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Abstract: In this paper, we consider asset pricing models under the multivariate t-distribution
with finite second moment. Such a distribution, which contains the normal distribution, offers a
more flexible framework for modeling asset returns. The main objective of this work is to develop
statistical inference tools, such as parameter estimation and linear hypothesis tests in asset pricing
models, with an emphasis on the Capital Asset Pricing Model (CAPM). An extension of the CAPM,
the Multifactor Asset Pricing Model (MAPM), is also discussed. A simple algorithm to estimate the
model parameters, including the kurtosis parameter, is implemented. Analytical expressions for the
Score function and Fisher information matrix are provided. For linear hypothesis tests, the four most
widely used tests (likelihood-ratio, Wald, score, and gradient statistics) are considered. In order to
test the mean-variance efficiency, explicit expressions for these four statistical tests are also presented.
The results are illustrated using two real data sets: the Chilean Stock Market data set and another
from the New York Stock Exchange. The asset pricing model under the multivariate t-distribution
presents a good fit, clearly better than the asset pricing model under the assumption of normality, in
both data sets.

Keywords: capital asset pricing model; estimation of systematic risk; tests of mean-variance efficiency;
t-distribution; generalized method of moments; multifactor asset pricing model

1. Introduction

The Capital Asset Pricing Model (CAPM) is one of the most important asset pricing models
in financial economics. It is widely used in estimating the cost of capital for companies and
measuring portfolio (or investment fund) performance, among others applications; see, for
instance, Campbell et al. (1997), Amenc and Le Sourd (2003), Broquet et al. (2004), Levy (2012) and
Ejara et al. (2019).

The CAPM framework provides financial practitioners with a measure of beta (or systematic risk)
for entire stock markets, industry sub-sectors, and individual equities (Pereiro 2010).

The literature on the CAPM based on the multivariate normal distribution is vast, as seen,
for instance, in the works published by Elton and Gruber (1995), Campbell et al. (1997),
Broquet et al. (2004), Francis and Kim (2013), Johnson (2014), Brandimarte (2018) and Mazzoni (2018).
However, multivariate normality is not required to ensure the validity of the CAPM. In fact, it is well
known that the CAPM is still valid within the class of elliptical distributions, of which multivariate
normal and multivariate t-distributions are special cases (see Chamberlain 1983; Hamada and Valdez
2008; Ingersoll 1987; Owen and Rabinovitch 1983). It is also well known that in practice, excess returns
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are not normally distributed. Most financial assets exhibit excess kurtosis, that is to say, returns having
distributions whose tails are heavier than those of the normal distribution and present some degree
of skewness; see Fama (1965), Blattberg and Gonedes (1974), Zhou (1993), Campbell et al. (1997),
Bekaert and Wu (2000), Chen et al. (2001), Hodgson et al. (2002) and Vorknik (2003). Recently
Bao et al. (2018) discuss estimation in the univariate CAPM with asymmetric power distributed errors.
In this paper, the multivariate version of the CAPM is considered, primarily focusing on modeling
non-normal returns due to excess kurtosis.

Within the class of elliptical distributions, the multivariate t-distribution has been widely
used to model data with heavy tails. For instance, Lange et al. (1989) discuss the use of the
t-distribution in regression and in problems related to multivariate analysis. Sutradhar (1993) has
considered a score test aimed at testing if the covariance matrix is equal to some specified covariance
matrix using the t-distribution; Bolfarine and Galea (1996) used the t-distribution in structural
comparative calibration models, while Pinheiro et al. (2001) used the multivariate t-distribution
for robust estimation in linear mixed-effects models. Cademartori et al. (2003), Fiorentini et al. (2003),
Galea et al. (2008), Galea et al. (2010) and Kan and Zhou (2017) provide empirical evidence of the
usefulness of t-distribution to model stock returns. In addition, statistical inference based on the
t-distribution is simple to implement, and the computational cost is considerably low.

Following Kan and Zhou (2017), there are three main reasons for using the t-distribution in
modeling returns of financial instruments. (i) empirical evidence shows that this distribution is
appropriate for modeling non-normal returns in many situations, (ii) with the algorithms implemented
in this paper, the t-distribution has become almost as tractable as the normal one, and (iii) the CAPM
is still valid under t-distribution. It is clear that the t-distribution does not describe all the features of
the return data. For instance, the volatility variation over time is one of them, for which the GARCH
models are very useful. However, according to our experience (see Cademartori et al. 2003; Galea
et al. 2008 2010; Galea and Giménez 2019), and as mentioned by Kan and Zhou (2017), there is little
evidence of GARCH effects on the monthly data that are typically used for asset pricing and corporate
studies. In addition, when we have a moderate number of assets, for example more than 10, the fit of
the GARCH models requires an important computational effort, which limits its application to real
data sets. For more details see Harvey and Zhou (1993) and Kan and Zhou (2017).

Thus, the main goal of this paper is to develop statistical inference tools, such as parameter
estimation and hypothesis tests, in asset pricing models, with an emphasis on the CAPM, using the
multivariate t-distribution. An extension of the CAPM, the multifactor asset pricing model (MAPM),
is also discussed. The t-distribution incorporates an additional parameter, which allows modeling
returns with high kurtosis. We consider a reparameterization of the multivariate t-distribution
with a finite second moment. This enables a more direct comparison with the normal distribution
(see Bolfarine and Galea 1996; Sutradhar 1993). Based on Fiorentini et al. (2003), who use the
reparameterization of degrees of freedom suggested by Lange et al. (1989) to model financial data,
this version of the multivariate t-distribution is adopted to test hypotheses of interest, such as the
hypothesis of mean-variance efficiency. The three most widely used tests based on the likelihood
function are considered; Wald tests, likelihood-ratio tests, and score tests (also known as Lagrange
multiplier tests). Under the assumption of normality, these tests have been discussed in the literature,
see for instance Campbell et al. (1997) and Chou and Lin (2002). Recently Kan and Zhou (2017)
discuss the likelihood-ratio tests in the CAPM assuming that the excess returns follow a multivariate
t-distribution. In this paper, the modeling of the asset returns conditional on market portfolios and the
three most widely used tests are considered. Additionally, a fourth test statistic is considered, based on
the likelihood proposed by Terrell (2002), the gradient test. To our knowledge this test has not been
applied to test hypothesis in asset pricing models.

The article is developed as follows. In Section 2, the CAPM under the multivariate t-distribution,
estimation of parameter and tests of mean-variance efficiency are briefly reviewed, and the Generalized
Method of Moments is summarized for comparative purposes. In Section 3, the methodology
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developed in this paper is applied to two real data sets: the Chilean Stock Market data set and
another from the New York Stock Exchange, USA. In Section 4, multifactor asset pricing models
under the t-distribution are discussed. In Section 5, a conclusion and final comments are included.
The appendices contain technical details.

2. Methodology

2.1. The CAPM under the t-Distribution

First, a set of p ≥ 1 assets of interest is considered, and let Ri denote the return for asset i, with
i = 1, . . . , p. CAPM specifies that the stock’s expected return is equal to the risk-free rate return plus a
risk premium; i.e.,

E(Ri) = R f + βi{E(Rm)− R f }, i = 1, . . . , p, (1)

where R f is the risk-free interest rate, βi is the systematic risk of the asset i, and Rm is the market return.
This model was independently derived by Sharpe (1964), Lintner (1965) and Mossin (1966). For these
p assets, the excess returns can be described using the following multivariate linear regression model;
Gibbons et al. (1989), MacKinlay and Richardson (1991) and Campbell et al. (1997),

yt = α + βxt + εt, t = 1, . . . , n, (2)

where yt = (y1t, . . . , ypt)T is a p× 1 vector representing excess returns of the set of p assets of interest in
period t such that, yit = Rit − R f t denotes the excess return of asset i during period t, α = (α1, . . . , αp)T

is the intercept vector, β = (β1, . . . , βp)T is the slope vector that corresponds to the sensitivity of the
portfolio return to changes in this benchmark return; xt = Rmt − R f t represents the excess return of
the market portfolio during period t and finally εt is the errors vector during period t, with mean
zero and variance-covariance matrix Σ, independent of t, for t = 1, . . . , n. If the CAPM holds for this
set of assets and the benchmark portfolio is mean-variance efficient, the following restriction on the
parameters of model (2) should hold E(yt) = βxt, for t = 1, . . . , n. Hence, this restriction implies a
testable hypothesis:

Hα : α = 0. (3)

Much of the theory of the CAPM is based on the assumption that excess returns follow a
multivariate normal distribution; see for instance Campbell et al. (1997), Broquet et al. (2004),
Johnson (2014), Brandimarte (2018), Mazzoni (2018) and Galea and Giménez (2019). However, it
has been shown that although the assumption of normality is sufficient to generate the model (1),
it is not necessary. Chamberlain (1983), Owen and Rabinovitch (1983), Ingersoll (1987), Berk (1997)
and most recently Hamada and Valdez (2008) show that (1) can be obtained under the assumption
of elliptically symmetric return distributions. In particular, Berk (1997) showed that when agents
maximize the expected utility, elliptical symmetry is both necessary and sufficient for the CAPM.

In this paper, we are interested in develop statistical inference tools, estimation and hypothesis
tests in asset pricing models supposing that εt, the random errors vector following a multivariate
t-distribution, has a mean zero and a covariance matrix Σ. In effect, we supposed that the density
function of εt is given by

f (ε) = |Σ|−1/2g(δ), δ ≥ 0, (4)

where

g(δ) = kp(η)
(
1 + c(η)δ

)− 1
2η

(1+ηp)
,

with δ = εTΣ−1ε, kp(η) = (c(η)/π)p/2{Γ((1 + ηp)/2η)/Γ(1/2η)} and c(η) = η/(1− 2η), 0 < η <

1/2. In this case we wrote εt ∼ Tp(0, Σ, η). From properties of the t-distribution (see Appendix A),
we have, given xt, that yt ∼ Tp(α + βxt, Σ, η) independently, t = 1, . . . , n. The t-distribution offers a
more flexible framework for modeling asset returns. In this distribution η is a shape parameter that
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can be used for adjusting the kurtosis distribution and for providing more robust procedures than the
ones that use the normal distribution, with moderate additional computational effort.

Following Campbell et al. (1997), we consider the joint distribution of the excess returns given the
excess return market. Specifically, we assume that the excess returns y1, . . . , yn, given the excess return
market, are independent random vectors with a multivariate t-distribution and common covariance
matrix. Then, the probability density function of yt takes the form of

f (yt|θ) = |Σ|
−1/2g(δt), (5)

where, δt = (yt − α− βxt)TΣ−1(yt − α− βxt), for t = 1, . . . , n. Therefore, the density for a sample of
n periods is given by

f (Y |θ) =
n

∏
t=1

f (yt|θ) =
n

∏
t=1
|Σ|−1/2g(δt), (6)

with Y = (y1, . . . , yn) and θ = (αT , βT , σT , η)T , where σ = vech(Σ) is the p(p + 1)/2 vector obtained
from vec(Σ) by deleting from it all of the elements that are above the diagonal of Σ.

2.2. Maximum Likelihood Estimation

The logarithm of the likelihood function for the model (6) is given by

L(θ) =
n

∑
t=1
Lt(θ), (7)

where Lt(θ) = −1
2

log |Σ| + log{g(δt)} = log kp(η)−
1
2

log |Σ| − 1
2η

(1 + ηp) log(1 + c(η)δt) is the

contribution from the tth return to the likelihood, t = 1, 2, . . . , n.
From (7), the score function is given by

U (θ) =
n

∑
t=1

Ut(θ), (8)

where Ut(θ) = (UT
tα, UT

tβ, UT
tσ, Utη)T with

Utα = ωtΣ
−1εt,

Utβ = xtUtα,

Utσ = −1
2

DT
p vec

(
Σ−1 −ωtΣ

−1εtε
T
t Σ−1

)
, and

Utη =
1

2η2 {c(η)p− β(η)−ωtc(η)δt + log(1 + c(η)δt)},

where ωt =
(1 + ηp

η

)( c(η)
1 + c(η)δt

)
, for t = 1, . . . , n; β(η) = ψ

( 1
2η

(1 + ηp)
)
− ψ

( 1
2η

)
; ψ(x) is the

digamma function and Dp is the duplication matrix; see Magnus and Neudecker (2007). It is difficult to
obtain the maximum likelihood (ML) estimators from U (θ) = 0. The EM algorithm has been suggested
frequently to obtain ML estimators in statistical models under the t-distribution, mainly because it
leads to a simple implementation of an iteratively weighted estimation procedure. As is well known,
the t-distribution is a scale mixture of a normal distribution (see Lange et al. 1989), which facilitates the
implementation of the EM algorithm considerably. Then, based on the complete-data log-likelihood
function we obtained the expressions of ML estimates (see Liu and Rubin 1995; Shoham 2002; Xie et al.
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2007). Thus, in our case, as shown in Appendix B, the ML estimates of α, β, Σ and η are obtained as
solution of the following equations:

α̂ = ȳω − β̂x̄ω, β̂ =
∑n

t=1 ωt(xt − x̄ω)(yt − ȳω)

∑n
t=1 ωt(xt − x̄ω)2 , Σ̂ =

1
n

n

∑
t=1

ωtε̂tε̂
T
t , (9)

and
η̂−1 =

2
a + log a− 1

+ 0.0416
{

1 + er f
(

0.6594 log
( 2.1971

a + log a− 1

))}
,

where ε̂t = yt − α̂− β̂xt; ȳω = ∑n
t=1 ωtyt/ ∑n

t=1 ωt; x̄ω = ∑n
t=1 ωtxt/ ∑n

t=1 ωt;

er f (x) =
2√
π

∫ x
0 exp(−u2)du, a = −(1/n)∑n

t=1(vt2− vt1), with vt1 = (1+ pη)/(1+ c(η)δt) and

vt2 = ψ
(1 + pη

2η

)
− log

(1 + c(η)δt

2η

)
, for t = 1, . . . , n. The iterative process given by Equation (9) was

implemented in R language. Note that the normal model ωt = 1, t = 1, ..., n and the ML estimators of
α, β and Σ correspond to the normal case. Under the t-model, the exact marginal distribution of α̂, β̂

and Σ̂ are particularly difficult to obtain, but under normal distribution, the estimators of α, β and Σ

have exact marginal distributions (see Campbell et al. 1997).

2.3. Asymptotic Standard Errors

The standard errors of the ML estimators can be estimated using the expected information matrix.
For a multivariate elliptically symmetric distribution, Lange et al. (1989) indicated how to compute
the expected information matrix. See also Mitchell (1989). In our case, by using score function (8),
the Fisher information matrix for θ in the log-likelihood function defined in (7) assumes the form

J = E{U (θ)UT(θ)} =

J11 0 0
0 J22 J23
0 JT

23 J33

 , (10)

where J11, J22, J23 and J33 denote information concerning (α, β), σ, (σ, η) and η, respectively, and are
given by

J11 = cα(η)(XTX)⊗ Σ−1,

J22 =
n
4

DT
p
{

2cσ(η)(Σ
−1 ⊗ Σ−1)N p + (cσ(η)− 1)(vec Σ−1)(vec Σ−1)T}Dp,

J23 = −nc(η)cσ(η)(p + 2)
(1 + pη)2 DT

p vec Σ−1,

J33 = − n
2η2

{( p
(1− 2η)2

)( 1 + ηp(1− 4η)− 8η2

(1 + ηp)(1 + η(p + 2))

)
− β′(η)

}
,

with N p = 1
2 (Ip2 + Kp) where Kp is the commutation matrix of order p2 × p2

(Magnus and Neudecker 2007); cα(η) = cσ(η)/(1 − 2η), cσ(η) = (1 + pη)/(1 + (p + 2)η);
and

β′(η) = − 1
2η2

{
ψ′
(1 + pη

2η

)
− ψ′

( 1
2η

)}
,

where ψ′(z) denotes the trigamma function. Note that cα(η) = cσ(η) = 1 when η = 0 and N pDp = Dp

(see for instance Magnus and Neudecker 2007), we have to recover the expressions corresponding
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to the normal case. Here, X is an n× 2 matrix such XT =

(
1 · · · 1
x1 · · · xn

)
and ⊗ denotes the

Kronecker product. The asymptotic sampling distribution of the ML estimator θ̂ is given by

√
n(θ̂− θ)

D7→ Nr(0, V−1),

where V = limn→∞(1/n)J and r = {p(p + 5) + 2}/2 is the dimension of θ. To estimate V , we use
V̂ = J(θ̂)/n.

2.4. Test of Mean-Variance Efficiency

To test Hα : α = 0 the three classic tests based on the likelihood function are considered,
including the Wald test, likelihood-ratio test, and score test; see for instance Boos and Stefanski (2013).
Let θ = (αT , θT

2 )
T , with θ2 = (βT , σT , η)T and U (θ) = (UT

α (θ), UT
2 (θ))

T the score function (8)
partitioned following the partition of θ. In this case, after some algebraic manipulations, the test
statistics are given by

Lr = n log{|Σ̃|/|Σ̂|}+ 2 ∑n
t=1 log{g(δ̂t)/g(δ̃t)},

Wa = ncα(η̂)(1 + x̄2/s2)−1α̂TΣ̂
−1

α̂,

Sc =
1

nc−1
α (η̃)

(1 + x̄2/s2)dTΣ̃
−1d,

where x̄ = (1/n)∑n
t=1 xt, s2 = (1/n)∑n

t=1(xt − x̄)2, δ̂t = ε̂T
t Σ̂
−1

ε̂t, δ̃t = (yt − β̃xt)TΣ̃
−1

(yt − β̃xt);
α̂, β̂, Σ̂ and η̂ are the ML estimators in the model (6); β̃, Σ̃ and η̃ are the ML estimators of β, Σ and
η under Hα, d = ∑n

t=1 ω̃t(yt − β̃xt), θ̃ and θ̂ are the restricted and unrestricted ML estimators of θ,
respectively. Under Hα, the asymptotic distribution of each of these test statistics is χ2(p). Note that
cα(η) = 1 when η = 0 and Wa = n(1 + x̄2/s2)−1α̂TΣ̂

−1
α̂, which corresponds to the Wald test under

normality; see, for instance, Campbell et al. (1997). In addition, under the assumption of multivariate
normality, the likelihood-ratio test is given by Lr = n log(1 + Wa/n), and the score test takes the form
Sc = Wa/(1 + Wa/n). The gradient test Terrell (2002) is also discussed, defined as

Ga = UT(θ̃)(θ̂− θ̃). (11)

Since U2(θ̃) = 0, the gradient statistic in (11) can be written as Ga = UT
α (θ̃)α̂ = dTΣ̃

−1
α̂. Note that

Ga is attractive, as it is simple to compute and does not involve knowledge of the Fisher information
matrix (10), unlike Wa and Sc. Asymptotically, Ga has a chi-square distribution with p degrees of
freedom under Hα. For more details and applications of this test, see Terrell (2002) and Lemonte (2016).
However, in this case, under the normality assumption, the gradient statistic does not offer an
alternative to test the hypothesis of mean-variance efficiency since Sc = Ga, see Appendix D.

To calculate the values of the statistics Lr, Sc and Ga, it is necessary to estimate θ under Hα.
The EM algorithm leads to the following equations to obtain the ML estimates of β, Σ and η under Hα:

β̃ =
∑n

t=1 ωtxtyt

∑n
t=1 ωtx2

t
, Σ̃ =

1
n

n

∑
t=1

ωt(yt − β̃xt)(yt − β̃xt)
T

and
η̃−1 =

2
a + log a− 1

+ 0.0416
{

1 + er f
(

0.6594 log
( 2.1971

a + log a− 1

))}
,

where a = −(1/n)∑n
t=1(vt2 − vt1), with vt1 = (1 + pη)/(1 + c(η)δ̃t) and vt2 = ψ

(1 + pη

2η

)
−

log
(1 + c(η)δ̃t

2η

)
, for t = 1, . . . , n.
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2.5. Model Assessment and Outlier Detection

Any statistical analysis should include a critical analysis of the model assumptions. Following
Lange et al. (1989), in this work the Mahalanobis distance is used to assess the fit of the CAPM. In effect,
the random variables

Ft =
( 1

1− 2η

) δt

p
∼ F(p, 1/η)

for t = 1, . . . , n. Substituting the ML estimators yields F̂t = Ft(θ̂), which has asymptotically the same
F distribution as Ft, t = 1, . . . , n. Using the Wilson-Hilferty approximation,

zt =

(
1− 2η

9

)
F̂1/3

t −
(

1− 2
9p

)
√

2η

9
F̂2/3

t +
2

9p

(12)

for t = 1, . . . , n, with an approximately standard normal distribution. Thus, a QQ-plot of the
transformed distances {z1, . . . , zn} can be used to evaluate the fit of the CAPM under the multivariate
t-distribution. For η = 0, the transformed distances are simplified to zt = {F̂1/3

t − (1− 2/9p)}/
√

2/9p
and can be used to assess of fit of the CAPM under the assumption of normality. Additionally,
the Mahalanobis distance can be used for multivariate outlier detection. In effect, larger than expected
values of the Mahalanobis distance, F̂t, t = 1, . . . , n, identify outlying cases (see Lange et al. 1989).

2.6. Generalized Method of Moments Tests

If the iid multivariate t assumption of random errors is violated, hypothesis (3) can be tested using
the Generalized Method of Moments (GMM) (see Hansen 1982). No distributional assumptions are
needed other than the data being stationary and ergodic. With the GMM framework, the random errors
can be both serially dependent and conditionally heteroskedastic. From (2), we have εt = yt − α− βxt,
for t = 1, . . . , n. The idea of the GMM approach (see Hansen 1982), is to use sample moments
conditions to replace the population moment conditions of the model restrictions. The relevant
population moment conditions are E(εt) = 0 and E(xtεt) = 0, for t = 1, . . . , n.

Define 2p× 1 vectors ft(ψ) and gn(ψ) as follows,

ft(ψ) = (εt1, xtεt1, . . . , εtj, xtεtj, . . . , εtp, xtεtp)
T ,

and

gn(ψ) =
1
n

n

∑
t=1

ft(ψ) =
1
n

n

∑
t=1

(εt ⊗ xt),

where, ψ = (α1, β1, . . . , αp, βp)T , whose dimension is 2p × 1, where p is the number of assets and
xt = (1, xt)T for t = 1, . . . , n. The GMM estimator is obtained by minimizing the quadratic form

Q(ψ) = gT
n (ψ)Wngn(ψ),

where Wn, 2p× 2p, is the weighting matrix. As noted by MacKinlay and Richardson (1991), in this
model the GMM estimator is independent of the weighting matrix and always coincides with the OLS
estimators, which are given by

α̂ = ȳ− x̄β̂, and β̂ =
∑n

t=1(xt − x̄)(yt − ȳ)
∑n

t=1(xt − x̄)2 , (13)

where ȳ =
1
n ∑n

t=1 yt and x̄ =
1
n ∑n

t=1 xt.



J. Risk Financial Manag. 2020, 13, 123 8 of 22

As we know, there are several versions of the GMM test, for simplicity, in this work
the Wald-type GMM test is considered (see MacKinlay and Richardson 1991). It is well
known that the GMM estimators (13) are normally distributed asymptotically. In effect, from
MacKinlay and Richardson (1991) it follows that the asymptotic sampling distribution of the estimator
ψ̂ is given by

√
n(ψ̂−ψ)

D7→ N2p(0, Ψ) ,

and a consistent estimator of Ψ is Ψ̂ = (DT
n S−1

n Dn)−1 with Dn = (1/n)∑n
t=1(Ip ⊗ xtxT

t ) = (1/n)(Ip ⊗
XTX) and Sn = (1/n)∑n

t=1(ε̂tε̂
T
t ⊗ xtxT

t ). The Wald-type GMM test is given by

Wa = nα̂T(CΨ̂CT)−1α̂,

where C = Ip ⊗ (1, 0) such that Cψ̂ = α̂. This test has an asymptotic χ2(p), a χ2 distribution with
degrees of freedom p. See MacKinlay and Richardson (1991) for more details.

For the development of the methodology proposed in this paper, the classical approach is used.
Optionally, the Bayesian approach can be used. Two recent references are Barillas and Shanken (2018)
and Borup (2019), who propose a Bayesian framework for asset pricing models. For applications of
Bayesian inference using the Markov Chain Monte Carlo (MCMC) approach in Capital Asset Pricing
Models, see Glabadanidis (2014).

3. Applications

3.1. The Chilean Stock Market Data Set

As an application of the methodology presented in this paper, monthly returns of shares from
the Chilean Stock Market were analyzed. The data corresponded to the period from September, 2002
to March, 2020 and five companies: BSantander (one of the biggest banks in the country), ENEL (an
electrical distribution company), Falabella (a retail company), LTM (an airline), and SQMB (a company
from the chemical industry). The Selective Index of Share Prices (IPSA) was used as the return for
the market and the 10-Years Bonds in UFs (BCU, BTU) of the Central Bank of Chile, was used as the
risk-free rate, both monthly. This risk free rate is a long-rate, the trend of which is a smoother curve
than that of a short-rate.

The means, standard deviations (SDs), Sharpe ratios (Sharpe), coefficients of skewness and
kurtosis, and the Jarque-Bera test (JB Test) for normality of the monthly returns are presented in
Table 1. SQMB had the highest mean return (1.19% per month), while ENEL had the lowest average
return (0.13%). In addition, LTM had the highest volatility (11.21%), while BSantander had the lowest
volatility (5.56%) among the five assets. Furthermore, the IPSA index had a standard deviation of
4.60%, which was less than the volatility of the five assets considered. With the exception of SQMB, a
lithium-producing company, Sharpe ratios were close to zero.

Except for BSantander, which has a moderate positive asymmetry, the returns of the remaining
assets had a moderately negative skew. Except for BSantander, the returns of the remaining assets
had a highest kurtosis. LTM showed the highest kurtosis with an estimated coefficient of 22.7946,
and BSantander showed the lowest kurtosis. These coefficients provide us initial evidence of the
absence of normality in the monthly returns. In fact, with the exception of BSantander, the normality
hypothesis was rejected in the other assets using the Jarque-Bera test (JB Test). In brief, the descriptive
statistics summary reported in Table 1, confirmed the presence of low levels of skewness and high
levels of kurtosis.
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Table 1. Summary statistics for monthly log-returns of five assets and IPSA index, from the Chilean
Stock Market data set. p-values are in parentheses.

Asset Mean (%) SD (%) Sharpe Skewness Kurtosis JB Test

BSantander 0.4590 5.5594 0.0480 0.1441 2.9212 0.7846
(0.6755)

ENEL 0.1311 7.4571 −0.0082 −1.3978 9.2396 410.9952
(0.0000)

Falabella 0.6296 7.3003 0.0601 −0.3574 5.9289 79.9115
(0.0000)

LTM 0.5687 11.2062 0.0336 −2.4017 22.7946 3647.6426
(0.0000)

SQMB 1.1889 9.4381 0.1057 −0.0603 5.5979 59.4642
(0.0000)

IPSA 0.5800 4.6000 0.0850 −0.1324 3.8769 7.3770
(0.0250)

Figure 1 shows scatter plots and estimated lines for the five assets, using the normal and
t distributions. From this figure, it is possible to observe linear relationships between asset returns and
IPSA returns, and potential outliers. The IPSA index returns explained between 28% and 51% of the
variability of the five assets returns. The IPSA index explained 50.94% of the variability in the returns
of the Falabella and 27.82% of the returns variability of SQMB.
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Figure 1. Scatter plots and estimated lines for five assets, using the normal and t distributions, for the
Chilean Stock Market data set.

We also performed an analysis of the heteroscedasticity and autocorrelation of the returns of
the five assets. Using the White test (see Lee 1991; Waldman 1983; White 1980) Falabella and LTM
showed evidence of heteroscedasticity, while the Durbin-Watson test indicated evidence of first order
autocorrelation only in the returns of LTM. Then, considering the significant departure from normality,
high kurtosis (evidence that the returns had fat-tailed distributions), the moderate skewness, and
the results of the tests for heteroscedasticity and autocorrelation of errors, it is assumed in this study
that the random vectors {εt, t = 1, . . . , n} were iid as a multivariate t-distribution, with zero mean
and covariance matrix Σ and density given by (4). For illustrative purposes, the normal distribution
and tests based on weaker distributional assumptions were used, such as the GMM tests, for testing
hypothesis (3).
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Table 2 presents the ML estimate for parameters of the CAPM using the normal and t distributions.
The standards errors were estimated using the expected information matrix. The results in Table 2
show that the estimates of the coefficients α and β were very similar using both models (NCAPM and
TCAPM), especially the systematic risk estimators (β̂) of the assets considered.

Table 2. Adjustment results of Capital Asset Pricing Model (CAPM) using the multivariate normal and
t distributions, standard errors are in parentheses, for the Chilean Stock Market data set.

Model Asset α̂ β̂ Σ̂

Normal BSantander 0.0007 (0.0032) 0.7105 (0.0685) 0.0021 −0.0001 −0.0003 −0.0001 −0.0003
ENEL −0.0028 (0.0038) 0.9901 (0.0830) 0.0030 −0.0003 0.0004 −0.0005

Falabella 0.0014 (0.0035) 1.1298 (0.0767) 0.0026 −0.0001 −0.0007
LTM 0.0019 (0.0052) 1.5608 (0.1124) 0.0056 −0.0004

SQMB 0.0091 (0.0057) 1.1047 (0.1231) 0.0067

t (η̂ = 0.135) BSantander −0.0011 (0.0031) 0.7090 (0.0675) 0.0024 0.0000 −0.0003 −0.0001 −0.0001
ENEL −0.0010 (0.0032) 1.0039 (0.0700) 0.0026 −0.0004 0.0002 −0.0006

Falabella 0.0026 (0.0034) 1.0623 (0.0727) 0.0028 −0.0004 −0.0003
LTM 0.0014 (0.0047) 1.3873 (0.1011) 0.0054 −0.0002

SQMB 0.0070 (0.0050) 1.1039 (0.1072) 0.0060

The following hypothesis test H0 : η = 0 against H1 : η > 0 was considered. In this case,
it was found that η̂ = 0.134926. The asymptotic distribution of the LR test for the previous
hypothesis corresponded to a 50:50 mixture of chi-squares with zero and one degree of freedom,
whose critical value was 2.7055 at a significance level of 5% (see, for instance Song et al. 2007). In this
case, the maximum log-likelihood for the NCAPM was 1481.39 and for the TCAPM, the maximum
log-likelihood was 1524.06, which corresponded to a likelihood-ratio statistic of 85.34. This indicates
that the TCAPM fit the data significantly better than the NCAPM. As suggested by a referee, for address
the impact of finite samples on the p-values and on the standard errors of the parameter estimates,
we also used a nonparametric bootstrap procedure (Chou and Zhou 2006; Efron and Tibshirani 1993).
Nevertheless, the results were very similar to those obtained using the normal and t-distribution;
therefore, they are not shown here. Figure 2 displays the transformed distance plots for the normal
and t distributions, see Equation (12). These graphics confirm that the TCAPM presented the best fit.
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Figure 2. QQ-plot of transformed distances for the NCAPM (a) and TCAPM (b), for the Chilean Stock
Market data set.
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Table 3 presents tests results for hypothesis (3) based on the Wald, likelihood-ratio, score, and gradient
tests. The results in Table 3 show that the mean-variance efficiency of the IPSA index is not rejected
(p-values > 0.59), with any of the tests used for the three scenarios (normal, t-distributions and the GMM).

Table 3. Test of the mean-variance efficiency; p-values in parentheses, for the Chilean Stock Market data set.

Test Normal Fit Multivariate t Fit GMM Fit

Wald 3.7243 3.0368 3.6917
(0.5898) (0.6943) (0.5946)

Likelihood-ratio 3.6918 2.9712 -
(0.5946) (0.7044) -

Score 3.6597 2.9508 -
(0.5994) (0.7076) -

Gradient - 2.9698 -
- (0.7046) -

Figure 3 shows the Mahalanobis distances for the normal and t-distribution, for both data sets; the
Chilean data set and the New York Stock Exchange data set. For the Chilean data set, under normality
Figure 3a, we observe that the returns for 2008/Jun, 2009/Jul and 2020/Mar are possible outliers.
For instance, in 2009/Jul, economic activity fell by 3.5%, when Chile entered a recession due to the
global financial crisis, while in 2020/Mar, the fall in economic activity (initial) was due to the pandemic
caused by Covid-19. Already in Figure 3b, we see as expected, that the TCAPM reduced the possible
effect of these returns.
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Figure 3. Mahalanobis distances (F̂t) for the NCAPM (a) and TCAPM (b), for the Chilean Stock Market
data set, and NCAPM (c) and TCAPM (d) for the NYSE data set.
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3.2. The New York Stock Exchange Data Set

We considered monthly returns of shares from five companies whose common stock shares trade
on the New York Stock exchange, NYSE: Bank of America, Boeing, Ford Motor Company, General
Electric Company and Microsoft. The S&P500 was taken as the market price. The 10-year bond yield
was used as the risk-free returns; it is a long risk-free rate, similar to the one used for the Chilean data
set. The excess returns were the returns minus the risk-free rate. The data corresponded to the period
from January, 2000 to March, 2020.

The means, standard deviations (SD), Sharpe ratios (Sharpe), coefficients of skewness and kurtosis,
and the Jarque-Bera test (JB Test) for normality of the monthly returns are presented in Table 4. Boeing
had the highest mean return (0.53% per month), while General Electric Company had the lowest
average return (−0.77%). In addition, Ford had the highest volatility (13.10%), while Microsoft had
the lowest volatility (8.34%) among the five assets. Furthermore, the S&P500 index had a standard
deviation of 4.34%, which was less than the volatility of the five assets considered. With the exception
of General Electric Company, with a negative Sharpe ratio, the other Sharpe ratios were close to zero.

The assets had a moderate (positive and negative) asymmetry. Again, the returns of the assets
had a highest kurtosis. The normality hypothesis was rejected in all the assets using the Jarque-Bera
test (JB Test). In brief, the descriptive statistics summary reported in Table 4, confirmed the presence of
low levels of skewness and high levels of kurtosis.

Table 4. Summary statistics for monthly log-returns of five assets and S&P500 index from the NYSE
data set. p-values are in parentheses.

Asset Mean (%) SD (%) Sharpe Skewness Kurtosis JB Test

Bank of America −0.0691 11.9324 −0.0281 −1.3041 12.6330 1008.4271
(0.0000)

Boeing 0.5269 9.2462 0.0282 −1.8571 12.0454 968.1001
(0.0000)

Ford −0.7582 13.0995 −0.0782 0.0119 16.1538 1751.8490
(0.0000)

Gelectric −0.7728 8.5741 −0.1212 −0.6836 5.9354 106.1649
(0.0000)

Microsoft 0.4093 8.3394 0.0171 −0.3767 6.7068 144.8702
(0.0000)

S&P500 0.2300 4.3400 −0.0077 −0.8143 4.4698 48.7262
(0.0000)

Figure 4 shows scatter plots and estimated lines of the five assets, using the normal and
t distributions. From this figure, it is possible to observe linear relationships between asset returns and
S&P500 returns, and potentials outliers. In this case, the S&P500 index returns explained between 27%
and 45% of the variability of the five assets returns, similar to the Chilean Data Set.

The Whites test show evidence of heteroscedasticity in Bank of America, Boeing and Ford Motor
Company. The Durbin-Watson test indicates no evidence of first order autocorrelation.

Table 5 presents the ML estimate for parameters of the CAPM using the normal and t distributions.
The standards errors were estimated using the expected information matrix. Similar results to the
Chilean data set were observed. For this data set, it was found that η̂ = 0.276870, indicating a
greater departure from normality than the Chilean data set. The likelihood-ratio statistic value, for the
hypothesis H0 : η = 0 against H1 : η > 0 was 285.8, which was highly significant. In this case,
the maximum log-likelihood for the NCAPM was 1361.2 and for the TCAPM was 1504.1. Again, this
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indicates that the TCAPM fit the data significantly better than the NCAPM. This was also confirmed
by the transformed distance plots displayed in Figure 5.
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Figure 4. Scatter plots and estimated lines for five assets, using the normal and t distributions, for the
NYSE data set.

Table 5. Adjustment results of CAPM using the multivariate normal and t distributions, standard
errors are in parentheses, for the NYSE data set.

Model Assets α̂ β̂ Σ̂

Normal Bank of Am 0.0025 (0.0060) 1.5633 (0.1407) 0.0087 0.0002 0.0019 0.0013 −0.0004
Boeing 0.0060 (0.0046) 1.1405 (0.1080) 0.0051 0.0007 0.0005 −0.0012
Ford −0.0026 (0.0077) 1.7125 (0.1802) 0.0143 0.0006 −0.0005

Gelectric −0.0076 (0.0040) 1.3070 (0.0931) 0.0038 −0.0003
Microsoft 0.0042 (0.0043) 1.1518 (0.1013) 0.0045

t (η̂ = 0.277) Bank of Am −0.0017 (0.0044) 1.2387 (0.1036) 0.0087 0.0002 0.0008 0.0007 −0.0004
Boeing 0.0065 (0.0039) 1.0935 (0.0908) 0.0067 0.0010 0.0004 −0.0011
Ford −0.0147 (0.0050) 1.4773 (0.1174) 0.0111 −0.0002 −0.0005

Gelectric −0.0074 (0.0032) 1.2406 (0.0747) 0.0045 0.0002
Microsoft 0.0007 (0.0034) 1.1487 (0.0797) 0.0051
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Figure 5. Plots of transformed distances for the NCAPM (a) and TCAPM (b), for the NYSE data set.
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Table 6 presents tests results for hypothesis (3). The results in Table 6 show that the mean-variance
efficiency of the S&P500 index could not be rejected (p-values > 0.1277), with any of the tests, if we
used the NCAPM (or GMM test). However, if we used TCAPM, the hypothesis (3) was rejected
(0.0014 < p-values < 0.0030) with any of the four tests. That is to say, there was a change in statistical
inference.

Table 6. Test of the mean-variance efficiency; p-values in parentheses, for the NYSE data set.

Test Normal Fit Multivariate t Fit GMM Fit

Wald 8.5507 19.7321 8.5664
(0.1284) (0.0014) (0.1277)

Likelihood-ratio 8.4037 18.7816 -
(0.1353) (0.0021) -

Score 8.2601 18.1012 -
(0.1425) (0.0028) -

Gradient - 17.9527 -
- (0.0030) -

As suggested by a referee, it may also be of interest to test the hypotheses Hβ : β = 1 and Hαβ :
α = 0, β = 1. The four tests were implemented to verify these hypotheses using the t-distribution,
see Appendix C. However, with the four tests statistics, we strongly rejected the null hypotheses, and
therefore they are not shown in the present study. More details about this interesting topic can be
found at Glabadanidis (2009, 2014, 2019).

Figure 3 show the Mahalanobis distances for the NCAPM and TCAPM models, showing results
similar to the Chilean data set, except that the return corresponding to 2009/Apr for TCAPM
(see Figure 3d) was a possible outlier. In April 2009, the five assets had high returns, highlighting
Ford Motor Company, with a 127.4%. However, when deleting these returns, there were no changes
in statistical inference. Once again, this suggests that the TCAPM provided an appropriate way for
achieving robust inference.

3.3. Robustness

Aspects of the robustness of the TCAPM with respect to the NCAPM can be illustrated perturbing
some observations in the original data. Changes in the ML estimates of β can be evaluated using the
following procedure. First, an observation can be perturbed to create an outlier by yn ← yn + ∆1p,
for ∆ = −0.20,−0.10, 0, 0.10, 0.20. Then, we re-calculate the ML estimates of β under the TCAPM and
under the NCAPM. Note that, for the NCAPM,

β̂∆j = β̂ j + (xn − x̄)∆/
n

∑
t=1

(xt − x̄)2, (14)

for j = 1, . . . , p. Finally, a graph of β̂∆j, j = 1, . . . , p versus ∆ for each of the p assets, is useful to
visualize changes in the estimators. Figures 6 and 7 show the curves of the estimates of β̂∆j, j = 1, . . . , 5
versus ∆ for each of the 5 assets included in the two data sets considered in this paper. For this
perturbation scheme, it can be observed that the influence on parameter estimation was unbounded in
the NCAPM, see Equation (14), whereas it was obviously bounded in the TCAPM. This suggests that
TCAPM provided an appropriate way for achieving robust statistical inference.
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Figure 6. Perturbed ML estimates of β under the NCAPM (red line) and TCAPM (blue line), for the
Chilean Stock Market data set.
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Figure 7. Perturbed maximum likelihood (ML) estimates of β under the NCAPM (red line) and TCAPM
(blue line), for the NYSE data set.

4. Multifactor Asset Pricing Models under the t-Distribution

As suggested by a referee, in some cases it is necessary to use more than one factor to estimate the
expected returns of the assets of interest. In this Section we briefly discuss an extension of the TCAPM
that includes more than one factor. More details on estimation, hypothesis testing, and applications
will be discussed in a separate paper. The multifactor model (MAPM) is a multivariate linear regression
model with excess returns on p assets, as follows:

yt = α + β1xt1 + . . . + βqxtq + εt, t = 1, . . . , n, (15)

where (x1, . . . , xq) denotes the excess returns of q factors (benchmark assets), βj is a p× 1 parameter
vector, j = 1, . . . , q. The above regression model can be expressed as

yt = α + B1x f
t + εt, (16)

yt = Bxt + εt,
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where B = (α, B1), denotes the matrix (p × q + 1) of regression coefficients, B1 = (β1, . . . , βq),

xt = (1, x f
t )

T and x f
t = (xt1, . . . , xtq)T , t = 1, . . . , n.

As in Section 2.1, we assume that the excess returns yt follows an multivariate t-distribution with
mean vector µt and variance-covariance matrix Σ, named yt ∼ Tp(µt, Σ, η), independent, t = 1, . . . , n,
whose density function takes the form,

f (yt|θ) = |Σ|
−1/2g(δt), (17)

where, δt = (yt − µt)
TΣ−1(yt − µt) is the square of the Mahalanobis distance, with µt = Bxt, xt =

(1, xt1, . . . , xtq)T denoting the t-th row of the matrix (n× q + 1) X = (x1, . . . , xn)T , for t = 1, . . . , n.
Thus, in this case, the ML estimates of B, Σ and η are obtained as solution of the following

equations (see Equation (9)):

B̂T
= (XTWX)−1XTWY , Σ̂ =

1
n

n

∑
t=1

ωtε̂tε̂
T
t , (18)

and
η̂−1 =

2
a + log a− 1

+ 0.0416
{

1 + er f
(

0.6594 log
( 2.1971

a + log a− 1

))}
,

where ε̂t = yt − B̂Txt and W = diag(ω1, . . . , ωn) an n × n diagonal matrix with elements ωt =(1 + ηp
η

)( c(η)
1 + c(η)δt

)
, for t = 1, . . . , n, and the matrix (n× p) Y = (y1, . . . , yn)

T .

As in Section 2.3, the standard errors of the ML estimators B̂, Σ̂ and η̂ can be estimated using
the expected information matrix. In this case, the Fisher information matrix for θ = (B, Σ, η) assumes
the same form of the matrix J given in the Equation (10), but the information concerning to B is now
J11 = cα(η)(XTX)⊗ Σ−1, with cα as defined in Equation (10). To test linear hypotheses of interest,
such as Hα, we can use the same four tests discussed in Section 2.4.

As a illustration we consider the NYSE data set. We fit the following three-factor model,

yt = α + β1xt + β2SMBt + β3HMLt + εt, k = 1, . . . , n, (19)

where, x is the excess return of the S&P500 index, used in the NYSE data set, while SMB and HML
used in the Fama-French model were from the website of Prof. Kenneth French. For details on risk
factors, SMB and HML see Fama and French (1995).

In this case, the three risk factors explained between 32% and 50% of the variability of the five
assets’ returns, which corresponded to an increase of approximately 5% with respect to the CAPM.
From Table 7, wecan see that the values in α̂ were very similar to those obtained using CAPM as
presented in Table 5, while estimates in β̂1 tended to be lower than estimates in β̂, in the case of CAPM
(see Table 5).

Figure 8 displays the transformed distance plots for the normal and t distributions. Here NMAPM
denotes the three risk factors under normality and TMAPM denotes the three risk factors under
multivariate t-distribution. These graphics show clear evidence that the TMAPM had a better fit
than the NMAPM. Using the likelihood-ratio test, the hypothesis Hα could not be rejected (p-value =

0.1277), if we used the NMAPM. However, if we used TMAPM, the hypothesis (3) was rejected
(p-value = 0.0011). Once again, there was a change in statistical inference.
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Table 7. Adjustment results of Multifactor Asset Pricing Model (MAPM) using the multivariate
normal and t distributions from the NYSE data set and Fama-French data set. Standard errors are
in parentheses.

Model Asset α̂ β̂1 β̂2 β̂3

Normal Bank of Am 0.0006 (0.0052) 1.4698 (0.1237) 0.2059 (0.1656) 1.4310 (0.1624)
Boeing 0.0052 (0.0044) 1.1015 (0.1042) 0.0557 (0.1395) 0.6612 (0.1367)
Ford −0.0041 (0.0075) 1.6341 (0.1765) 0.3050 (0.2363) 0.9135 (0.2317)

Gelectric −0.0081 (0.0038) 1.2836 (0.0910) −0.0050 (0.1218) 0.4815 (0.1194)
Microsoft 0.0051 (0.0041) 1.1967 (0.0970) −0.1058 (0.1298) −0.6713 (0.1273)

t (η̂ = 0.27) Bank of Am −0.0017 (0.0027) 1.1916 (0.0634) 0.1535 (0.0849) 1.2474 (0.0832)
Boeing 0.0056 (0.0026) 1.1063 (0.0609) −0.0279 (0.0815) 0.5455 (0.0799)
Ford −0.0149 (0.0033) 1.4170 (0.0780) 0.2127 (0.1045) 0.6901 (0.1024)

Gelectric −0.0081 (0.0021) 1.2611 (0.0497) −0.1479 (0.0665) 0.3387 (0.0652)
Microsoft 0.0017 (0.0022) 1.1636 (0.0524) −0.3077 (0.0701) −0.4498 (0.0688)
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Figure 8. Plots of transformed distances for the NMAPM (a) and TMAPM (b), for the NYSE data set.

5. Conclusions

Since the pioneering work by Lange et al. (1989), the t-distribution has proved to be a versatile
and robust modeling approach in many regression models. In fact, the t-distribution has a parameter
(η) modeling kurtosis, which brings more flexibility than the normal distribution.

In this paper, robust methods for statistical inference in asset pricing models with emphasis on
CAPM were developed. In effect, assuming a multivariate t-distribution for the stock returns, ML
equations for parameters were derived and statistics were proposed to test linear hypotheses of interest,
in particular the hypothesis of mean-variance efficiency. Simple expressions were provided in this
study for the likelihood-ratio, Wald, score and gradient statistics and for the score function and Fisher
information matrix. The proposed statistics generalized results from the literature, which considered
tests for mean-variance efficiency under the assumption of multivariate normality (Brandimarte
2018; Campbell et al. 1997; Chou and Lin 2002; Gibbons et al. 1989; Mazzoni 2018). In addition,
statistical inference based on the t-distribution is simple to implement, and the computational cost is
considerably low.

A simple graphical device for checking the model was implemented, and the methodology
developed in this paper was illustrated with two real data sets: the Chilean Stock Market data set
(a developing country), and another from the New York Stock Exchange, USA (a developed country).
In both data sets, the CAPM under the t-distribution clearly presents a better fit than under the normal
distribution. Additionally, in the application of the multifactor asset pricing model to the NYSE data
set, the multivariate t-distribution presents a better fit than the normal distribution.
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This empirical study provides new evidence for the useful application of the t-distribution in
modeling stock returns (Kan and Zhou 2017). As we have pointed out, the log-returns frequently
present some degree of skewness. We are currently working on statistical inference in the asset
pricing models under the multivariate skew-elliptical distributions. We understand that a skewed
t-distribution of Branco and Dey (2001) may be useful for returns with high levels of skewness.
For previous applications of the skew-elliptical distributions in finance and actuarial science, see
Harvey et al. (2010) and Adcock et al. (2015). See also Paula et al. (2011).
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Appendix A. The Multivariate t-Distribution

For completeness, we present some properties of the multivariate t-distribution, with finite second
moment, based on the parameterization given in (5).

Property A1. Let y ∼ Tp(µ, Σ, η), with η < 1/2.

(i) Suppose that y|u ∼ Np(µ, u−1Σ), and that u ∼ G(1/2η, 1/2c(η)), then y ∼ Tp(µ, Σ, η)

(ii) E(y) = µ and Cov(y) = Σ

(iii) u|y ∼ G((1/η + p)/2, (1/c(η) + δ)/2)
(iv) The random variable

F =
( 1

1− 2η

) δ

p
∼ F(p, 1/η)

(v) Let A(q× p), c ∈ Rq and q ≤ p, then Ay + c ∼ Tq(Aµ + c, AΣAT , η)

(vi) Let y = (y1, y2)
T a partition of y with y1 of dimension p1 ≤ p, and let

µ =

(
µ1
µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

then y1 ∼ Tp1(µ1, Σ11, η)

(vii) Using the same previous partition, the conditional distribution of y1 given y2, (y1|y2) ∼ Tp1(µ1 −
Σ−1

11 Σ12(µ2 − y2), q(y2, η)(Σ11 − Σ12Σ−1
22 Σ21), η),

where δ = (y − µ)TΣ−1(y − µ), q(y2, η) = {c−1(η) + (y2 − µ2)
TΣ−1

22 (y2 − µ2)}/(η−1 + p2), and
G(a, b) denotes the gamma distribution with probability density function f (x) = baxa−1exp{−bx}/Γ(a), for
x, a, b > 0.

Appendix B. ML Estimation Using the EM Algorithm

To obtain the ML estimate using the EM algorithm, we augmented the observed data, Y , by
incorporating latent variables to obtain Ycom = {(yT

1 , u1), . . . , (yT
n , un)}. Thus, based on property i)

we can consider the following hierarchical model yt|ut
ind∼ Np(α + βxt, Σ/ut), ut

ind∼ G(1/2η, 1/2c(η)),
for t = 1, . . . , n. The log-likelihood function of complete data, is denoted by Lc(θ) = log f (Ycom|θ).
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By using Property A1, the conditional expectation of the complete-data log-likelihood function can be
expressed as

E{Lc(θ)|Y , θ(∗)} = Q(θ|θ(∗)) = Q1(τ|θ(∗)) + Q2(η|θ(∗)), (A1)

where τ = (αT , βT , σT)T , and

Q1(τ|θ(∗)) = −
n
2

log |Σ| − 1
2

n

∑
t=1

ω
(∗)
t (yt − α− βxt)

TΣ−1(yt − α− βxt),

Q2(η|θ(∗)) = n
{ 1

2η
log
( 1

2c(η)

)
− log Γ

( 1
2η

)
+

1
2c(η)

[
ψ
(1/η(∗) + p

2

)
− log

(1/η(∗) + p
2

)
+

1
n

n

∑
t=1

(log ω
(∗)
t −ω

(∗)
t )
]}

,

where ω
(∗)
t = E{ut|yt, θ(∗)} are the weights ωt defined in (8) and evaluated at θ = θ(∗), for t = 1, . . . , n.

Maximizing the Q-function (A1), we obtain the iterative process defined in Equation (9).

Appendix C. ML Estimation under Hβ and Hαβ

In this case Hβ : β = 1. To calculate the values of the statistics Lr, Sc and Ga, we need to estimate
θ under Hβ. The EM algorithm leads to the following equations to obtain the ML estimates of α, Σ and
η under Hβ:

α̃ =
∑n

t=1 ω̃t(yt − 1pxt)

∑n
t=1 ω̃t

, Σ̃ =
1
n

n

∑
t=1

ω̃t(yt − α̃− 1pxt)(yt − α̃− 1pxt)
T (A2)

and
η̃−1 =

2
a + log a− 1

+ 0.0416
{

1 + er f
(

0.6594 log
( 2.1971

a + log a− 1

))}
,

where a = −(1/n)∑n
t=1(vt2 − vt1), with vt1 = (1 + pη)/(1 + c(η)δ̃t) and vt2 = ψ

(1 + pη

2η

)
−

log
(1 + c(η)δ̃t

2η

)
, δ̃t = (yt − α̃ − 1pxt)TΣ̃

−1
(yt − α̃ − 1pxt), ω̃t =

(1 + ηp
η

)( c(η)
1 + c(η)δ̃t

)
, for t =

1, . . . , n.
It may also be of interest to test the joint hypothesis Hαβ : α = 0, β = 1. Similarly, to calculate the

values of the statistics Lr, Sc and Ga, we need to estimate Σ and η under Hαβ. The EM algorithm leads
to the following equations to obtain the ML estimates of Σ and η under Hαβ:

Σ̃ =
1
n

n

∑
t=1

ω̃t(yt − 1pxt)(yt − 1pxt)
T (A3)

and
η̃−1 =

2
a + log a− 1

+ 0.0416
{

1 + er f
(

0.6594 log
( 2.1971

a + log a− 1

))}
,

where a = −(1/n)∑n
t=1(vt2 − vt1), with vt1 = (1 + pη)/(1 + c(η)δ̃t) and vt2 = ψ

(1 + pη

2η

)
−

log
(1 + c(η)δ̃t

2η

)
, δ̃t = (yt − 1pxt)TΣ̃

−1
(yt − 1pxt), ω̃t =

(1 + ηp
η

)( c(η)
1 + c(η)δ̃t

)
, for t = 1, . . . , n.
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Appendix D. Equality of the Score and Gradient Tests under Normality

First, let us remember that the score tests, under normality, test for mean-variance efficiency can be

written as (Campbell et al. 1997) Sc =
J0

1 + J0/n
, where J0 = nbα̂TΣ̂

−1
α̂, with b = s2/(x̄2 + s2), which

is the corresponding Wald tests. In this case, the Gradient test takes the form of Ga = UT
α (θ̃)α̂, where

Uα(θ̃) = Σ̃
−1

n

∑
t=1

(yt − β̃xt), (A4)

β̃ = β̂ + cα̂, Σ̃ = Σ̂ + bα̂α̂T and c = x̄/(x̄2 + s2); see Campbell et al. (1997) for details on these results.
Then, by replacing ∑n

t=1(yt − β̃xt) = nbα̂ in (A4) and using the Sherman-Morrison formula to invert
the matrix Σ̃, we obtain

Ga = nbα̂TΣ̃
−1

α̂

= nbα̂T(Σ̂ + bα̂α̂T)−1α̂

=
J0

1 + J0/n
= Sc.
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