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Abstract: A considerable number of studies have examined the relationship between global prices
and local prices in food-importing nations, but the linkages between international prices and the
producer prices of large agricultural exporters have been largely ignored. This paper analyzes the
connections between world prices and U.S. producer prices in the wheat, soybeans, and corn markets
using a vector error correction generalized autoregressive conditional heteroscedastic model with a
multivariate Baba-Engle-Kraft Kroner specification (VECM-GARCH-BEKK) and cross-correlation
function (CCF). Our findings indicate firstly that a long-run equilibrium relationship exists between
international and U.S. producer prices for the three agricultural crops. It also finds a significant
bidirectional causality-in-mean and causality-in-variance between international and U.S. producer
prices for these crops. Finally, the empirical results suggest that international wheat and corn prices
play a leading role in U.S. local markets in return transmissions and that U.S. wheat price can be
considered to be a leading indicator of the global wheat price in volatility transmissions.

Keywords: producer price; price transmission; VECM-GARCH-BEKK; Granger causality; volatility spillovers

1. Introduction

A vast body of literature has sought to delineate the price relationships between miscellaneous
markets. For instance, Kouyaté and von Cramon-Taubadel (2016) showed that approximately 500
recently published papers could be found with the search phrase “price transmission” on AgEcon-Search.
Many of these extant research projects analyze market connectivity within developing nations
(e.g., Van Campenhout 2007; Myers 2008; Lutz et al. 2006; Rashid 2004; Abdulai 2000; Baulch 1997),
while relatively fewer articles scrutinize price co-movements from global to local markets
(e.g., Minot 2011; Mundlak and Larson 1992; Quiroz and Soto 1995; Conforti 2004; Robles and Torero
2010; Guo and Tanaka 2019), and most of these studies employed error correction models (ECMs).
Ceballos et al. (2017) produced the first work on international price volatility passthroughs in the cereal
industry and used a bivariate T-GARCH-BEKK model to investigate price volatility transmissions
from the world market to grain-importing regional markets. Thus, past studies on this issue have
highlighted food-importing nations rather than food suppliers, despite the fact that food suppliers are
a vital component in pricing as well. For example, when U.S. soybean exports to China fell by 75%
from September 2018 to May 2019 compared with the same nine-month period in the previous year due
to the escalation of the U.S.-China trade war, some farming operations in South Dakota were destroyed
by the lower producer price transmitted via the international price (Plume 2019; Newburger 2019).
Such regulations in international or domestic markets can worsen market efficiency, generating extra
margins between international, import or export, wholesale, and retail prices.
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Copious literature inspects the market value chain and the vertical price transmission of agricultural
commodities, namely the relationships between farmgate, wholesale, retail, and international prices.
Any exporting firm needs to bear a fixed cost for building a distributional network overseas,
and wholesalers connect farming operators to importers (Akerman 2010). Thus, the value chain
structure takes several steps to deliver products to consumers, and the price connectivity of each stage
has been studied by many articles with ECMs, many of which concentrate on the symmetry of price
behavior (e.g., Rezitis and Tsionas 2019; Zingbagba et al. 2019; McLaren 2015; Usman and Haile 2017;
Abdulai 2002; Worako et al. 2008).

Nonetheless, these studies do not particularize the impacts of the producer price of a large exporter
on the international price or vice versa. Although Ghoshray (2008) analyzes the interconnectivity of
rice export prices between two great exporting countries of rice, Thailand, and Vietnam, they do not
examine the relationships between international and domestic markets. Wheat, corn, and soybean are
vitally important commodities, but there is no information available on whether the producer prices
of the U.S., one of the largest exporters, lead international prices or whether the causal relationships
involving these crops are uni- or bi-directional with regards to the markets.

There is a growing demand for investigations of producer prices and relevant factors resulting
from climate change, which exacerbates the fluctuations in agricultural crop production and jeopardizes
global food security. Climate change in the form of extreme weather patterns has resulted in greater
yield variability in recent years (Ünal et al. 2018). For example, the poor harvests in Australia and
Ukraine in 2007 may have worsened the 2008 food crisis, and Russia’s poor harvest in 2010 unsettled
the global wheat market (Tanaka et al. 2012; Welton 2011). To make matters worse, future climate
change will be aggravated by the migration of crop production to other areas (Reimer and Li 2009).
However, past studies have utterly underestimated the importance of analyzing the interconnection
between producer prices of countries producing large amounts of exports and global prices in the
agricultural sector, particularly in the light of the fact that an ample number of published articles have
found price spillover effects from international to local food-importing markets. Moreover, it has
not been fully elucidated as to whether or not international price is actually transmitted to producer
price in countries exporting large amounts of agricultural products despite the fact that the opposite
directional causality, namely from domestic prices in exporting countries to global prices. For instance,
it is understood intuitively from historical events such as the poor Russian wheat harvest in 2010.

This article contributes to establishing the relationship between producer prices in the U.S., one of
the greatest agricultural exporters, and international crop prices by employing rigorous econometric
methods. In particular, we identify the magnitude and speed of price transmissions, both from global
to regional markets and from local to world markets. There is a remarkably limited number of articles
examining international–producer price linkages, despite the vast literature on price transmissions
from global to food-importing markets. The findings from our analysis can be utilized to calm
tempestuous global food markets if U.S. farmers could obtain early and precise climate or weather
forecasting information to stabilize their crop production. In addition, to this point, it is not fully
understood whether exporters’ producer prices are uni-directionally or bi-directionally connected to
international prices.

The outline of the paper is as follows. Section 2 provides detailed information on the data used
for our experiments. Then the methodology applied is introduced in Section 3. Section 4 explains the
estimation results and Section 5 presents the results of the robustness tests. Finally, Section 6 concludes
the article.

2. Data and Sample Statistics

We used monthly producer price indices for wheat, soybean, and corn from the U.S. Bureau of
Labor Statistics and quoted monthly international prices for these crops from the International
Monetary Fund (IMF) Commodity Prices spanning from January 1980 to December 2017, as the IMF
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Commodity Prices are broadly utilized as global commodity prices.1 The producer prices of wheat,
corn, and soybean are indices standardized to 1982 and have been seasonally adjusted. In particular,
No. 1 hard red winter wheat from Kansas City, No. 2 yellow corn from the Gulf of Mexico, and No.
2 yellow soybean future contracts from Chicago are used as the international prices of wheat, corn,
and soybean, respectively.

Logarithmic transformations of each price series are used in the empirical analysis.
More specifically, continuously compounded price returns are computed as ln(Pt/Pt−1) = ln Pt− ln Pt−1,
where ln Pt is the monthly logarithmic price for wheat, soybean, or corn for the international and U.S.
producer markets. The developments in continuously compounded returns for each price series are
plotted in Figure 1. Examining Figure 1, we make some interesting observations. First, all the price
returns exhibit time-varying volatility, i.e., the volatilities are large in one period but small in another
period. Second, the volatility tends to present a clustering behavior, i.e., periods of high (low) volatility
tend to be followed by periods of high (low) volatility. Third, it is also interesting that some price
returns (e.g., wheat and soybean) fluctuated dramatically during the 2007–2008 food crisis.
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Figure 1. Development in returns for wheat, soybean, and corn prices.

Table 1 reports the descriptive statistics for the returns on international and U.S. producer prices
for wheat, soybean, and corn. The data in this table reveal that most of the mean and median returns
are positive during the study period, suggesting a rise in these prices either in the international market

1 The Federal Reserve Economic Data also quotes the dataset as world prices.
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or the U.S. local market. Moreover, it is evident that the standard deviation of the U.S. producer
price for corn is relatively higher than those for the other commodities, suggesting that extreme
changes tend to occur more frequently for this price return. Further, prior to empirical analysis, it is
important to examine the stationarity of each price series to ensure their appropriateness for model
estimation. The augmented Dickey-Fuller (ADF)2 and Kwiatkowski-Phillips-Schmidt-Shin (KPSS)3

unit root tests are applied to all the price returns. The results of the unit root tests presented in Table 1
indicate that the ADF test rejects the null hypothesis of nonstationary, while the KPSS test cannot
reject the null hypothesis of a stationary series for all commodities. These results suggest that all
variables are stationary in their first log-differenced forms4 and integrated order 1 (I [Akerman]).
Additionally, Van Dijk et al. (2005) suggest pre-testing for structural breaks before examining causality.
Following this, Bai and Perron (2003) structural change test, which allows for the simultaneous
estimation of unknown multiple structural breaks, is applied to identify the structural breakpoints
in each wheat price series.5 The results of the structural breaks test in Table 1 show that there are no
structural breaks in all the price returns.

Table 1. Summary statistics and unit root tests for price returns.

Mean Median Std.
Dev. ADF Test KPSS

Test
Structural

Break Tests

International wheat price 0.000 −0.002 0.060 −13.718 *** (1) 0.087 (3) No break
U.S. producer price of wheat 0.000 0.000 0.050 −11.296 *** (0) 0.048 (10) No break
International soybean price 0.001 0.001 0.057 −15.497 *** (0) 0.041 (2) No break
U.S. producer price of soybean 0.001 0.006 0.069 −12.185 *** (2) 0.040 (10) No break
International corn price 0.001 0.001 0.058 −15.910 *** (0) 0.042 (2) No break
U.S. producer price of corn 0.001 0.001 0.075 −16.719 *** (0) 0.034 (7) No break

Notes: *** denotes rejection of the null hypothesis at the 1% significance level. Numbers in brackets are the lag length
and bandwidth. Lag length selection is based on the Bayesian-Schwarz information criterion (henceforth, BIC) in
the augmented Dickey-Fuller (ADF) tests. The bandwidth for the KPSS test is determined using the Newey–West
bandwidth selection algorithm (Newey and West 1994). We implement all the unit root tests with intercept and
trend terms. We used Bai-Perron’s sequential test for the hypothesis of k breaks versus k + 1 breaks, employing the
F-statistics. Lag length selection was based on the BIC in the test.

3. Methodology

We employed a vector error correction6 generalized autoregressive conditional heteroscedastic
model with a multivariate Baba-Engle-Kraft-Kroner specification (VECM-GARCH-BEKK) to scrutinize
the associations between the global prices and the U.S. producer prices of major agricultural products.
In addition, we used the cross-correlation function as a robustness test that enables us to detect not only
directional relationships but also the number of lead-lag relationships as well. First, in order to capture
volatility clustering and analyze the volatility spillover effect between the international prices and
the U.S. producer prices for wheat, soybean, and corn, the GARCH model with a multivariate BEKK
specification was applied. Second, based upon the above results for the unit root tests and cointegration
tests, we combined the VECM and asymmetric GARCH-BEKK model. This model has the advantage

2 Dickey and Fuller (1979).
3 Kwiatkowski et al. (1992) and Phillips and Perron (1988).
4 The ADF and KPSS unit root tests indicate that all the variables have unit root processes in their levels. We do not report

these results for the sake of brevity. The results can be obtained from the authors upon request.
5 See Bai and Perron (2003).
6 The characteristic of price series allows for the possibility that there is a station ary long-run equilibrium relationship

(cointegrating relationship) between individual price series. If there are no cointegrating relationships among the variables,
after n (n is equal to the order of integrated variables) differences, then the standard vector autoregressive (VAR) model is
employed. In contrast, if cointegrating relationships are identified, the vector error-correction model (VECM) can be used
for the empirical analysis. Given that all the price series are nonstationary I (1) series, we will use the Johansen-Juselius
procedure (Johansen and Juselius 1990) to examine the cointegrating relationship between international prices and U.S.
producer prices for wheat, soybean, and corn.
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of analyzing conditional means and variances to detect dynamic interactions between variables and
identifying the direction of causality and spillover effects. More specifically, the VECM can explain
price-level behavior by explicitly allowing cointegrated relationships based on the assumptions that
the price variances are constant over time. On the other hand, the GARCH-BEKK model considers
volatility clustering and captures the patterns of volatility transmissions between pairs of prices.
Further, following Grier et al. (2004), our analysis was based upon an asymmetric version of the
GARCH-BEKK model, which introduces an asymmetric effect on the model.

Since cointegrating relationships are identified between the pairs of prices, we used the VECM to
express the conditional mean equation. Then the representation of a cointegrated system is as follows:

pt = π+ γECt−1 +
k∑

i=1

Φi∆pt−i + υt , υt
∣∣∣Ωt−1 ∼ (0, Ht ) , (1)

where pt is a 2× 1 vector of monthly returns at time t of the international prices and the U.S. producer
prices for each of the three agricultural commodities, and π is a 2× 1 constant vector. ECt−1 is the lagged
error correction term of the cointegration relationship, and γ is a 2× 1 vector of parameters that denote
the speed of the price adjustment of each equation to long-run equilibrium. Next, Φ is a 2× 2 matrix
of parameters associated with the lagged returns implying individual and cross-causality in means,
and k is the order of the lag length. The term υt is defined as υt = (υ1,t, υ2,t)

′ and is conditionally
normally distributed with mean vector 0, conditional on past information Ωt−1 and a 2× 2 conditional
variance–covariance matrix Ht.

Considering the price volatility transmission to positive and negative shocks, we used the
asymmetric BEKK model, which has the property that the conditional variance–covariance matrix Ht

in Equation (1) is positive definite by structure and can be modeled as:

Ht = C′C + A′υt−1υ
′
t−1A + B′Ht−1B + D′ωt−1ω

′
t−1D, (2)

where C is a 2× 2 lower triangular matrix, and A is the 2× 2 matrix of parameters, which measures the
extent to which conditional variances are correlated with past squared errors. B is also a 2× 2 matrix of
parameters, this time indicating how the past conditional variance Ht−1 affects the current levels of the
conditional variance. The last item D′ωt−1ω′t−1D on the right-hand side introduces the asymmetric
effect on the model. Next, ωt−1 = I[ut−1 < 0] ⊗ ut−1, where I[.] is an indicator function equal to 1 if
ut−1 < 0 and 0 otherwise, and “⊗” is the Hadamard product. Finally, D is a 2 × 2 parameter matric
that measures the potential asymmetric response. Thus, if we expanded Equation (2), the conditional
variance equation of the bivariate GARCH (1, 1) model can be represented by[

h11,t h12,t
h21,t h22,t

]
=

[
c11 0
c21 c22

]′[
c11 0
c21 c22

]
+

[
a11 a12

a21 a22

]′ υ2
1,t−1 υ1,t−1υ2,t−1

υ2,t−1υ1,t−1 υ2
2,t−1

[ a11 a12

a21 a22

]
+

[
b11 b12

b21 b22

]′[
h11,t−1 h12,t−1

h21,t−1 h22,t−1

][
b11 b12

b21 b22

]
+

[
d11 d12

d21 d22

]′ ω2
1,t−1 ω1,t−1ω2,t−1

ω2,t−1υ1,t−1 ω2
2,t−1

[ d11 d12

d21 d22

]
,

(3)

where hii,t and h j j,t for i, j = 1, 2 represent the conditional variances of the returns of each price i and
price j, respectively, at time t. Next, hi j,t is the conditional covariance between price i and price j at
time t, and aii and a j j indicate the degree of impact of the current conditional variance (volatility) of
price i and price j, respectively, from their own past squared errors. Here, bii and b j j represent the
degree of impact of the current conditional variance of price i and price j, respectively, from their own
past conditional variances. Further, ai j measures the lagged shock transmission from price i to price j,
and bi j measures the volatility spillover effect from price i to price j. Next, dii and d j j represent the
degree of impact of the current conditional variance of price i and price j, respectively, from their own
past asymmetric shocks (positive or negative), and di j represents the previous asymmetric shocks
transmission from price i to price j. If any element in matrix D is positive and significant, then an
asymmetric effect exists and negative shocks (bad news) will cause larger volatility in markets than
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positive shocks (good news) will. Conversely, a significant negative coefficient in the D matrix implies
that bad news may bring less volatility in another market.

Moreover, we used the conditional variances and covariances matrix Ht to generate dynamic
correlation coefficients so as to capture the time-varying correlations between global prices and U.S.
producer prices in the cereal market. The dynamic correlation coefficient σi j,t between price i and j at
time t can be represented as:

σi j,t =
hi j,t√

hii,t

√
h j j,t

f or i, j = 1, 2. (4)

We estimate the parameters of the VECM-GARCH-BEKK model by employing the maximum
likelihood estimation method optimized with the Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
algorithm. The conditional log-likelihood function L(θ) can be expressed as:

L(θ) = −T ln(2π) −
1
2

T∑
t−1

ln|Ht| −
1
2

T∑
t−1

υ′tH−1
t υt. (5)

Furthermore, the structures of the causal relationships between variables are investigated through
the Granger causality approach. Specifically, to test for causality in means between international
and U.S. producer prices, we used the likelihood ratio statistic to check whether the elements φi j of
matric Φ in Equation (1) are significantly different from zero. As for the causality in the variance test,
the non-diagonal elements ai j, bi j, and di j of matrices A, B, and D, respectively, in Equation (2) were
analyzed via the joint Wald test.

4. Empirical Results

First of all, the results of the cointegration test strongly suggest the existence of a long-run
equilibrium relationship between each pair of agricultural commodity prices,7 implying that the three
prices move together over time. According to these results, this paper employs the VECM instead of a
standard VAR model.

Table 2 reports the coefficient estimates for the conditional mean return equation and the
conditional variance–covariance matrix of the VECM-GARCH-BEKK model for wheat. First, in terms
of the conditional mean estimations, we can observe that both the parameters φ1,1 and φ2,2 are
statistically significant, which indicates that the returns of the international and U.S. wheat prices
are influenced by their own past returns. In contrast, the coefficients φ1,2 and φ2,1 are statistically
significant, which indicates a cross-market (global wheat market and U.S. domestic wheat market)
return spillover between lagged and current wheat price returns. In addition, by comparing the
absolute values of these coefficients, we can determine that the impacts of the own-market return
spillovers are larger than those of the cross-market return spillovers (

∣∣∣φ1,1
∣∣∣ > ∣∣∣φ1,2

∣∣∣ and
∣∣∣φ2,2

∣∣∣ > ∣∣∣φ2,1
∣∣∣).

Second, from the estimation results for the variance equation, all the coefficients a1,2, a2,1, b1,2, and
b2,1 are found to be statistically significant, revealing cross effects. These results suggest that the
contemporaneous return and volatility spillovers are bidirectional between international and U.S.
producer prices. In other words, lagged shocks and volatility in the international wheat price returns
can be exploited to predict future U.S. wheat producer price volatility. Similarly, past changes in the
U.S. wheat market could provide valuable information to the global wheat market.

Third, turning to the estimation results for the asymmetric terms d1,2 and d2,1, we can see that
d1,2 shows a significant negative value, suggesting that the volatilities of the U.S. producer price are
more sensitive to positive shocks (good news) than negative shocks (bad news) in the global wheat
market. On the other hand, d2,1 has a positive significant value, which provides evidence that the

7 See Appendix A Tables A1–A3.
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arrival of negative shocks in the U.S. wheat market intensifies the global wheat market volatility more
than positive shocks of similar magnitude. Finally, the Ljung-Box (Ljung and Box 1978) tests provide
evidence that there is no serial correlation in the squared standardized residuals, and the Mcleod-Li test
and Lagrange multiplier (LR) test indicate that there is no autoregressive conditional heteroscedastic
(ARCH) effect in the wheat model. These diagnostic tests generally support the adequacy of the model
specification considered.

Table 2. Empirical results of the asymmetric VECM-GARCH-BEKK model for wheat.

Parameter
International Price (i = 1) U.S. Producer Price (i = 2)

Estimate SE Estimate SE

πi 0.124 *** 0.024 −0.130 *** 0.034
γi 0.003 *** 0.001 −0.003 *** 0.001
φi,1 0.213 *** 0.073 0.217 *** 0.062
φi,2 0.129 * 0.072 0.255 *** 0.062
ci,1 0.011 *** 0.003 0.017 0.003
ci,2 0.005 * 0.003
ai,1 0.492 *** 0.075 −0.276 *** 0.096
ai,2 0.422 *** 0.077 −0.074 0.129
bi,1 0.978 *** 0.031 −0.192 *** 0.065
bi,2 0.086 ** 0.035 0.659 *** 0.065
di,1 0.016 0.120 0.232 * 0.122
di,2 −0.351 *** 0.120 0.721 *** 0.118

Q(10) 6.712 15.053
Mcleod-Li (10) 11.939 11.370

LM test 1.345 1.077

Notes: SE: standard error; *, **, and ***: statistical significance at 10%, 5% and 1% levels.

Moreover, in order to examine the mean and variance causality between the international and U.S.
prices for wheat, we perform the joint Wald tests and present the results in Table 3. The results indicate
that all the null hypotheses are rejected at the 1% significance level, suggesting a significant bi-directional
causality in mean and causality in variance between international wheat price and U.S. wheat producer
price. Additionally, the likelihood ratio tests for the null hypothesis that the parameters of the D matrix
in the GARCH specification are zero are conducted to test for the relevance of the asymmetric effects.
The results of the tests for asymmetric effects show that the null d1,1 = d1,2 = d2,1 = d2,2 = 0 is clearly
rejected at the 1% level, implying strong evidence of asymmetric effects between the global wheat
market and the U.S. domestic wheat market.

Table 3. Joint Wald tests for causality in mean and variance: wheat.

Causality in Mean Causality in Variance

Null Hypothesis Chi-Squared p-Value Null Hypothesis Chi-Squared p-Value

φ1,2 = φ2,1 = γ1 = γ2 = 0
(GP = LP) 122.570 (4) 0.000

a1,2 = a2,1 = b1,2 = b2,1
= d1,2 = d1,2 = 0
(GP = LP)

57.277 (6) 0.000

φ2,1 = γ2 = 0
(GP 9 LP) 28.141 (2) 0.000 a1,2 = b1,2 = d1,2 = 0

(GP 9 LP) 49.630 (3) 0.000

φ1,2 = γ1 = 0
(LP 9 GP) 31.411 (2) 0.000 a2,1 = b2,1 = d2,1 = 0

(LP 9 GP) 24.549 (3) 0.000

Joint Wald tests for asymmetry effects

d1,1 = d1,2 = d2,1 = d2,2 = 0 65.677 (4) 0.000

Notes: GP: Global wheat price; LP: Local (U.S.) wheat producer price. The arrow indicates the direction of Granger
causality. The likelihood ratio test statistic for causality testing is a χ2(k) statistic, where the k within the parentheses
is the number of degrees of freedom.
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Next, we examine the results for soybean presented in Table 4. First, using a comparison with
the findings for the wheat price, the observed mean spillover effect between global and local soybean
prices can be reconfirmed. However, the results for soybean prices indicate that the returns for the
U.S. soybean price are influenced more significantly past global soybean prices than by its own price
returns (

∣∣∣φ2,1
∣∣∣ > ∣∣∣φ2,2

∣∣∣). Second, we also find a uni-directional return spillover between the two prices.
Specifically, past shocks in the international soybean price affect the present volatility of the U.S.
producer price (a1,2 is significant). On the other hand, lagged shocks in the U.S. producer price do
not have an impact on the volatility of international soybean prices (a2,1 is insignificant). Meanwhile,
we can observe that a bi-directional volatility spillover between international soybean price and the
U.S. producer price (b1,2 and b2,1) are both significant. Third, a cross-market asymmetric volatility
transmission can be identified. Specifically, the positive significant value of d1,2 provides evidence that,
compared to positive shocks, negative shocks in the global soybean price cause more volatility in the
U.S. producer price. Meanwhile, the negative significant value d2,1 suggests that positive shocks to the
U.S. producer price have a larger impact on the volatility of the global soybean price. These results are
the opposite of the results for wheat. Moreover, the results of the Ljung-Box test, the Mcleod-Li test,
and the LM test indicate that the estimated models adequately fit the data.

Table 4. Empirical results of the asymmetric VECM-GARCH-BEKK model for soybean.

Parameter
International Price (i = 1) U.S. Producer Price (i = 2)

Estimate SE Estimate SE

πi −0.139 *** 0.048 −0.474 *** 0.051
γi −0.004 *** 0.001 −0.014 *** 0.001
φi,1 0.778 *** 0.099 1.065 *** 0.103
φi,2 −0.503 *** 0.071 −0.760 *** 0.079
ci,1 0.033 *** 0.004 0.031 *** 0.004
ci,2 −0.000 0.003
ai,1 0.708 *** 0.193 −0.234 0.209
ai,2 0.477 ** 0.204 −0.140 0.218
bi,1 0.329 ** 0.129 0.211 ** 0.094
bi,2 −0.621 *** 0.121 0.959 *** 0.087
di,1 0.717 *** 0.224 −0.599 *** 0.213
di,2 0.835 *** 0.218 −0.717 *** 0.186

Q(10) 9.140 11.548
Mcleod-Li (10) 3.491 4.724

LM test 0.378 0.426

Notes: SE: standard error; ** and ***: statistical significance at 5% and 1% levels.

Our findings for soybean prices were rechecked with the joint Wald tests reported in Table 5.
From Table 5, we can conclude that there exists a bi-directional Granger causality in the means and variances
between the international soybean price and U.S. soybean producer price. Further, asymmetry effects are
also verified.

Finally, we focus on the empirical results for corn prices presented in Table 6. First, it is interesting
to observe that the parameter φ1,2 is statistically insignificant in the conditional mean equation, while
its counterpart, φ2,1, is statistically significant. These results indicate a one-way asymmetric return
spillover from international corn lagged price to current U.S. corn producer price. Similar to the results
for soybean prices, past global soybean price returns have a larger impact on the returns for the U.S.
corn price than do its own price returns (

∣∣∣φ2,1
∣∣∣ > ∣∣∣φ2,2

∣∣∣). Second, Table 6 also shows that the coefficients
a1,2, a2,1, b1,2, and b2,1 are all statistically significant, which provides evidence of a bi-directional return
and volatility spillovers between global corn price and U.S. corn producer price. These results are
similar to the estimation results for wheat prices. However, the results concerning the asymmetry
effects are different from those for wheat and soybean prices. We can see that the asymmetry term d1,2

is positive and significant, which suggests that negative shocks from the international corn price cause
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more variations than positive shocks in the U.S. corn producer price. In contrast, the estimated value
d2,1 is not significant, indicating that there is no evidence of asymmetric effect and the shocks from
the U.S. corn producer price do not have an impact on the international corn price. Further, all the
diagnostic tests show the robustness of our results.

Table 5. Joint Wald tests for causality in mean and variance: soybean.

Causality in Mean Causality in Variance

Null Hypothesis Chi-Squared p-Value Null Hypothesis Chi-Squared p-Value

φ1,2 = φ2,1 = γ1 = γ2 = 0
(GP = LP) 383.601 (4) 0.000

a1,2 = a2,1 = b1,2 = b2,1
= d1,2 = d1,2 = 0
(GP = LP)

45.141 (6) 0.000

φ2,1 = γ2 = 0
(GP 9 LP) 323.960 (2) 0.000 a1,2 = b1,2 = d1,2 = 0

(GP 9 LP) 39.103 (3) 0.000

φ1,2 = γ1 = 0
(LP 9 GP) 88.770 (2) 0.000 a2,1 = b2,1 = d2,1 = 0

(LP 9 GP) 15.950 (3) 0.001

Joint Wald tests for asymmetry effects

d1,1 = d1,2 = d2,1 = d2,2 = 0 20.490 (4) 0.000

Notes: GP: Global soybean price; LP: Local (U.S.) wheat producer price. The arrow indicates the direction of Granger
causality. The likelihood ratio test statistic for causality testing is a χ2(k) statistic, where the k within parentheses is
the degrees of freedom.

Table 6. Empirical results of the asymmetric VECM-GARCH-BEKK model for corn.

Parameter
International Price (i = 1) U.S. Producer Price (i = 2)

Estimate SE Estimate SE

πi −0.025 *** 0.005 −0.037 *** 0.006
γi −0.015 *** 0.002 −0.023 *** 0.003
φi,1 0.159 * 0.083 0.518 *** 0.100
φi,2 0.086 0.064 −0.109 0.077
ci,1 0.010 *** 0.003 0.018 *** 0.005
ci,2 0.008 *** 0.002
ai,1 −0.147 * 0.083 0.155 ** 0.064
ai,2 −0.355 *** 0.126 0.475 *** 0.098
bi,1 0.928 *** 0.005 −0.161 *** 0.009
bi,2 0.293 *** 0.040 0.672 *** 0.063
di,1 0.215 ** 0.107 −0.076 0.084
di,2 0.390 ** 0.186 0.008 0.170

Q(10) 3.620 10.207
Mcleod-Li (10) 4.040 8.591

LM test 0.405 0.881

Notes: SE: standard error; *, **, and ***: statistical significance at 10%, 5% and 1% levels.

In addition, Table 7 reports on the Granger causality tests for corn prices. At the 1% significance
level, the results show that bi-directional Granger causality in means and variances is established
between the international corn price and the U.S. corn producer price. Similarly, the Wald tests confirm
the asymmetric effects between these two price series.

Figure 2 plots the time-varying dynamic correlations between international prices and U.S.
producer prices for wheat, soybean, and corn. There are several features worth noting. First, it is
interesting to ascertain that all conditional correlations display positive values throughout the entire
sample period. This evidence visually confirms that strong co-movements exist between the global
prices and the U.S. producer prices in the cereal market. Second, the correlations tend to exhibit
extreme variability in some specific time periods. For instance, a substantial decrease in correlation
between the global and U.S. soybean markets is apparent in the middle of 1988. Third, the soybean
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price has the highest average value (0.878) for its dynamic correlation coefficients compared to the
wheat (0.751) and corn (0.836) prices. On the other hand, the wheat price has the highest standard
deviation (0.071) compared to the soybean (0.039) and corn (0.047) prices.
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Figure 2. Conditional correlations estimated with the VECM-GARCH-BEKK model.
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Table 7. Joint Wald tests for causality in mean and variance: corn.

Causality in Mean Causality in Variance

Null Hypothesis Chi-Squared p-Value Null Hypothesis Chi-Squared p-Value

φ1,2 = φ2,1 = γ1 = γ2 = 0
(GP = LP) 190.032 (4) 0.000

a1,2 = a2,1 = b1,2 = b2,1
= d1,2 = d1,2 = 0
(GP = LP)

397.089 (6) 0.000

φ2,1 = γ2 = 0
(GP 9 LP) 132.134 (2) 0.000 a1,2 = b1,2 = d1,2 = 0

(GP 9 LP) 66.346 (3) 0.000

φ1,2 = γ1 = 0
(LP 9 GP) 37.197 (2) 0.000 a2,1 = b2,1 = d2,1 = 0

(LP 9 GP) 369.807 (3) 0.000

Joint Wald tests for asymmetry effects

d1,1 = d1,2 = d2,1 = d2,2 = 0 20.250 (4) 0.000

Notes: GP: Global corn price; LP: Local corn price. The arrow indicates the direction of Granger causality. The likelihood
ratio test statistic for causality testing is a χ2(k) statistic, where the k within parentheses is the degrees of freedom.

5. Robustness Check

In the previous section, we found a significant bi-directional causality in mean and causality in
variance between international and U.S. producer prices for three crops. This section presents some
results on robustness.

Some of the recent studies use multivariate GARCH (MGARCH) models with dynamic conditional
correlation (DCC) to analyze volatility spill-over mechanisms.8 Huang et al. (2010) compare the
performances of GARCH-BEKK and GARCH-DCC models and document the superiority of the BEKK
model over the DCC model due to the large number of parameters treated by the BEKK model.
In contrast, Bauwens et al. (2006) argue that the DCC model outperforms the BEKK model based on a
comparison of the goodness of fit. Since the results vary across different datasets and the debate still
lacks consensus, we first check the robustness of our empirical results by employing the GARCH-DCC
model. The econometric framework of the model was formulated as follows:

pt = µ+
k∑

i=1

ϕipt−i + ut = µ+
k∑

i=1

ϕipt−i +
√

Htzt, (6)

ut|Ωt−1 ∼ N(0, Ht) (7)

Ht = DtRtDt. (8)

Equation (6) is an autoregression (AR) model k process for pt conditional on the information set
Ωt−1. Specifically, µ = (µ1,µ2)

′ is the vector of conditional means, ϕi is the parameter vector, k is the
lag lengths of the mean equations, ut = (u1,t, u2,t)

′ is the vector of innovations, Ht is a 2× 2 conditional
variance–covariance matrix, zt is a 2× 1 i.i.d vector of standardized residuals, Dt is the diagonal matrix
containing the conditional standard deviations on the diagonal, and Rt is the conditional correlation
matrix given by:

Rt = Q∗t
−1QtQ∗t

−1, (9)

8 Basher and Sadorsky (2016) and Guo (2018).



J. Risk Financial Manag. 2020, 13, 83 12 of 20

where Qt is the conditional correlation matrix of standardized residuals. Q∗t
−1 = diag(q−1/2

11,t , q−1/2
22,t ) and

q is the elements of matrix Qt. Moreover, the matrix Dt can be obtained by estimating a univariate
GARCH (p, q) and EGARCH9 (p, q) model, with

√
hi,t (i = 1, 2) on the ith diagonal as follows:

hi,t = $i +

pi∑
p=1

αi,pu2
i,t−p +

qi∑
q=1

βi,qhi,t−q, (10)

ln(hi,t) = $i +

pi∑
p=1

(αi,p

∣∣∣∣∣∣∣∣∣
ui,t−p√

hi,t−p

∣∣∣∣∣∣∣∣∣+ κi,p
ui,t−p√

hi,t−p

) +

qi∑
q=1

βi,q ln(hi,t−q), (11)

where hi,t is a 2 × 1 conditional variance vector of the price series and $i is a 2 × 1 constant vector,
the lag lengths of variance equations are represented as p and q. α and β are the parameters of the
GARCH and ARCH terms, respectively.

Furthermore, Engle (2002) DCC model and Cappiello et al. (2006) asymmetric DCC (henceforth,
A-DCC)10 model were used to determine the volatility spill-over between international and U.S.
producer prices for each pair of crops. According to Engle (2002), the dynamic correlation structure is
given as:

Qt = (1−ψ− ζ)P +ψνt−1ν
′
t−1 + ζQt−1, (12)

where Qt is a symmetric positive definite matrix in Equation (8) and P is the 2 × 2 unconditional
correlation matrix of the standardized residuals νt. The parameters ψ and ζ are non-negative, with a
sum of less than unity. Cappiello et al. (2006) modified the correlation evolution equations in the
following expression:

Qt = (1−ψ− ζ)P− δN +ψ(νt−1ν
′
t−1) + ζQt−1 + δ(ηt−1η

′

t−1). (13)

Equation (13) is a standard A-DCC in which asymmetric terms are included. δ is the coefficient of
the asymmetry term. N represents the unconditional matrices of ηt = I[νt < 0] ⊗ νt, I[.] is an indicator
function equal to 1 if νt < 0 and 0 otherwise, and “⊗” is the Hadamard product. Finally, the parameters11

of the DCC and A-DCC models were estimated by employing the Gaussian quasi-maximum likelihood
estimation (QMLE)12 with the BFGS13 optimization algorithm.

First, in order to choose the most suitable GARCH-based models, an extensive specification testing
procedure is conducted to ensure that the conditional means and variances processed fit the price
series well. In this study, each model is estimated by using the maximum likelihood method, and we
determine the lag length of the mean and variance equations based on the BIC. Based on the residual
diagnostics and BIC, the AR (1)-EGARCH (1, 1) model was chosen for the international prices for
wheat and soybean, and the AR (1)-GARCH (1, 2) model was chosen for the international corn price.
On the other hand, for the U.S. producer prices, we chose the AR (1)-EGARCH (1, 2) model, the AR
(1)-EGARCH (1, 1) model, and the AR (1)-GARCH (1, 1) model for wheat, soybean, and corn producer
prices, respectively.

The estimation results for the GARCH-based models for the international prices and the U.S.
producer prices for wheat, soybean, and corn are summarized in Tables 8 and 9, respectively. Each table

9 The GARCH model was developed by Bollerslev (1986) and the exponential GARCH (EGARCH) model by Nelson (1991).
10 The A-DCC model modified the original DCC model by including asymmetries in the correlation dynamics.

See Cappiello et al. (2006) for an extensive analysis of these models’ advantages.
11 The estimated results of the DCC coefficients were not reported for the sake of brevity. The results can be obtained from the

authors upon request.
12 See Bollerslev and Wooldridge (1992).
13 BFGS (Broyden, Fletcher, Goldfarb, and Shanno) is a quasi-Newton optimization method that uses information about the

gradient of the function at the current point to calculate where to find a better point.
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reports the parameter estimates and their corresponding standard errors. It is noticeable that almost all
coefficients of the ARCH and GARCH terms are statistically significant. Meanwhile, the asymmetric
terms (κi) capturing the leverage effects are statistically significant for either international price or U.S.
producer price for wheat and soybean. These results imply that in these price returns, a negative shock
increases volatility more than a positive shock of equal magnitude. Furthermore, the generalized error
distribution (GED) is applied in all the models because the GED outperforms the normal distribution.
Finally, the results of the diagnostics14 suggest that the selected GARCH-based model specification
explains the data well.

Table 8. Empirical results for international price.

Wheat
AR (1)-EGARCH (1, 1)

Soybean
AR (1)-EGARCH (1, 1)

Corn
AR (1)-GARCH (1, 2)

θ 0.000 0.002 0.001
ϕ1 0.258 *** 0.264 *** 0.233 ***
$ −0.099 * −0.245 * 0.001 ***
α1 0.054 0.036 0.013 ***
κ1 0.078 *** 0.140 *** -
β1 0.990 *** 0.964 *** 1.655 ***
β2 - - −0.969 ***

GED parameter 1.354 *** 1.195 *** 1.156 ***
Q(10) 9.087 8.270 9.707
Q2(10) 13.521 2.028 5.763

ARCH test (10) 8.367 0.225 0.552
BIC −2.964 −3.085 −3.038

Notes: * and ***: statistical significance at the 10% and 1% levels. The standard error follows Bollerslev and Wooldridge (1992)
robust standard error. Q(10) and Q2(10): test statistics (Ljung and Box 1978) for the null hypotheses of no autocorrelation up
to order 10 for standardized residuals and standardized residuals squared. The ARCH test: the Lagrange multiplier test
statistic is used to check ARCH effects in residuals (it is distributed as chi-square).

Table 9. Empirical results for the U.S. producer price.

Wheat
AR (1)-EGARCH (1, 2)

Soybean
AR (1)-EGARCH (1, 1)

Corn
AR (1)-GARCH (1, 1)

θ −0.001 0.004 0.003
ϕ1 0.431 *** −0.001 0.197 ***
$ −2.119 *** −0.153 * 0.003 **
α1 0.299 *** 0.040 0.157 *
κ1 −0.076 ** 0.114 ***
β1 1.529 *** 0.977 *** 0.324
β2 −0.829 ***

GED parameter 1.155 *** 1.324 *** 1.189 ***
Q(10) 14.561 15.320 11.486
Q2(10) 13.521 8.479 14.163

ARCH test (10) 1.294 0.882 1.416
BIC −3.477 −2.575 −2.414

Notes: *, **, and ***: statistical significance at the 10%, 5%, and 1% levels. The standard error follows Bollerslev
and Wooldridge’s (1992) robust standard error. Q(10) and Q2(10): test statistics (Ljung and Box 1978) for the null
hypotheses of no autocorrelation up to order 10 for standardized residuals and standardized residuals squared.
The ARCH test: the Lagrange multiplier test statistic is used to check ARCH effects in residuals (it is distributed as
chi-square).

14 The Ljung-Box and ARCH tests show that there is no autocorrelation up to order 10 for the standard residuals and squared
standard residuals and no further ARCH effect in all of the models.
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Next, we compare the goodness of fit between the GARCH-BEKK and the GARCH-DCC models
using the log-likelihood statistics. Table 10 presents the log-likelihoods of three model specifications
for wheat, soybean, and corn. We can observe that the BEKK model outperforms the DCC and A-DCC
models in terms of higher log-likelihood values. As such, it is reasonable to select the BEKK model as
our empirical methodology from the previous section.

Table 10. Log-likelihood values for the DCC, A-DCC, and BEKK estimated models.

Wheat Soybean Corn

Model Log-likelihood Log-likelihood Log-likelihood
DCC 1572.289 1571.507 1471.103

A-DCC 1573.073 1573.501 1480.206
BEKK 1651.099 * 1743.960 * 1559.138 *

Notes: * denotes the largest value of log-likelihood.

Finally, we employ the approach proposed by Cheung and Ng (1996) and Hong (2001) to check the
robustness of the causality results in mean and variance reported in the previous section. This procedure
is based on the residual cross-correlation function (CCF) and is robust to distributional assumptions.
The advantage of using the CCF approach is that it detects not only the direction of causality in
means and variances but also the number of lead-lag relationships. Specifically, from the estimated
GARCH-based model, we calculate the standardized residuals and the standardized squared residuals
for international prices and for U.S. producer prices, respectively. Following Cheung and Ng (1996),15

the sample cross-correlation coefficient at lag k, r̂εξ(k) and r̂uv(k) are calculated from the consistent
estimates of the conditional means and variances. Under the condition of regularity, we detect the null
hypothesis that there is no causality in mean using the following CCF statistic:

√

T(r̂εξ(k1) , . . . , r̂εξ(km))
L
→ N(0, Im), (14)

and there is no causality in variance using the test statistic, which is given by:

√

T(r̂uv(k1) , . . . , r̂uv(km))
L
→ N(0, Im), (15)

where k1 , . . . , km are m different integers, and L
→ indicates the convergence in distribution. To test a

causal relationship at a specified lag k, we compare
√

Tr̂εξ(k) and
√

Tr̂uv(k) with the standard normal
distribution. If the test statistic is larger than the critical value for the normal distribution, then we
reject the null hypothesis.

The empirical results for wheat are given in Table 11. Lags are measured in months, which range
from 1 to 12. From Table 11, we can observe that the test statistic for the null hypothesis that global
wheat price does not Granger-cause U.S. producer price in the mean is rejected at lag 1, which indicates
that the global price leads the U.S. producer price by approximately one month. Meanwhile, the results
display that the causality in mean from the U.S. wheat producer price to the international wheat
price exists in lags 3, 10, and 12, respectively. Therefore, there is evidence of a feedback effect in
mean between these price pairs. In addition, it is worth noting that mean spillovers from the U.S.
producer price to the international price take a longer time than going in the opposite direction in
the cross-market information transmission. Turning to causality in variance, the results reveal that
the global wheat price Granger-causes the U.S. producer price in variance (in lag 5), with a volatility
feedback effect (in lags 2 and 12). These findings imply that the volatility transmission from the U.S.
producer price to the global price takes less time than going in the opposite direction.

15 We did not choose Hong’s (2001) method since one of our paper’s aims is to detect the number of lead-lag relationships.
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Table 11. Results for the causality test for wheat.

Lag k
Mean Causality Variance Causality

International Price
→ U.S. Price

U.S. Price→
International Price

International Price
→ U.S. Price

U.S. Price→
International Price

1 2.394 ** 1.293 0.019 −0.093
2 −0.292 −0.330 1.422 1.956 *
3 −0.730 −1.763 * 0.345 0.093
4 0.256 1.048 −0.959 0.226
5 1.183 0.353 1.649 * 0.066
6 −1.217 −0.540 0.794 −0.288
7 0.631 −1.041 −0.574 0.796
8 −0.411 −1.162 1.215 0.453
9 −0.800 −0.210 1.448 −0.506
10 −0.059 0.364 0.749 −1.035
11 1.179 1.911 * 0.409 1.484
12 0.745 −1.674 * 0.478 3.141 ***

Notes: *, **, and ***: statistical significance at the 10%, 5%, and 1% levels. The arrow indicates the direction of
Granger causality.

As for the causality test for soybean prices, the results are presented in Table 12. The estimations
simultaneously provide strong evidence that there exists either causality in mean or causality in
variance between the international soybean price and the U.S. soybean producer price. In particular,
the results indicate significant feedback effects in mean and variance that differ in terms of the lag
orders. More specifically, we can observe a bi-directional causality in mean with a one-month lag,
while the bi-directional causality in variance has about an 11-month lag.

Table 12. Results of the causality test for soybean.

Lag k
Mean Causality Variance Causality

International Price
→ U.S. Price

U.S. Price→
International Price

International Price
→ U.S. Price

U.S. Price→
International Price

1 5.776 *** −2.821 *** 1.325 0.157
2 1.890 * 0.773 0.794 0.677
3 −1.441 −1.867 * −0.150 −0.148
4 −0.400 0.210 −0.764 −0.809
5 −0.938 −1.812 * −0.036 0.436
6 −0.256 0.764 −0.002 −0.506
7 −0.127 −1.035 0.377 1.609
8 0.222 −0.133 −0.557 −1.549
9 −0.282 −0.779 −0.525 -0.203
10 −2.222 ** −0.616 0.356 0.984
11 1.118 0.402 2.620 *** 1.651 *
12 0.019 −0.034 1.564 1.854 *

Notes: *, **, and ***: statistical significance at the 10%, 5%, and 1% levels. The arrow indicates the direction of
Granger causality.

Finally, Table 13 reports the results for the causality test for corn prices. According to Table 13, first,
we can identify that there is a bi-directional causality in mean and variance between the international
corn price and the U.S. corn producer price. Second, similar to the results for wheat, the mean price
transmission from the U.S. to international corn price displayed a longer delayed reaction (a five-month
lag) than going in the opposite direction (a one-month lag). In addition, we found that the bi-directional
volatility transmission between the international and U.S. producer corn prices exhibited the same lag
length in both directions (approximately nine months).
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Table 13. Results of the causality test for corn.

Lag k
Mean Causality Variance Causality

International Price
→ U.S. Price

U.S. Price→
International Price

International Price
→ U.S. Price

U.S. Price→
International Price

1 3.348 *** 0.237 −0.694 −0.182
2 1.441 −0.510 −0.377 0.392
3 0.436 0.275 0.275 −0.787
4 −1.090 −0.032 1.456 0.135
5 −0.607 −2.982 *** −0.428 −0.519
6 −1.816 −0.946 −0.099 −0.176
7 0.392 1.035 −1.236 0.436
8 −2.170 ** −1.966 ** −0.351 −0.707
9 0.152 0.324 2.038 ** 2.951 ***
10 −0.660 0.533 −1.012 −0.345
11 2.277 ** 1.577 0.881 2.570 **
12 0.106 −1.314 0.618 0.070

Notes: ** and ***: statistical significance at the 5%, and 1% levels. The arrow indicates the direction of
Granger causality.

Overall, these empirical results based on the CCF approach are qualitatively similar to those of
our VECM-GARCH-BEKK analysis in the previous section. Therefore, our empirical results can be
considered robust.

6. Conclusions

This paper has explored the Granger causal relationships between international and U.S. producer
prices for wheat, soybean, and corn using a VECM-GARCH-BEKK model. Our main findings are as
follows. First, a long-run equilibrium relationship exists between the international and U.S. producer
prices for wheat, soybean, and corn. Second, significant bi-directional causality in mean and causality
in variance are found between the international and U.S. producer prices for the three cereal crops.
Third, the results generated in the main analysis using the aforementioned model were endorsed by
the CCF sensitivity tests. Finally, the results of the CCF suggest that international wheat and corn
prices play a leading role in U.S. local markets in return transmission. Meanwhile, U.S. wheat price
can be considered a leading indicator of the global wheat price in volatility transmissions.

It would be meaningful to compare the results from Guo and Tanaka (2019) with ours to contribute
to the literature because they also estimated price volatility transmissions between world and local
markets in the wheat sector with similar methods. One of the elements to be discussed is causal
direction. They found uni-directionality between global and domestic markets, while our results
indicated bidirectionality, which is likely to have occurred because Guo and Tanaka (2019) targeted
wheat importing regions, whereas we concentrated on a large exporter. This is partly endorsed by
An et al. (2016), who investigate price volatility transmissions between domestic wheat and wheat
flour prices in Ukraine under export restrictions with a GARCH-BEKK model. The work does not
directly analyze the linkage from international to domestic prices, but presents the efficacy of export
control policies to insulate domestic from global markets, suggesting that one of the largest exporters in
the world may also suffer from tempestuous external markets, which, namely, implies a bi-directional
relationship, assuming that Ukraine’s export is great enough to influence the world’s wheat markets.

Another point of view regards transmission speed. While global wheat price led local prices by
one month in our analysis, the counterpart in Guo and Tanaka (2019) estimated it to be five months.
This could be caused by the difference between the farm gate price of wheat and the retail price of
wheat flour. To deliver wheat flour to consumers, imported wheat needs to be processed at milling
factories after trading wheat in wholesale markets, and then to retail stores through wholesale markets
of wheat flour. Therefore, the results from Guo and Tanaka (2019) may take five times as long as ours
(spillover from international to producer prices).
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We found that mean causality from the U.S. producer price to the global price for wheat, corn,
and soybean takes more months compared with the opposite direction, which takes just one month.
This finding could imply that the U.S. government could have spare time to impose export controls if
the country faced a severe poor harvest of those crops to calm domestic markets with increased supply
as well as to prevent price transmissions to world markets, which would be beneficial for importing
regions of the crops.

It was found that global price also affects prices in significant exporting countries. This finding
implies that large exporters need to protect their own local markets from stormy global markets,
which is particularly important for low-income households even in advanced economies such as that
of the U.S. Our experiments focused on producer price, but consumer or retail price are correlated
with producer price movements. As a matter of fact, it is proved that international price volatility of
wheat can be transmitted to retail wheat flour prices in exporting countries (Tanaka and Guo 2020).
Hence, large crop-exporting governments such as the U.S. government also need to make policy
interventions to segregate retail from foreign markets.

We uncovered that U.S. producer price volatility leads to international price volatility in the wheat,
soybean, and corn markets, implying that the steadier the U.S. producer prices, the steadier the world
prices. The level of productivity (good or bad crops) is the most significant factor leading to changes
in producer prices. Therefore, the stability of agricultural production in large exporters is crucial in
calming international markets. Hence, investments in weather or climate information sectors with
regards to farming could alleviate or lessen price volatility in global markets, consequently improving
food security in food-importing countries.

Despite highlighting our analysis on the interlinkages between producer and global prices for
three crops, there exists a complex supply chain structure in those sectors. Haile et al. (2017) scrutinized
the relationships between the international, wholesale, and retail prices of wheat, flour, and bread
in Ethiopia. By encompassing additional explanatory variables such as wholesale price in a model,
more detailed connections between markets can be delineated, which is left for future research.
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Appendix A

Table A1. Johansen’s cointegration test for wheat.

Null
Hypothesis

Maximum Eigenvalue Test Trace Test

Statistic 5% Critical Value p-Value Statistic 5% Critical Value p-Value

None 20.503 15.892 0.009 25.305 20.262 0.009
At most 1 4.802 9.165 0.306 4.802 9.165 0.306

Notes: The lag length of the model is selected as 2 based on the BIC. Test statistics are based on the specifications
provided by the constant term. The restriction test on the cointegrating vector is done via the likelihood
ratio test. The critical values are computed using Osterwald-Lenum (1992). The p-values are based on
MacKinnon-Haug-Michelis’s p-values (Mackinnon et al. 1999).

http://www.fao.org/giews/en/
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Table A2. Johansen’s cointegration test for soybean.

Null
Hypothesis

Maximum Eigenvalue Test Trace Test

Statistic 5% Critical Value p-Value Statistic 5% Critical Value p-Value

None 65.685 15.892 0.000 71.169 20.262 0.000
At most 1 5.485 9.165 0.234 5.485 9.165 0.234

Notes: The lag length of the model is selected as 2 based on the BIC. Test statistics are based on the specifications
provided by the constant term. The restriction test on the cointegrating vector is done via the likelihood ratio test. The
critical values are computed using Osterwald-Lenum (1992). The p-values are based on MacKinnon-Haug-Michelis’s
p-values (Mackinnon et al. 1999).

Table A3. Johansen’s cointegration test for corn.

Null
Hypothesis

Maximum Eigenvalue Test Trace Test

Statistic 5% Critical Value p-Value Statistic 5% Critical Value p-Value

None 65.685 15.892 0.000 71.169 20.262 0.000
At most 1 5.485 9.165 0.234 5.485 9.165 0.234

Notes: The lag length of the model is selected as 2 based on the BIC. Test statistics are based on the specifications
provided by the constant term. The restriction test on the cointegrating vector is done via the likelihood ratio test. The
critical values are computed using Osterwald-Lenum (1992). The p-values are based on MacKinnon-Haug-Michelis’s
p-values (Mackinnon et al. 1999).
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