2004). While VaR (or more exactly, the Maximum Loss, ML) can be considered as a
quantile of the portfolio loss distribution, the Expected Shortfall is approximately the conditional mean
of losses exceeding VaR.

In light of all these considerations, this work aims to illustrate an advanced quantitative
methodology capable of measuring the credit risk of the loan portfolio adequately, allowing
for diversification effects, and suitable for allocating credit capital coherently (in the sense of
Artzner et al. 1999) to each counterparty in the portfolio.

The added value of this research is, therefore, to introduce a new quantitative methodology
capable of overcoming the weaknesses of Basel’s IRB model. In order to achieve this goal, the principal
tasks of this research are:

(i) Emphasizing that the main disadvantages of the Basel model are its underlying
restrictive assumptions.

(ii) Comparing the results in terms of the portfolio’s credit risk measures derived from the new
methodology and from the IRB model when we assume both diversified and concentrated
loan portfolios.

(iii) Introducing two sound statistical methodologies for estimating the asset return correlations
between the obligors in the portfolio.

(iv) Improving the methodological framework of the portfolio credit risk model by assuming a
dependence structure between the default events and the recovery rates.

(v) Introducing a coherent methodology for capital allocation that takes into account the non-normality
of the portfolio credit loss distribution.

In particular, the quantitative approach used in this paper for estimating the portfolio’s credit
risk is of the binomial type, and is based on Monte Carlo Simulation. This methodology takes into
account the default correlations among the credit counterparties in the portfolio—following the idea
of the copula approach, first developed in Li (2000)—and utilizes the asset return correlations of
the obligors, as estimated by means of rigorous statistical methods (Lucas 1995; De Servigny and
Renault 2002; Frye 2000; Hamerle and Rösch 2006). Li (2000) first introduced a random variable called
time-until-default, which measures the length of time from today until default time, to indicate the
survival time of each defaultable obligor. Then, Li (2000) defined the default correlation between two
obligors by the correlation between their survival times. Following this original idea, we construct
the dependence structure of defaults by means of a one-factor model, generating the scenarios of the
times until default’s random vector for the N exposures in the portfolio from the Gaussian copula
(Gregory and Laurent 2004). The concept of copula goes back to Sklar (1959). Copula is a function of
several variables, and describes, in a powerful way, how joint distribution is linked to its univariate
margins. Copula functions are used to combine marginal distributions into a multivariate distribution.
They are unique: for any given multivariate distribution (with continuous marginal distributions)
there is a unique copula function that represents it. They are also invariant under strictly increasing
transformations of the marginal distributions. Moreover, copula functions have long been recognized
as a powerful tool for modelling dependence between random variables (Nelsen 1999). The basic idea
behind copulas is to separate dependence and the marginal behavior of the univariates. Also, our
methodology can consider the recovery rates as stochastic and dependent on each other and on the
time until defaults, following the examples of Pykhtin (2003); Tasche (2004); Emmer and Tasche (2004);
Gregory and Laurent (2004); and Chabaane et al. (2004).
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Moreover, the approach utilized for allocating credit capital coherently (Overbeck 2000;
Denault 2001; Kalkbrener et al. 2004; Kalkbrener 2005) estimates the marginal contributions of
each obligor to the overall risk of the loan portfolio in terms of Expected Shortfall (ES), a risk measure
that is coherent (in sense of Artzner et al. 1999; Tasche 2002; Acerbi and Tasche 2002) and more
conservative than the traditional measure of Value-at-Risk (VaR).

Finally, this advanced analytical structure is implemented to a hypothetical but typical loan
portfolio of an Italian commercial bank operating across the country. The national loan portfolio is
structured with 17 sub-portfolios or regional clusters of credit exposures to 10,500 non-financial firms
(or corporates) belonging to each geo-cluster or sub-portfolio.

The outcomes in term of correlations, portfolio risk measures, and capital allocations obtained
from this advanced analytical framework are compared with the results found by implementing the
internal rating based approach of Basel II and III.

In particular, the contributions of each geographical sub-portfolio to the credit risk of the overall
Italian loan portfolio have been estimated in terms of Value-at-Risk (VaR), Maximum Loss (ML) and
Expected Shortfall (ES), calculated for a confidence level of 99.9% over an annual time horizon.

Our chief conclusion is that the IRB model is unable to capture the real credit risk of loan portfolios
because it does not take into account the actual dependence structure among the default events, and
between the recovery rates and the default events. For this reason, we underline that the adoption of
this regulatory model can produce a dangerous underestimation of the portfolio credit risk, especially
when the economic uncertainty and volatility of the financial markets increase. The whole paper is
structured as follows. Section 2, and Sections 2.1 and 2.2, illustrate the quantitative characteristics of
the advanced approach for estimating the credit risk of the loan portfolio consistently. In particular,
this binomial (default/non-default) model is based on Monte Carlo Simulation, and takes into account
the default correlations among obligors in the portfolio, following the idea of the copula approach
first developed by Li (2000). Section 3 describes two sound statistical methods for estimating the asset
correlations of obligors in the portfolio consistently. First, we follow Frye (2000) for calculating the
asset correlation coefficients by factor loadings (namely, the sensitivity coefficients of the obligor asset
returns to the changes in the systematic factor), estimated through the maximum likelihood method
(MLH). Secondly, we implement an alternative methodology for estimating the correlations, first
presented by Lucas (1995) (De Servigny and Renault 2002; Hamerle and Rösch 2006). For comparison
purposes, we apply these two robust statistical methodologies to the Italian loan portfolio utilizing
the historical time series of default numbers and default rates from 2006 to 2019. These input data
can be freely downloaded from the website of the Bank of Italy. Section 4 explains how a dependence
structure between recovery rates and default events can be introduced into this credit portfolio model.
Section 5 describes a coherent capital allocation technique, emphasizing its peculiarities with reference
to the traditional capital allocation scheme founded on Markowitz (1952) portfolio theory. In Section 6,
we implement the advanced analytical framework to a hypothetical but typical Italian loan portfolio
composed of banking credit exposures to 10,500 non-financial Italian firms (or corporates) residing
in each of the 17 Italian geographic clusters (regions). Comments and conclusions are reported in
Section 7.

2. Credit Portfolio Model and Credit Risk Measures

We assume a loan portfolio with N obligors and a time horizon equal to the longest maturity
among the credit assets in the portfolio1. The random variable (r.v.) L, representing the portfolio loss,
is defined following the notation used in Jouanin et al. (2004):

1 Suppose we are in time 0, if the longest maturity is Mmax, the time horizon is [0,Mmax].
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L =
N∑

i=1

Li =
N∑

i=1

EaDi · (1−Ri) · 1{τi ≤Mi} (1)

Equation (1) denotes a default/non-default model, where Li is the r.v. loss for each obligor i, EaDi
is the exposure at default of obligor i, Ri is its recovery rate, Mi is the maturity of debt of obligor i, τi is
the r.v. time until the default of obligor i2 and 1 is a function that assumes a value equal to 1 if τi ≤Mi
and a value of 0 otherwise.

The recovery rate Ri may be assumed to be deterministic3 or stochastic with mean mi and standard
deviation si, and independent4 of each other and of their respective times until default τi. The most
common assumption about the distributional form of Ri is the Beta (ai,bi) distribution, with the
parameters ai and bi estimated by the method of moments, knowing the values of mi and si analytically:

ai =
m2

i (1−mi)

s2
i

−mi, bi =
m2

i (1−mi)
2

mis2
i

− (1−mi) (2)

The stochastic vector of the times until default (τ1, . . . , τN) has a multivariate cumulative
distribution function (c.d.f.), F. This may be written by the following copula representation:

F(t1, . . . , tN) = Pr{τ1 ≤ t1, . . . , τN ≤ tN} = C(F1(t1), . . . , FN(tN)) (3)

In Equation (3), Fi is the marginal c.d.f. of τi, and C is the copula function that determines the
dependence structure of the multivariate c.d.f. of the times until default vector.

The concept of copula goes back to Sklar (1959). Copula is a function of several variables which
describes, in a powerful way, how joint distribution is linked to its univariate margins. A n-dimensional
copula function is a multivariate c.d.f., C, with margins uniformly distributed on [0,1], and with the
following properties:

1. C is grounded and n-increasing.
2. C has margins Ci which satisfy Ci(u) = C(1, . . . , 1, u, 1, . . . , 1) = u for all u ∈ [0,1].
3. C: [0,1]n

→ [0,1].

Copula functions are used to combine marginal distributions into a multivariate distribution.
They are unique: for any given multivariate distribution (with continuous marginal distributions) there
is a unique copula that represents it. They are also invariant under strictly increasing transformations
of the marginal distributions. Moreover, copulas have long been recognized as a powerful tool for
modelling dependence between random variables (Nelsen 1999). The basic idea behind copulas is to
separate the dependence and marginal behavior of the univariates. The most known copulas are the
elliptical or standard ones. Important examples in this family of distributions are the Gaussian and
Student’s t examples. The unknown c.d.f. G of the r.v. L (portfolio loss) may be estimated by Monte
Carlo simulation using the following algorithm:

(1) Generate a determination of N random variables uniformly distributed on [0,1], (u1, . . . , uN) from
the copula C.

(2) Determine a scenario for the times until default by inverting (u1, . . . , uN) using the margins:
ti = F−1

i (ui), i = 1, . . . , N.

2 It is assumed that Mi and τi have been expressed in years.
3 This is the case of the Internal Rating Based (IRB) approach as formulated by Basel Committee for calculating banking

capital requirement.
4 In a following section we will see how this hypothesis may be relaxed.
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(3) For every obligor i = 1, . . . , N, if ti ≤Mi we then obtain a loss scenario equal to EaDi(1−Ri), or
equal to 0 otherwise. In the case of stochastic recovery rates, the determination of Ri is generated
from a Beta (ai,bi) c.d.f.

(4) Add up the losses of the N obligors, obtaining a scenario of the portfolio loss, Lj.
(5) Steps from 1 to 4 are repeated a great number of times, s.

From the distribution of the portfolio losses obtained by the simulation, we may estimate different
risk measures for the loan portfolio, such as the expected loss, EL; the maximum loss, ML; the Value at
Risk, VaR; and the Expected Shortfall, ES. In particular, portfolio EL is calculated as the mean of the
portfolio losses for all s scenarios. Analytically:

EL =

s∑
j=1

L j

s
(4)

The portfolio ML at the probability level α, MLα, may be calculated by ordering the s scenarios of
portfolio loss in non-decreasing order and cutting the obtained distribution at the α-th percentile.

Portfolio Credit VaR, at the probability level α, is calculated as the difference between the ML at
the same probability level α and the EL of the portfolio. Analytically:

VaRα = MLα − EL (5)

The portfolio ES, at the probability level α, ESα, is calculated as the conditional mean of the
portfolio losses exceeding the ML. Analytically:

ESα = MLα +
1

(1− α) · s

s∑
j=1

(
L j −MLα

)+
(6)

where
(
L j −MLα

)+
= L j −MLα if L j −MLα > 0;

(
L j −MLα

)+
= 0 if L j −MLα ≤ 0.

2.1. Determining the Marginal Distributions for the Times Until Default

In order to apply the algorithm described in the previous Section 2, it is necessary to give a
functional form to the marginal cumulative distribution functions, Fi, for the random variables’ times
until default, and to estimate their parameters. In order to do this, we have to introduce the hazard
rate function, hi(t), defined as follows:

hi(t) = lim
∆t→0

Pr{ t < τi ≤ t + ∆t|τi > t }
∆t

(7)

By extending Equation (7), the following is obtained:

hi(t) = lim
∆t→0

Pr{ t < τi ≤ t + ∆t}
∆tPr{τi > t}

=
∂
∂t Fi(t)

1− Fi(t)
= −

∂
∂t

ln(1− Fi(t)) (8)

By solving the differential Equation (8), we obtain

Fi(t) = Pr[τi ≤ t] = 1− exp

−
t∫

0

hi(u)du

 (9)
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If we assume that the time structure of the hazard rate function is flat, that is hi(t) = hi for each t,
we can rewrite Equation (9) as follows:

Fi(t) = Pr[τi ≤ t] = 1− e−hit (10)

The hazard rate function completely characterizes the distribution of the random variable Ti.
Therefore, the calibration of hi(t) from real data is a core issue. In pricing applications, the hazard
rates are usually calibrated using market data such as the quotations of defaultable bonds, asset swap
spreads, or Credit Default Swaps5. Conversely, for risk management applications, the hazard rates
may be calibrated using the probability of default provided by an internal or external6 credit rating
assessment. For instance, if qi(0, t) is the average cumulative default rate over the time horizon [0, t]7,
from Equation (10), we obtain:

1− e−hi(t)t = qi(0, t)⇒ hi(t) = − ln(1− qi(0, t))/t (11)

If we dispose of a term structure of the default probabilities8, a piecewise constant functional
form for the hazard rates may be assumed. If T1, T2, . . . , Tm are the nodes of the term structure of the
default probabilities (for years), then the hazard rate function may be written in the following way:

hi(t) =
m∑

j=1

hi, j1(T j−1,T j]
(t) (12)

In Equation (12), hi,j are positive constants, j = 1, . . . , m and 1(T j−1,T j]
(t) = 1 if t∈(Tj−1, Tj]. This

hypothesis implies that the c.d.f. Fi(t) may be written as follows:

Fi(t) = 1− exp

−
k∑

j=1

hi, j(T j − T j−1)

 , k =


1 if t ≤ T1

2 if T1 < t ≤ T2

. . .
m if t > Tm−1

(13)

From Equation (13), hi,1 may be estimated using the probability of default over the maturity T1;
hi,2 may be calibrated using the default probability over the maturity T2, known hi,1, and so on. The
remaining hi,j may be calibrated up to time Tm.

2.2. A One-Factor Model for Generating Scenarios from the Gaussian Copula

To apply the algorithm of Section 2, it is necessary to generate scenarios (u1, . . . , uN) from the
generic copula, C. For this purpose, in the academic literature and in practical industry applications,
the most utilized copulas are the Gaussian and the Student’s t examples. These copulas are easy
to implement and, furthermore, are endowed with a sufficient parameter number for describing
the portfolio’s dependence structure effectively. The most important parameter to calibrate is the
correlation matrix9.

Li (2000) demonstrated that, when we model the c.d.f. in Equation (3) using the Gaussian copula,
in the bivariate case, the correlation parameter is equal to the asset correlation between the two
counterparties. This result may be extended to the case of the t-copula (see Mashal and Naldi 2002;

5 In this case, a risk neutral measure of hi is obtained.
6 i.e., rating agencies.
7 Usually, since we dispose of the one-year default probabilities, t = 1.
8 e.g., we dispose of the probabilities of default over the time horizons 1, 2, 5 and 10 years.
9 We use the term correlation matrix even if it is not completely appropriate in the case of the Student’s t-copula.
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Meneguzzo and Vecchiato 2004). Therefore, the elements of a correlation matrix with dimensions NxN
are the asset correlations among the N obligors in the portfolio.

Nevertheless, the number of obligors for a typical Italian commercial bank is so high as to
require high costs in terms of memory space and computational time to implement the Monte Carlo
methodology. For this reason, it is convenient to utilize a factorial model with J clusters10 in order to
simulate scenarios from the Gaussian or the Student’s t copula (Gregory and Laurent (2004). Since J
(the number of clusters) is much lower than N (the number of obligors), the number of parameters to
be estimated and the computational costs will also be much smaller.

We suppose, for instance, to generate scenarios from the Gaussian copula simply by a one-factor
model11 (Merton 1974) which represents the asset return of obligor i, Yi, for i = 1, . . . , N. Analytically:

Yi = bm(i)X +
√

1− b2
m(i)

ei (14)

In Equation (14), X and ei are independent standard normal random variables12, bm(i) is the weight
of the systematic component X, m(i) is the relation linking obligor i to his cluster j = m(i), j = 1, . . . , J;
moreover ei, . . . , en are independent. In this setting, Yi is a standard normal r.v., too.

The weights bm(i) have been assumed equal for each obligor who belongs to the same cluster.
They are calibrated using the asset return correlation intra-cluster. In fact, the asset return correlation
between two obligors i and j belonging to the same cluster k is the following:

ρk = E
[
YiY j

]
= bm(i)bm( j) = b2

k (15)

In Equation (15), bk =
√
ρk. Therefore, the asset return correlation between two obligors i and j

belonging to two different clusters, respectively k and l, is the following:

ρkl = E
[
YiY j

]
= bm(i)bm( j) = bkbl =

√
ρkρl (16)

To generate a scenario from the Gaussian copula, the following algorithm may be applied:

(1) Generate N + 1 independent random variates from the standard normal distribution (they are the
determinations of X, e1, . . . , eN);

(2) Calculate a scenario yi of Yi, i = 1, . . . , N;
(3) The scenario ui = Φ(yi), i = 1, . . . , N, where Φ is the standard normal c.d.f., is generated from the

Gaussian copula.

To generate a scenario from the Student’s t copula with ν degrees of freedom by a one-factor model
(see Frey and McNeil 2003; Wehrspohn 2003), it is sufficient to transform Equation (14) as follows:

Yi =

√
ν
W

(
bm(i)X +

√
1− b2

m(i)
ei

)
(17)

In Equation (17) X, e1, . . . , eN are independent standard normal random variables, and W is a
chi-square r.v. with ν degrees of freedom, independent of X, e1, . . . , eN. In this case, the algorithm to
apply is the following:

10 The clusters may be industrial sectors or geographical areas.
11 The Merton Model is used in Basel’s IRB model.
12 X may be seen as the return of the macroeconomic factor or the global market index common to the all obligors in the

portfolio, representing the systematic factor, Yi, while ei may be interpreted as the portion of the asset return which is not
explained by the systematic factor (that is the specific or idiosyncratic factor).
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(1) Generate N + 1 independent random variates from the standard normal distribution (they are the
determinations of X, e1, . . . , eN), and a determination from the chi-square r.v. with ν degrees of
freedom, W, independent of X, e1, . . . , eN;

(2) Calculate a scenario yi of Yi, i = 1, . . . , N using Equation (17);
(3) The scenario ui = Tν(yi), i = 1, . . . , N, where Tν is the standardized Student’s t c.d.f. with ν

degrees of freedom, is generated from the Student’s t-copula with ν degrees of freedom.

The correlation structure implicit in the one-factor model (Equation (14))) is very restrictive. In
fact, the correlations of assets belonging to different clusters k and l (namely the inter-cluster asset
correlations) are implicitly determined by the intra-cluster asset correlations by Equation (16). To get a
more complete correlation structure, the following factorial model (Gregory and Laurent 2004) may
be used13:

Yi = bm(i)Xm(i) +
√

1− b2
m(i)

ei (18)

For Equation (18), the same consideration made for Equation (14) holds; moreover, the systematic
risk factor, Xm(i), is expressed by a second one-factor model:

X j = a jX +
√

1− a2
j e
′

j , j = 1, . . . , J (19)

In Equation (19) X, ej
’, Yj are independent standard normal random variables. Therefore, by

substituting Equation (19) into Equation (18), we get to:

Yi = bm(i)am(i)X + bm(i)

√
1− a2

j e
′

m(i) +
√

1− b2
m(i)

ei (20)

Therefore, by the factorial model described in Equation (20), the asset correlation between
two obligors belonging to the same cluster m(i) = j, j = 1, . . . , J, is b2

m(i). On the contrary, the
correlation between two different clusters m(i) and m(j), with con m(i) , m(j), is bm(i)bm(j)am(i)am(j).
Let us assume, for instance, a correlation structure where the intra-cluster correlations are equal to
ρj, j = 1, . . . , J, while all the inter-cluster correlations are equal to ρ. In order to get to this kind of
dependence structure, it is sufficient to calibrate the model in Equation (20) in the following way:

b j =
√
ρ j e a j =

√
ρ
ρ j

, j = 1, . . . , J.

3. Estimating Asset Correlations

The simplest methodology for estimating the asset return correlation for corporates is to assume
them all equal; for instance, to 0.2014. A second methodology, following the last version of Basel’s IRB
approach15, determines the asset correlation for each cluster by implementing the regulatory formula
in Equation (21):

ρi = 0.12 ·

(
1− e(−50·P(i))

)(
1− e(−50)

) + 0.24 ·

1−
(
1− e(−50·P(i))

)(
1− e(−50)

)  (21)

In Equation (21), ρi is the intra-cluster asset return correlation for cluster i, i = 1, . . . , J. The asset
return correlations between clusters i and j are implicitly calculated as ρi, j =

√
ρiρ j.

An alternative methodology for estimating the correlations, adopted first in Lucas (1995), utilizes
the historical yearly time series of the default number and of the obligor number for each geo-sectorial
cluster16 as input data.

13 In order to get a model with an even less restricted dependence structure, see Jouanin et al. (2004).
14 This is the solution adopted in the first version of the IRB model by the Basel Committee.
15 See Basel Committee on Banking Supervision (2003, 2004).
16 These data can be downloaded freely from the web site of Bank of Italy: www.bancaditalia.it/statistiche/index.html.

www.bancaditalia.it/statistiche/index.html


J. Risk Financial Manag. 2020, 13, 129 10 of 23

Let Nj(i) be the number of obligors at the beginning of year j in cluster i, j = 1, . . . , n, i = 1, . . . , J;
let Sj(i) be the number of defaults, proceeding from the Nj(i) obligors, over year j in cluster i.

The probability of k defaults in cluster i may be assessed as follows:

Pk(i) =
1
n

n∑
j=1

(
S j(i)
k

)
(

N j(i)
k

) , otherwise

Pk(i) =
n∑

j=1

N j(i)
n∑

s=1
N j(i)

·

(
S j(i)
k

)
(

N j(i)
k

) (22)

The probability of two defaults, the first in cluster i and the second in cluster k, is the following:

P2(i, k) =
1
n

n∑
j=1

S j(i)S j(k)

N j(i)N j(k)
(23)

The intra-cluster default correlation for cluster i is:

ρD(i) =
P2(i) − (P1(i))

2

P1(i) − (P1(i))
2 (24)

The default correlation between clusters i and k is:

ρD(i, k) =
P2(i, k) − P1(i)P1(k)√[

P1(i) − (P1(i))
2
]
·

[
P1(k) − (P1(k))

2
] (25)

The corresponding asset return correlation may be obtained by solving the following
Equation (26)17 for ρ:

P2(i, k) =
∫ Φ−1(P1(i))

−∞

∫ Φ−1(P1(k))

−∞

Φ2(x, y;ρi,k)dxdy (26)

A further methodology (Frye 2000) for estimating the asset return correlation intra-cluster is
presented in the following. For application to an Italian loan portfolio, the input data may be represented
by the historical time series of the decay or deterioration rates18, TdDt,j, downloaded from the website
of the Bank of Italy for each year t, t = 1, . . . , T, concerning different geo-sectorial clusters j, j = 1, . . . , J
and counterparty categories.

The standardized asset return for a generic obligor belonging to cluster j is assumed to be
represented by the one-factor model in Equation (14).

Therefore, estimating the intra-cluster asset return correlation ρj is equivalent to estimating the
weight (factor loading) bj. In fact, it is easy to demonstrate19 that ρj = bj

2. In order to estimate the
weights bj, it is assumed that the number of obligors into each cluster is very high, and that these
obligors are homogeneous; that is, all obligors in a cluster get the same downgrading rate and the same
factor loading. Therefore, by the Law of Large Numbers (LLN), it is assumed that the downgrading

17 Assuming P2(i,i) = P2(i) if i = k.
18 They may be considered as estimates of the default probabilities.
19 See Equation (15).
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rate observed in year t is equal to the default probability conditional to the value xt of the systematic
risk factor X observed in year t, that is:

TdDt, j = Pr
[
Y j < Φ−1(TdD j)|X = xt

]
= Φ

Φ−1(TdD j) − b jxt√
1− b2

j

 = g j(xt) (27)

In Equation (27), Φ is the standard normal p.d.f. and TdDj is the mean decay rate over the long
period in cluster j. Since gj(xt) in Equation (27) is a monotonic function of the systematic risk factor X,
which is standard normal distributed, the probability density function (p.d.f.) of gj(X) may be written
following the Vasicek (2015a, 2015b) formula in this way (Finger 1999, 2001):

f j(TdDt, j) =

√
1− b2

j

b j
·

ϕ


√

1−b2
j ·Φ
−1(TdDt, j)−Φ−1(TdD j)

b j


ϕ
(
Φ−1(TdDt, j)

) (28)

In Equation (28), φ is the standard normal p.d.f.
To estimate bj, it is necessary to maximizing the log-likelihood function in Equation (29):

b̂ j = max
b j

T∑
t=1

ln f j(TdDt, j) (29)

As a consequence of the one-factor model, it is simple to demonstrate that the asset correlation
between two obligors belonging to two different clusters i and j is: ρi, j = bib j =

√
ρiρ j.

4. Introducing a Dependence Structure between Recovery Rates and Default Events

So far, we have always supposed the independence among the recovery rates themselves and
the times until default. However, in this section, we assume that the recovery rates are correlated to
each other and to the times until default by a factorial model. In particular, we follow the approach
described in Pykhtin (2003); Tasche (2004); and Gregory and Laurent (2004).

In this context, the portfolio loss, calculated as the sum of the losses of all obligors i in the
portfolio, is driven by two random variables: Yi linking up with the times until default, and Vi driving
the recovery rate and hence the loss amount. Both these two random variables may be interpreted,
according to the Merton model, as the asset return for obligor i, respectively before, Yi, and immediately
after default, Vi. The economic intuition is that, at the time of default, the recovery rate will be as low
as the return on assets is lower immediately after default.

Both the two random variables, Yi and Vi, may be expressed through the following factorial
model, assuming the correlation among recovery rates and between them and the times until default is
constant in each cluster:

Yi = bm(i)X +
√

1− b2
m(i)

ei

Vi = cm(i)X +
√

1− c2
m(i)

e′i
(30)

In the model in Equation (30), X, ei and ei
’, i = 1, . . . , N, are independent standard normal random

variables; the asset correlations are functions of the factor loadings bm(i) > 0 and cm(i) > 0. Due to
calibration problems, it is convenient to assume bm(i) = cm(i), as in Tasche (2004).
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The r.v. Yi drives the time until default of each obligor I, as described in the previous sections.
On the contrary, the value of the recovery rate Ri proceeds from the value assumed by Vi. If the
obligor i defaults in scenario j, then a determination of the recovery rate is generated; otherwise,
the loss in this scenario is 0. In particular, the obligor i defaults if Yi < Φ−1(qm(i)(0,Mi)), where Φ is
the standard normal c.d.f. and qm(i)(0,Mi) is the default probability of cluster m(i) for the maturity
Mi. This kind of event is equivalent to the event τi = F−1

i (Φ(Yi)) < Mi, since for Equation (10):
qm(i)(0,Mi) = Fi(Mi) = Pr{τi ≤Mi}. If G(x;a,b) is the Beta c.d.f., with parameters a and b estimated using
Equation (2), then the determination of the recovery rate in the default case is the following:

Ri = G−1
(
Φ(cm(i)X +

√
1− c2

m(i)
e′i ); a, b

)
(31)

In Equation (31), the value of the recovery rate is correlated to the default event through the
systematic factor X. The factor X may represent, for instance, a proxy of the general economic condition.
In case of a negative economic condition, X assumes low values; hence, a higher number of defaults
(driven by the random variables Yi) may happen and the values of the recovery rates (driven by
the random variables Vi) are expected to be lower. The contrary may happen in case of a positive
economic condition.

5. Capital Allocation

After calculating the credit portfolio risk measures by the methodology described in the
previous sections, it is necessary to allocate the estimated capital among the different obligors
or sub-portfolios (clusters).

The typical industry standard solution (Litterman 1996; Overbeck 2000) is to allocate the portfolio
VaR among all obligors, or sub-portfolios, proportionally to their covariance: Cov(L1,L), . . . , Cov(LN,L),
where Li is the r.v. loss of the generic obligor i (i = 1, . . . N) and L is the r.v. loss of the overall credit
portfolio. This capital allocation technique, known as volatility allocation, is the natural choice in
the bounds of classical portfolio theory, where risk is measured by the standard deviation. The use
of this technique for VaR allocation is correct when all the marginal loss distributions are normal.
Unfortunately, this is not the case, mainly for the credit asset portfolios. The capital allocated to a
sub-portfolio P* might be greater than the risk capital of P* considered as a stand-alone portfolio
(discouraging portfolio diversification). In other words, the capital requirement of a single loan might
be greater than its exposure value. On the contrary, a coherent capital allocation scheme has to satisfy
the following three properties (Kalkbrener et al. 2004; Kalkbrener 2005):

• The capital allocated to a union of sub-portfolios has to be equal to the sum of the capital amounts
allocated to the single sub-portfolios. In particular, the whole portfolio risk capital is the sum of
the risk capitals of its sub-portfolios.

• The capital allocated to a sub-portfolio X belonging to a larger portfolio Y never has to exceed the
risk capital of X considered as a stand-alone portfolio.

• A small increase of exposition value has to produce a small effect on the risk capital allocated to
that exposition.

The capital allocation performed using the Expected Shortfall as a risk measure satisfies the three
previous requirements. In other words, the capital allocation by ES is coherent. Analytically, the capital
amount allocated to the obligor (or cluster) i through the ES measure, calculated at the probability
level α, is the following:

E
(
Li

∣∣∣L > MLα(L)
)
=

1
1− α

E
(
Li · 1{L>MLα(L)}

)
(32)

In Equation (32), Li is the r.v. loss for obligor i, L is the r.v. portfolio loss, MLα(L) is the portfolio
Maximum Loss, and 1E is an r.v., assuming the value 1 if event E is true and 0 if it is false.



J. Risk Financial Manag. 2020, 13, 129 13 of 23

Equation (32) represents the mean contribution of the obligor i to the portfolio losses exceeding
MLα. It may be easily computed by Monte Carlo simulation: first by storing the losses Li,j occurred
in the j scenarios when the portfolio loss Lj is greater than MLα, and secondly by calculating their
conditional mean.

6. Implementation to a Typical Italian Loan Portfolio

In this section, we implement the overall methodology described previously to a typical, but
hypothetical, loan portfolio of an Italian commercial bank. The results, in terms of the portfolio credit
risk measures and capital allocations, are compared to the ones obtained by the Internal Rating Based
(IRB) approach developed by the Basel Committee20. According to Basel’s IRB approach, given a
portfolio composed of corporate exposures, the minimum banking capital requirement for a generic
obligor i is the following:

Ki = EaDi × LGDi × (Φ

 1√
1− ρi

Φ−1(PDi) +

√
ρi

1− ρi
Φ−1(0.999)

− PDi) ×
1

(1− 1.5× b(PDi)
× (1 + (Mi − 2.5) × b(PDi))

In the regulatory formula above, PDi is the one-year default probability of obligor i, EaDi is the banking
exposure at default i, LGDi = (1 − Ri) is the loss given default, Mi is the maturity of the loan given to
the generic obligor i and ρi is the asset return correlation estimated through the regulatory formula
(see Equation (21)).

The minimum capital requirement, Ki, is the contribution of the exposure of obligor i to the credit
risk of the loan portfolio; namely, the one-year Credit VaR, adjusted over a time horizon [0, M], at the
probability level of 99.9% for a homogeneous portfolio with infinite granularity21.

The hypothetical Italian banking portfolio is composed of credit exposures to 10,500 Italian
non-financial firms (corporates) residing in each of the 17 different Italian regions. We assume that
all obligors belonging to the same Italian region share the same probability of default (that is, the
PD of that region or cluster). As a proxy of the long period PD for each cluster, we have utilized the
annualized quarterly credit decay rates provided by the Statistic Report of the Bank of Italy, from
06/30/2006 to 09/30/2019, for each Italian regional cluster and the category of non-financial firms22. The
asset return correlations are assumed to be constant for each cluster. We calculate the correlations
by both the Basel regulatory formula (Equation (21)) and the two robust statistical methodologies
described in Section 3. All the maturities are assumed to be equal to one year. Initially, all the LGDs are
assumed to be non-stochastic and constant to 50%.

In Table 1, we show the main characteristics of the hypothetical Italian loan portfolio. It is
composed of 17 clusters (or sub-portfolios) representing the 17 different Italian regions in which
the obligors (namely, non-financial firms) reside. In Table 1, we report for each regional cluster i
(i = 1, . . . , 17), the value of the credit exposure in Euros, EaDi; the number of the obligors belonging to
each regional cluster, Ni; the probability of default of the cluster, PDi; and the asset return correlation
of each cluster, calculated by both Basel’s formula and by the two selected statistical methods.

20 See Basel Committee on Banking Supervision (2003, 2004).
21 i.e., all the obligors in the portfolio have the same exposure, the number of obligors is very high, each exposure is very low

compared to the total portfolio exposure, EaD, the VaR is estimated by a one-factor version of the Merton (1974) model.
22 These data can be freely downloaded by the web site: www.bancaditalia.it.

www.bancaditalia.it
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Table 1. Composition and characteristics of the Italian loan portfolio composed of 17 regional clusters.

Cluster EaD N PD rho (Lucas) rho (MLH) rho (Basel)

LIGURIA 102,000 510 3.43% 1.85% 1.87% 14.16%
LOMBARDIA 252,000 1260 3.22% 1.97% 2.05% 14.40%

TRENTINO-ALTO ADIGE 72,000 360 2.71% 1.69% 2.03% 15.10%
VENETO 142,000 710 3.09% 1.77% 1.84% 14.56%

FRIULI-VENEZIA GIULIA 64,000 320 3.19% 1.58% 1.62% 14.43%
EMILIA-ROMAGNA 183,000 915 3.01% 1.90% 1.98% 14.66%

MARCHE 94,000 470 3.80% 2.68% 2.56% 13.79%
TOSCANA 128,000 640 3.80% 1.92% 2.00% 13.80%
UMBRIA 76,000 380 4.01% 2.45% 2.45% 13.62%
LAZIO 231,000 1155 4.89% 1.68% 1.68% 13.04%

CAMPANIA 132,000 660 5.17% 1.81% 1.72% 12.91%
CALABRIA 54,000 270 5.82% 2.20% 2.17% 12.65%

SICILIA 174,000 870 5.39% 1.91% 1.77% 12.81%
SARDEGNA 68,000 340 4.93% 1.69% 1.72% 13.02%

PIEMONTE E VALLE
D’AOSTA 153,000 765 3.06% 1.59% 1.60% 14.60%

ABRUZZO E MOLISE 84,000 420 4.83% 2.55% 2.58% 13.07%
PUGLIA E BASILICATA 91,000 455 4.35% 2.05% 1.96% 13.36%

TOTAL 2,100,000 10,500

Source: our elaboration.

We may note that the asset return correlations estimated by the maximum likelihood method and
by Lucas’s approach are remarkably lower than the ones calculated by Basel’s formula.

We underline that this outcome is coherent with the results of other empirical studies on
the Italian, French and German markets (Dietsch and Petey 2004; Duellmann and Scheule 2003;
Hamerle and Rösch 2006; Sironi and Zazzara 2003).

The majority of Italian companies are small and medium enterprises (SMEs). It is well known
that SMEs are more affected by their specific or idiosyncratic risks than by systematic risks. On the
contrary, large firms are much more sensitive to the fluctuations of systematic risk factors such as, for
example, the general economic condition.

Moreover, from our empirical results, we do not observe a negative relation between the estimated
correlations and the PDs. Conversely, Basel’s correlation formula assumes that the correlation decreases
when the PD increases (and vice versa).

In Table 2, we collect the results in terms of capital requirements, K, or portfolio risk contributions
for each cluster and for the total portfolio, obtained by implementing Basel’s IRB approach and
utilizing both the regulatory correlations and the correlations estimated by maximum likelihood
method alternately. We can immediately observe that the values of capital requirements (expressed in
both percentages and monetary terms) collapse when we use the estimated correlations (rho MLH)
instead of the regulatory ones (rho Basel). Basel’s IRB model is, therefore, extremely sensitive to the
value of the asset correlations.

Subsequently, we have calculated different portfolio risk measures, namely VaR, ML and ES,
for a confidence level of 99.9% for each cluster and the total loan portfolio by implementing the MC
simulation model described in Section 2. We have expressed the portfolio losses in monetary terms and
in the percentage of the exposure value of the total portfolio and of each cluster. In order to estimate
the portfolio loss distribution, we have generated 100,000 MC scenarios. First, we have supposed that
the credit exposure to each obligor is homogenous and equal to 200 euros; in this way, the hypothesis
of the infinite granularity of the portfolio is approximated.

The outcomes, in terms of different portfolio risk metrics obtained by utilizing the rho estimated
by MLH method, are reported in Table 3.
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Table 2. Capital requirements, K, for each regional cluster, calculated by the IRB model and by
utilizing the regulatory correlations (rho Basel) and the correlations estimated by MLH method (rho
MLH) alternatively.

Cluster K% (rho Basel) K (rho Basel) K% (rho MLH) K (rho MLH)

LIGURIA 10.75% 10,962 3.56% 3627
LOMBARDIA 10.45% 26,340 3.49% 8806

TRENTINO-ALTO ADIGE 9.71% 6990 3.00% 2163
VENETO 10.27% 14,582 3.23% 4592

FRIULI-VENEZIA GIULIA 10.41% 6661 3.17% 2030
EMILIA-ROMAGNA 10.16% 18,590 3.26% 5959

MARCHE 11.25% 10,573 4.38% 4121
TOSCANA 11.24% 14,388 3.97% 5086
UMBRIA 11.52% 8755 4.50% 3419
LAZIO 12.66% 29,239 4.62% 10,678

CAMPANIA 13.01% 17,175 4.88% 6444
CALABRIA 13.82% 7464 5.84% 3155

SICILIA 13.29% 23,126 5.11% 8895
SARDEGNA 12.71% 8645 4.69% 3192

PIEMONTE E VALLE
D’AOSTA 10.23% 15,646 3.05% 4666

ABRUZZO E MOLISE 12.59% 10,577 5.35% 4498
PUGLIA E BASILICATA 11.97% 10,896 4.43% 4028

TOTAL 11.46% 240,610 4.06% 85,359

Source: our elaboration.

Table 3. Portfolio risk measures calculated by the MC simulation model, assuming the granularity of
the loan portfolio and correlations estimated by maximum likelihood method.

Cluster VaR
99.9% % ML

99.9% % ES
99.9% %

LIGURIA 3215 3.15% 4791 4.70% 5184 5.08%
LOMBARDIA 8312 3.30% 11,964 4.75% 13,418 5.32%

TRENTINO-ALTO ADIGE 2415 3.35% 3293 4.57% 3365 4.67%
VENETO 4841 3.41% 6816 4.80% 7430 5.23%

FRIULI-VENEZIA GIULIA 2365 3.70% 3284 5.13% 3412 5.33%
EMILIA-ROMAGNA 6440 3.52% 8922 4.88% 10,012 5.47%

MARCHE 4444 4.73% 6052 6.44% 6436 6.85%
TOSCANA 5449 4.26% 7637 5.97% 8284 6.47%
UMBRIA 3254 4.28% 4625 6.09% 5513 7.25%
LAZIO 9371 4.06% 14,450 6.26% 16,431 7.11%

CAMPANIA 6406 4.85% 9475 7.18% 10,206 7.73%
CALABRIA 2765 5.12% 4179 7.74% 4998 9.26%

SICILIA 10,266 5.90% 14,486 8.33% 14,568 8.37%
SARDEGNA 2586 3.80% 4095 6.02% 4684 6.89%

PIEMONTE E VALLE D’AOSTA 4158 2.72% 6265 4.09% 7482 4.89%
ABRUZZO E MOLISE 4198 5.00% 6026 7.17% 6480 7.71%

PUGLIA E BASILICATA 4613 5.07% 6396 7.03% 6519 7.16%

TOTAL 85,098 4.05% 122,755 5.85% 134,422 6.40%

Source: our elaboration.

As expected, the results, in terms of the VaR in Table 3, are not too different from the ones obtained
by Basel’s IRB model (see Table 2) and by utilizing the rho estimated by the MLH method.

In fact, from the simulative model we obtain, for example, a value of VaR for the total portfolio
equal to 85,098 euros (or 4.05 percent of the total exposure) versus a capital requirement K from the
Basel IRB model equal to 85,359 euros (or 4.06 percent of the total exposure).
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Also, when we calculate the capital requirements by the two different models, assuming again the
granularity of the loan portfolio, but utilizing the regulatory correlations, we find similar outcomes
from the two approaches (see Table 4).

Table 4. 99.9% VaR, 99.9% ML and 99.9% ES calculated from the simulation model by assuming the
granularity of the portfolio and utilizing the regulatory correlations.

Cluster VaR
99.9% % ML

99.9% % ES
99.9% %

LIGURIA 11,251 11.03% 12,826 12.57% 28,598 28.04%
LOMBARDIA 25,709 10.20% 29,362 11.65% 83,373 33.08%

TRENTINO-ALTO ADIGE 6185 8.59% 7062 9.81% 18,757 26.05%
VENETO 13,920 9.80% 15,895 11.19% 41,601 29.30%

FRIULI-VENEZIA GIULIA 6679 10.44% 7598 11.87% 11,975 18.71%
EMILIA-ROMAGNA 17,576 9.60% 20,058 10.96% 53,219 29.08%

MARCHE 10,412 11.08% 12,021 12.79% 29,338 31.21%
TOSCANA 14,484 11.32% 16,671 13.02% 38,106 29.77%
UMBRIA 8963 11.79% 10,333 13.60% 25,755 33.89%
LAZIO 33,447 14.48% 38,526 16.68% 43,155 18.68%

CAMPANIA 19,514 14.78% 22,583 17.11% 36,561 27.70%
CALABRIA 8788 16.27% 10,202 18.89% 16,884 31.27%

SICILIA 26,525 15.24% 30,745 17.67% 39,369 22.63%
SARDEGNA 9604 14.12% 11,112 16.34% 19,470 28.63%

PIEMONTE E VALLE D’AOSTA 15,288 9.99% 17,396 11.37% 43,516 28.44%
ABRUZZO E MOLISE 11,534 13.73% 13,361 15.91% 29,008 34.53%

PUGLIA E BASILICATA 12,334 13.55% 14,117 15.51% 18,726 20.58%

TOTAL 252,211 12.01% 289,868 13.80% 577,410 27.50%

Source: our elaboration.

For example, we obtain a total portfolio VaR of 252,211 euros, equal to 12.01 percent of the total
exposure from the simulative model (Table 4), versus a capital requirement value K of 240,610 euros
for the total portfolio, or 11.46% of the total exposure from the IRB model (Table 2). It is obvious that
the capital requirements grow as correlations increase, other conditions being equal.

Successively, we relax the hypotheses of infinite granularity, or the absence of undiversified
idiosyncratic risks in the portfolio, for calculating the capital requirements of a loan portfolio with the
same characteristics but with much more concentrated credit exposures. Precisely, we assume that, in
each cluster, half of the banking exposure is concentrated towards a single counterparty. For instance,
in the case of cluster “Lazio”, 115,500 euros of the total exposure of 231,000 euros are concentrated in a
single obligor, while the remaining 115,500 euros are homogeneously distributed among the remaining
1154 obligors in this cluster.

The outcomes, in terms of different portfolio risk measures estimated by the MC simulation model,
are reported in Table 5 for the case of asset correlations calculated by the maximum likelihood method,
and in Table 6 for the case of asset correlations calculated by Basel’s formula.

Dropping the hypothesis of infinite granularity for the loan portfolio, the results in terms of VaR
obtained from the two different models differ strongly, particularly when the correlations are low. In
fact, as we have already said, when the asset correlations are close to 1, the portfolio may be thought of
as being composed of only one obligor. Therefore, when the correlations are high, a portfolio with high
granularity exhibits similar results in terms of VaR to a portfolio with low granularity.
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Table 5. 99.9% VaR, 99.9% ML and 99.9% ES estimated by the MC simulation model, assuming a
concentrated portfolio and asset correlations estimated by the maximum likelihood method.

Cluster VaR
99.9% % ML

99.9% % ES
99.9% %

LIGURIA 7475 7.33% 9051 8.87% 12,496 12.25%
LOMBARDIA 49,148 19.50% 52,801 20.95% 105,417 41.83%

TRENTINO-ALTO ADIGE 1830 2.54% 2707 3.76% 730 1.01%
VENETO 12,998 9.15% 14,973 10.54% 2104 1.48%

FRIULI-VENEZIA GIULIA 1491 2.33% 2410 3.77% 796 1.24%
EMILIA-ROMAGNA 22,352 12.21% 24,835 13.57% 24,690 13.49%

MARCHE 7402 7.87% 9011 9.59% 7508 7.99%
TOSCANA 14,848 11.60% 17,035 13.31% 9980 7.80%
UMBRIA 4426 5.82% 5796 7.63% 1448 1.90%
LAZIO 50,678 21.94% 55,757 24.14% 70,900 30.69%

CAMPANIA 18,102 13.71% 21,171 16.04% 25,979 19.68%
CALABRIA 3300 6.11% 4714 8.73% 3873 7.17%

SICILIA 27,839 16.00% 32,058 18.42% 34,769 19.98%
SARDEGNA 4493 6.61% 6002 8.83% 1601 2.35%

PIEMONTE E VALLE D’AOSTA 15,680 10.25% 17,788 11.63% 2332 1.52%
ABRUZZO E MOLISE 7765 9.24% 9593 11.42% 7311 8.70%

PUGLIA E BASILICATA 6896 7.58% 8679 9.54% 13,678 15.03%

TOTAL 256,723 12.22% 294,380 14.02% 325,613 15.51%

Source: our elaboration.

Table 6. 99.9% VaR, 99.9% ML and 99.9% ES, estimated by MC simulation model, assuming a
concentrated portfolio and asset correlations calculated by regulatory formula.

Cluster VaR
99.9% % ML

99.9% % ES
99.9% %

LIGURIA 21,027 20.62% 22,778 22.33% 32,008 31.38%
LOMBARDIA 84,547 33.55% 88,606 35.16% 146,614 58.18%

TRENTINO-ALTO ADIGE 10,166 14.12% 11,141 15.47% 11,003 15.28%
VENETO 26,553 18.70% 28,748 20.25% 50,064 35.26%

FRIULI-VENEZIA GIULIA 6915 10.81% 7936 12.40% 6364 9.94%
EMILIA-ROMAGNA 43,261 23.64% 46,019 25.15% 85,417 46.68%

MARCHE 17,663 18.79% 19,450 20.69% 21,906 23.30%
TOSCANA 27,615 21.57% 30,045 23.47% 21,644 16.91%
UMBRIA 17,732 23.33% 19,255 25.34% 29,415 38.70%
LAZIO 70,481 30.51% 76,124 32.95% 79,155 34.27%

CAMPANIA 34,217 25.92% 37,627 28.51% 30,717 23.27%
CALABRIA 11,771 21.80% 13,341 24.71% 8766 16.23%

SICILIA 42,209 24.26% 46,898 26.95% 46,402 26.67%
SARDEGNA 14,430 21.22% 16,106 23.69% 17,411 25.60%

PIEMONTE E VALLE D’AOSTA 33,115 21.64% 35,457 23.17% 25,110 16.41%
ABRUZZO E MOLISE 20,262 24.12% 22,293 26.54% 25,770 30.68%

PUGLIA E BASILICATA 15,460 16.99% 17,441 19.17% 22,168 24.36%

TOTAL 497,427 23.69% 539,268 25.68% 659,934 31.43%

Source: our elaboration.

The capital requirements estimated by the simulative model are always greater than those
calculated by the IRB model; they are approximately double. In particular, we find a value of VaR
equal to 23.69% (see Table 6) for the simulation model versus a value of 11.46% for the Basel model
(see Table 2) when we utilize the regulatory correlations, which are typically much higher than the
correlations estimated by MLH method.

Utilizing low correlations, that is, the correlations obtained by the statistical methods (MLH and
Lucas’s model, in our case), the capital requirements from the MC simulative model are always more
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severe than those attained from the IRB model; they are approximately triple. For example, we find by
the simulative model a VaR of 12.22% (see Table 5) versus a capital requirement of 4.06% from the IRB
model (see Table 2).

The underestimation of risk and capital is evident when we drop the strong hypothesis of a highly
diversified portfolio. For this reason, mostly in the case of undiversified portfolios, coherent capital
allocation is the appropriate choice for the purpose of risk management.

In Table 7, we report the capital allocated to each cluster as a percentage of the total capital, in
order to underline the differences between the asset allocations in terms of ML (or, equivalently, VaR)
and in terms of ES. In this case, the results in terms of mean-variance (Maximum Loss, ML) and
coherent asset allocation (Expected Shortfall, ES) are remarkably different.

Table 7. Results of capital allocation, expressed in terms of ML (traditional allocation) and ES (coherent
allocation), assuming concentrated clusters and correlations calculated by both MLH method and
Basel’s formula.

Cluster ML (rho MLH) ES (rho MLH) ML (rho Basel) ES (rho Basel)

LIGURIA 3.07% 3.84% 4.22% 4.85%
LOMBARDIA 17.94% 32.37% 16.43% 22.22%

TRENTINO-ALTO ADIGE 0.92% 0.22% 2.07% 1.67%
VENETO 5.09% 0.65% 5.33% 7.59%

FRIULI-VENEZIA GIULIA 0.82% 0.24% 1.47% 0.96%
EMILIA-ROMAGNA 8.44% 7.58% 8.53% 12.94%

MARCHE 3.06% 2.31% 3.61% 3.32%
TOSCANA 5.79% 3.07% 5.57% 3.28%
UMBRIA 1.97% 0.44% 3.57% 4.46%
LAZIO 18.94% 21.77% 14.12% 11.99%

CAMPANIA 7.19% 7.98% 6.98% 4.65%
CALABRIA 1.60% 1.19% 2.47% 1.33%

SICILIA 10.89% 10.68% 8.70% 7.03%
SARDEGNA 2.04% 0.49% 2.99% 2.64%

PIEMONTE E VALLE
D’AOSTA 6.04% 0.72% 6.58% 3.81%

ABRUZZO E MOLISE 3.26% 2.25% 4.13% 3.90%
PUGLIA E BASILICATA 2.95% 4.20% 3.23% 3.36%

Source: our elaboration.

Typically for concentrated portfolios, a coherent capital allocation is advisable, given the strong
differences deriving from the two different techniques, the traditional (ML) and the coherent (ES). In
particular, the capital allocated to the clusters with greater concentration (such as Lombardia, Lazio,
and Sicilia) has a greater increase.

Therefore, mostly for concentrated portfolios, the utilization of a coherent capital allocation
technique is particularly justified.

Conversely, in the case of granular or diversified portfolios, the outcomes in terms of capital
allocation derived from the two different techniques, the traditional (ML) and the coherent (ES), seem
very similar, especially when the correlations are low (see Table 8). The reason for this is the adoption
of a one-factor model alongside the assumption of high granularity for the loan portfolio. In order to
compare the differences between the asset allocation in terms of ML (or, equivalently, VaR), calculated
by the mean-variance approach, and in terms of ES, we collect in Table 8 the capital allocated to every
cluster in the portfolio as a percentage of the total capital.
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Table 8. Results of capital allocation, expressed in terms of ML (traditional allocation) and ES (coherent
allocation), assuming diversified clusters and correlations calculated by both MLH method and
Basel’s formula.

Cluster ML (rho MLH) ES (rho MLH) ML (rho Basel) ES (rho Basel)

LIGURIA 3.90% 3.86% 4.42% 4.95%
LOMBARDIA 9.75% 9.98% 10.13% 14.44%

TRENTINO-ALTO ADIGE 2.68% 2.50% 2.44% 3.25%
VENETO 5.55% 5.53% 5.48% 7.20%

FRIULI-VENEZIA GIULIA 2.68% 2.54% 2.62% 2.07%
EMILIA-ROMAGNA 7.27% 7.45% 6.92% 9.22%

MARCHE 4.93% 4.79% 4.15% 5.08%
TOSCANA 6.22% 6.16% 5.75% 6.60%
UMBRIA 3.77% 4.10% 3.56% 4.46%
LAZIO 11.77% 12.22% 13.29% 7.47%

CAMPANIA 7.72% 7.59% 7.79% 6.33%
CALABRIA 3.40% 3.72% 3.52% 2.92%

SICILIA 11.80% 10.84% 10.61% 6.82%
SARDEGNA 3.34% 3.48% 3.83% 3.37%

PIEMONTE E VALLE
D’AOSTA 5.10% 5.57% 6.00% 7.54%

ABRUZZO E MOLISE 4.91% 4.82% 4.61% 5.02%
PUGLIA E BASILICATA 5.21% 4.85% 4.87% 3.24%

Source: our elaboration.

From Table 8, we can see that, when the asset correlations are lower, the capital allocation
performed by the mean-variance approach (Maximum Loss, ML) is very close to the coherent capital
allocation (Expected Shortfall, ES). In fact, if the asset correlation is close to zero, the loss distributions
of the single clusters and the whole portfolio distribution converge rapidly towards the Normal
distribution. In this case, the mean-variance capital allocation is equivalent to the coherent capital
allocation (see, for example, Rockafellar and Uryasev 2000; 2002).

Indeed, we find some differences when the asset correlations are higher. In this case, the loss
distributions for each cluster have a slower convergence towards the Normal distribution. It is well
known that, when the correlations go to one, all the obligors in the portfolio may be considered as a
single obligor. Consequently, when the correlations increase, the hypothesis of infinite granularity
tends to fail. In particular, greater differences can be observed in those clusters with higher correlations
and with a lower number of obligors.

Now, we relax the hypothesis of deterministic and constant recovery rates. Specifically, we
implement the simulative model to the original loan portfolio, but assume the recovery rates to
be stochastic and related to each other and with the default event, following the approach of
Pykhtin (2003) and Tasche (2004), previously described in Section 4.

In this context, we assume bm(i) = cm(i), with homogenous credit exposures i = 1, . . . , N, and with
all the maturities equal to one year. For each obligor, we adopt a mean recovery rate m = 0.5 and a
standard deviation s = 0.2. For each cluster in the portfolio, we estimate its own loss distribution, the
respective risk measures, and the capital allocations utilizing both the correlations estimated by the
MLH method and the correlations derived from Basel’s formula.

The results are reported in Table 9. Comparing the results in Table 9 with those described
previously in Tables 3 and 4, we find that all the credit risk measures are more severe when we drop
the hypothesis of deterministic and constant recovery rates to assume stochastic recovery rates related
to each other and to the default event. This is particularly true when the correlations are calculated by
Basel’s formula. In fact, we have assumed bm(i) = cm(i), for i = 1, . . . , N, and, therefore, the correlations
among the recovery rates and between the default events and the recovery rates themselves are higher,
as the asset return correlations are also higher. In other words, we obtain greater values of risk measures
(ML and ES) when we utilize the correlations calculated by Basel’s formula.
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Table 9. 99.9% ML and 99.9% ES, estimated by an MC simulation model, assuming the recovery rates as stochastic and related with the default event and
homogeneous portfolios.

Cluster ML 99.9% (rho MLH) % ES 99.9% (rho MLH) % ML 99.9% (rho Basel) % ES 99.9% (rho Basel) %

LIGURIA 5375 5.27% 5433 5.33% 29,499 28.92% 37,557 36.82%
LOMBARDIA 13,337 5.29% 14,609 5.80% 78,158 31.02% 108,433 43.03%

TRENTINO-ALTO ADIGE 3679 5.11% 3451 4.79% 16,266 22.59% 24,167 33.56%
VENETO 7598 5.35% 7946 5.60% 38,587 27.17% 55,300 38.94%

FRIULI-VENEZIA GIULIA 3672 5.74% 4142 6.47% 11,506 17.98% 15,987 24.98%
EMILIA-ROMAGNA 10,139 5.54% 10,888 5.95% 47,863 26.15% 68,440 37.40%

MARCHE 6931 7.37% 7599 8.08% 28,131 29.93% 39,004 41.49%
TOSCANA 8584 6.71% 8900 6.95% 39,448 30.82% 53,269 41.62%
UMBRIA 5202 6.84% 6272 8.25% 26,564 34.95% 34,676 45.63%
LAZIO 16,500 7.14% 18,319 7.93% 71,067 30.76% 80,739 34.95%

CAMPANIA 10,972 8.31% 12,151 9.21% 42,368 32.10% 48,838 37.00%
CALABRIA 4699 8.70% 5582 10.34% 19,865 36.79% 21,415 39.66%

SICILIA 16,529 9.50% 17,136 9.85% 47,665 27.39% 55,082 31.66%
SARDEGNA 4692 6.90% 4916 7.23% 23,125 34.01% 27,819 40.91%

PIEMONTE E VALLE
D’AOSTA 7075 4.62% 7490 4.90% 42,939 28.06% 58,622 38.32%

ABRUZZO E MOLISE 6816 8.11% 7405 8.82% 31,623 37.65% 38,294 45.59%
PUGLIA E BASILICATA 7297 8.02% 7290 8.01% 21,555 23.69% 24,633 27.07%

TOTAL 139,096 6.62% 149,530 7.12% 616,230 29.34% 792,277 37.73%

Source: our elaboration.



J. Risk Financial Manag. 2020, 13, 129 21 of 23

7. Conclusions

From the outcomes of this work, the strong underestimation of portfolio credit risk produced
by the IRB model is evident, given its restrictive underlying hypotheses. First, when we drop the
assumption of highly diversified portfolios, the estimates of the portfolio risk measures obtained
by implementing the advanced quantitative methodology (described in Sections 2 and 3) increase
significantly. Also, the results in terms of coherent capital allocation rise considerably. For this reason,
mostly in the case of undiversified portfolios, coherent capital allocation is the appropriate choice for
efficient credit risk management. Secondly, when we lower the hypothesis of constant and independent
recovery rates, we obtain capital requirements more severe than those from the IRB model. Our main
conclusion is that the IRB model is unable to capture the real credit risk of a loan portfolio because it
does not take into account the real dependence structure among the default events and between the
recovery rates and the default events. The adoption of this regulatory model can produce a dangerous
underestimation of the portfolio credit risk, particularly when the economic uncertainty and the
volatility of the financial markets increase. In summary, the most original findings of this research are
the following:

• For Italian SMEs, the asset return correlations estimated by the maximum likelihood method and
by Lucas’ approach are remarkably lower than those calculated by Basel’s formula.

• Contrary to the regulatory hypothesis, a negative relation between the estimated correlations and
the PDs is not found for Italian SMEs.

• The Basel IRB model, all things being equal, is very and positively influenced by the value of
the correlations.

• The credit capital requirements calculated by the IRB model and by the simulative model are quite
similar if we maintain the restrictive hypotheses of the regulatory approach.

• After removing the hypothesis of infinite granularity for the loan portfolios, the results in terms of
VaR obtained from the two different models differ strongly. The capital requirements estimated by
the simulative model are always greater than those calculated by the IRB model, mostly when the
correlations are low.

• The underestimation of risk and capital is evident when we drop the strong hypothesis of a highly
diversified portfolio. For this reason, mostly in the case of undiversified portfolios, coherent
capital allocation is the appropriate choice for purposes of risk management.

• Typically, for concentrated portfolios, coherent capital allocation is advisable, given the strong
differences deriving from the two different techniques, the traditional (ML) and the coherent (ES).
In particular, the capital allocated to the clusters with greater concentration (such as Lombardia,
Lazio, and Sicilia) has a greater increase.

• On the other hand, in the case of granular or diversified portfolios, the outcomes in terms of
the capital allocation derived from the two different techniques, ML and ES, seem very similar,
especially when the correlations are low. In other words, the mean-variance capital allocation is
equivalent to coherent capital allocation.

• The values of the portfolio’s credit risk measures (ML and ES) become more severe when the
hypotheses of deterministic and constant recovery rates are dropped. This is particularly true
when we utilize the high correlations calculated utilizing Basel’s formula.

One limitation of this advanced methodology is the use of a “pure” or standard Monte Carlo
simulation for computing the risk contributions in terms of a coherent risk metric as the Expected
Shortfall. These estimates present a very slow convergence towards their true values when traditional
Monte Carlo algorithms are used. This problem underlines the necessity of utilizing importance
sampling (IS) techniques for estimating the coherent risk contributions efficiently, instead of a simple
Monte Carlo simulation model. IS permits us to artificially increase the number of scenarios in the tail
of the probability distribution, thus reducing considerably the volatility of the estimate of the tail risk
measures. Additional extensions are the possibility of introducing country risk and contagion risk.
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