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Abstract: This paper develops a test that helps assess whether the term structure of option implied
volatility is constant across different levels of moneyness. The test is based on the Hausman principle
of comparing two estimators, one that is efficient but not robust to the deviation being tested, and one
that is robust but not as efficient. Distribution of the proposed test statistic is investigated in a general
semiparametric setting via the multivariate Delta method. Using recent S&P 500 index traded options
data from September 2009 to December 2018, we find that a partially linear model permitting a flexible
“volatility smile” and an additive quadratic time effect is a statistically adequate depiction of the implied
volatility data for most years. The constancy of implied volatility term structure, in turn, implies that
option traders shall feel confident and execute volatility-based strategies using at-the-money options for
its high liquidity.

Keywords: implied volatility; option data; semiparametric index model

1. Introduction

One key assumption behind the well known Black–Scholes (B–S) formula is a constant volatility
function, which has been frequently challenged after the stock market crash in October 1987. The extent to
which the market deviates from this assumption can be tested by examining the constancy of the option
implied volatility, which is the empirically determined parameter that makes the B–S formula fit market
prices of the options.

Option prices are characterized and empirically quoted based on “moneyness" values, defined as the
ratio of strike price and the forward price for delivery at expiration, and time-to-expiration. As shown by
Aıt-Sahalia et al. (2001) (ABS, henceforth), inverting the B–S formula makes the option implied volatility a
nonparametric function of these two components. Moreover, ABS further shows that a semiparametric
partially linear model permitting a flexible function of moneyness—widely known as the “volatility
smile”—and a quadratic time effect is a statistically adequate depiction of the empirical option data.

The point of departure in this paper is the following. We note the partially linear specification
above precludes the interactive effect between moneyness K/F and time-to-expiration T. Consequently,
it restricts the term structure of volatility to be constant across moneyness1. Such a restriction seems

1 If one plots implied volatility against moneyness and time-to-expiration in a three-dimensional space, which gives the so-called
Implied Volatility Surface, a partially linear structure implies that the term structures of σ across different moneyness values should
roughly have the same shape and only differ by a level shift.
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controversial and has been rejected by several empirical studies. For instance, Fengler (2006) notes that as
the time-to-expiration T increases, the implied volatility for at-the-money (ATM) and out-of-the money
(OTM) call options (i.e., K/F ≥ 1) displays a increasing term structure, while the implied volatility for
in-the-money (ITM) call options (K/F < 1) displays a decreasing term structure2. Extant studies have
aimed at theoretically explaining these stylized facts using stochastic volatility (Hull and White 1987;
Renault and Touzi 1996) and jump diffusion models (Bates 1996; Jorion 1988), there is an absence of prior
work that formally tests whether the term structure of option implied volatility is constant across different
levels of moneyness. This paper attempts to fill this void by developing a specification test for the partially
linear structure in ABS against a semiparametric alternative that explicitly permits interaction effects.

This study relates to the econometric literature of non-/semiparametric specification test.
Several studies test for a partially linear specification against a nonparametric alternative based on
the unifying framework proposed by Newey (1985a, 1985b). Fan and Li (1996) proposed a conditional
moment test based on the observation that the squared conditional moment of residual would equal
to zero only under the null. They estimate the test statistic using kernels and derive its asymptotic
distribution based on a U−statistic argument. Recently, Wang and Wang (2019) developed a similar test
with the k-nearest-neighbor method, which performs better than kernel methods when data are unevenly
distributed. Li and Wang (1998) tests a parametric partially linear model against a semiparametric alternative
based on bootstrap method. Whang and Andrews (1993) extends the framework of Newey (1985a, 1985b) by
allowing for infinite dimensional parameters in the criteria function (e.g., test statistic).

A nonparametric alternative, while seems most natural in many contexts, cannot account for
stylized facts and empirically-grounded restrictions in the underlying volatility process. For instance,
a quadratic term structure has been widely recognized as a suitable statistical depiction of volatility data
(Aıt-Sahalia et al. 2003, 2001; Ahn et al. 2002). To this end, we consider a semiparametric alternative
in which the quadratic term structure can be imposed explicitly. This alternative specification not only
permits a flexible interaction between the moneyness K/F and time-to-expiration T but also effectively
takes the quadratic term structure into account. As explained below, coefficients of the linear and quadratic
terms can be exploited jointly to derive a Hausman-type test.

This study also adds to the existing vibrant literature on the term structure of implied volatility. See,
for example, Mixon (2002) and Egloff et al. (2010). One conventional wisdom—known as the “expectation
hypothesis" (Campa and Chang 1995)—argues that the movement in long-term volatility should be
consistent with the expected future short-volatility. Byoun et al. (2003), based on the data of foreign
currency and S&P 500 stock index options, shows the empirical results on this hypothesis are mixed at
best. More recently, volatility derivatives listed in major exchanges have also been levered to analyze the
volatility term structure. See Fassas and Siriopoulos (2011); Zhang et al. (2010) and Lu and Zhu (2010) for
studies based on VIX futures. Based on options data of S&P 500 index, this paper finds that option implied
volatility displays a quadratic term structure for most years between 2012 and 2018.

The rest of this paper is organized as follow. In Section 2, we describe the testing strategy and construct
the Hausman statistic in a general econometric setting. We carry out some Monte Carlo experiments to
study the finite sample property of the proposed test statistic in Section 3. In Section 4, we report the
empirical results using traded option data of S&P 500 index after the 2007–2009 recent crisis. While the
focus of this paper is on option implied volatility, the testing framework can be applied to other contexts
where a semiparametric alternative is justified.

2 See Figure 2.8 in Fengler (2006).
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2. A Hausman-Type Specification Test

Consider a semi-parametric model where a scalar independent variable Z enters the model
nonparametrically and other regressors X enter the model via an index form: E[Y|X, Z] = H(X′β0, Z).
The econometric contribution of this paper is to test for a partially linear specification, which precludes the
interaction of X and Z, against a more general semi-nonparametric alternative. Specifically, let X ∈ Rm be
a vector of regressors and Z ∈ R1, the null hypothesis is

H0 : H(X′β0, Z) = X′β0 + g(Z), a.e. for some β0 in Rm and some g(·): R1 → R1 (1)

and the alternative is

Ha : H(X′β0, Z) 6= X′β0 + g(Z), a.e. for any β0 in Rm and all g(·): R1 → R1 (2)

Enlightened by Hausman (1978), the idea is to search for an estimator β̂A for β0 that is consistent
and efficient only under the null and another estimator β̂B that is consistent regardless of whether the
partially linear structure in (1) holds or not. If the data are indeed generated from the null DGP, then the
two estimators should be close to each other in probability. See Amini et al. (2012) for a review on recent
development on the Hausman test.

Assume that the underlying DGP contains a error term U satisfies E[U|X, Z] = 0. Under the null, e.g.,
Y = X′β0 + g(Z) +U, one candidate for β̂A comes from the following “Robinson differencing” procedure3,

1. Take conditional expectation of Z on the Y−model above: E[Y|Z] = E[X|Z]β0 + g(Z);
2. Subtract the above equation from the original Y−model on both sides: Y − E[Y|Z] = (X −

E[X|Z])β0 + U;
3. With X ≡ X− E[X|Z] and Y ≡ Y− E[Y|Z], estimate β0 by ordinary least square: β̂A = [X′X]−1X′Y.

Robinson (1988) shows that the final OLS estimator is root-N-consistent and asymptotically efficient.
One candidate for β̂B can be obtained by implementing the semiparametric least square (SLS) estimation
on the alternative specification E[Y|X, Z] = H(X′β0, Z). Ichimura and Lee (1991) develop a consistent
estimator for β0 up to location and scale. Since the parameter β0 is nested in a bivariate unknown
function H(·, ·) which needs to be estimated nonparametrically, the corresponding estimator has a
bias and the variance converges to zero at a slower (than parametric) rate. To reduce bias, I employ a
two-stage bias-corrected estimator proposed by Klein and Shen (2010) in which the conditional expectation
E[Y|X′β0, Z] is estimated with a Gaussian kernel.

To ensure proper identification in the semiparametric bi-index model, we make the following
assumptions on the vector X and the unknown functions H.

Assumption 1. The unknown function H : R2 → R is differentiable and not constant on the joint support of X′β0

and Z.

The smoothness condition in Assumption 1 is fairly standard. Clearly one cannot identify β0 up to
any level if the unknown function has no variability. To broaden the applicability of the proposed test,
we would like to allow some regressors in X to be deterministically related to others (e.g, X = [t, t2]).

3 Henderson and Parmeter (2015) proposed a single-step estimation procedure which is asymptotically equilvalent to the original
Robinson’s procedure.



J. Risk Financial Manag. 2020, 13, 287 4 of 12

This extra degree of flexibility comes at a cost because usually the index parameters cannot be identified in
this case4. To regain identification, we make the following assumption,

Assumption 2.

1. The vector X has at least one continuous component X1 whose regression coefficient β01 is not zero.
We rearrange regressors so that X = [X1, X2] ∈ R1+(m−1) where components in X2 can be either continuous
or discrete.

2. When some regressors within X are deterministically related to others, we require the vector X satisfies the
regularity conditions formally stated in Assumption 4.2 of Ichimura and Lee (1991).

Ichimura and Lee (1991) rigorously established the identification assumption based on the following
notation. Let each xl in X, for l = 1, · · · , m, to be a function of the more fundamental regressors. That is,
xl = xl(s1, · · · , sm′) is a known function from Rm′ into R for each l = 1, · · · , m where (s1, · · · , sm′)

is a vector of “underlying regressors”. In Assumption 4.2, Ichimura and Lee (1991) requires certain
differentiability conditions on the functions xl : Rm′ → R and excludes exact multicollinearity problem.

Considering the methods of Robinson (1988) and Ichimura and Lee (1991) are extremely well known,
we will not report the detailed estimation procedure and direct interested readers to the original papers.
The conditional expectations in both models are estimated via Gaussian kernels, with the bandwidth
parameter chosen optimally based on the rule-of-thumb by Silverman (1986)5. For the purpose of
motivating the proposed test statistic, below we formally state the asymptotic distribution of these
two estimators using the notation of this paper6.

Proposition 1. Assume (Y, X, Z) are i.i.d and that g(·) satisfy certain differentiability and moment condition as in
Robinson (1988). Under Assumption 1-2, it can be shown that for the aforementioned estimator β̂A,

√
N(β̂A − β0) ∼ N(0, ΣA)

where ΣA ≡ σ2E[(X− E[X|Z])′(X− E[X|Z])]−1 and σ2 is the variance of the regression error term U.

Proposition 2. Assume that X′β0 = β01[X1i + X′2iθB] and β01 6= 0. Let θ̂B be the maximizer of the following
quasi-likelihood function,

Q̂2(θB) ≡ −
1

2N

N

∑
i=1

t̂vi [Yi − Êa(Yi|X1i + X′2iθB, Z)]2

in which t̂vi is a trimming function on the basis of the (estimated) index t̂vi ≡ 1{a < v̂i < b} with a, b being the 1%
and 99% sample quantile of v̂i ≡ X1i + X′2i θ̂

7. Êa is a kernel-type conditional expectation estimator defined in D3

4 As a simple example, when the function H is unknown, one cannot identify the parameter θ in y = H(x + θx2) without additional
restrictions.

5 To be specific, for a d-dimensional density estimator g(x) = (1/h)d ∑i Kd
h(Xi − x/h). Let h = cN−r . Silverman (1986) shows that

the MSE-optimal bandwidth is c = ( 4
d+2 )

1/(4+d)σ , where σ is the standard deviation of Xi .
6 Some trimming parameters have been suppressed in order to facilitate the exposition, and readers should refer the original

papers for full details. Since both methods are widely used in estimating non/semi-parametric models, the proofs are omitted.
7 θ̂, the first stage estimator, is obtained by maximizing

Q̂1(θ) ≡ −
1

2N

N

∑
i=1

t̂xi [Yi − Ê(Yi |X1 + X′2θ, Z)]2
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in Klein and Shen (2010). Let G0 ≡ ∇θQ2(θ0) and H0 ≡ ∇θ′θQ2(θ0) denote the Gradient vector and Hessian
matrix, respectively. Under Assumption 1-2,

√
N(θ̂B − θ0) ∼ N(0, Σ)

where Σ ≡ H−1
0 E[

√
NG′0G0

√
N]H−1

0 .

However, β̂A and θ̂B are not directly comparable since θ̂B is an estimate of β0 up to location and
scale. To conduct a feasible Hausman-type test, with β̂A = [β̂01, β̂02, · · · , β̂0m] ∈ Rm, we compute the

“normalized parameter” in the partially linear model as θ̂A = h(β̂A) = ( β̂02
β̂01

, · · · , β̂0m
β̂01

) ∈ Rm−1. From the

multivariate delta method, the variance-covariance matrix of θ̂A is

V(
√

Nθ̂A) = [
∂h(β̂A)

∂β̂A
]′ · ΣA · [

∂h(β̂A)

∂β̂A
] (3)

∂h(β̂A)

∂β̂A
=



− β̂02
β̂2

01
− β̂03

β̂2
01
· · · − β̂0m

β̂2
01

1
β̂01

0 · · · 0

0 1
β̂01

· · · 0
...

. . .
...

0 0 · · · 1
β̂01


(4)

where ΣA is the m × m variance-covariance matrix of
√

Nβ̂A derived in Proposition 1. ∂h(β̂A)

∂β̂A
is the

m× (m− 1) gradient matrix. Taken together, V(
√

Nθ̂A) is (m− 1)× (m− 1).
With the two estimators formulated above, a Hausman-type test statistic comes naturally:

Tn ≡
√

N(θ̂A − θ̂B)
′M−1(θ̂A − θ̂B)

√
N (5)

where the appropriate scale matrix M is

M ≡ V(
√

Nθ̂B)−V(
√

Nθ̂A) (6)

Note also that the matrix M is positive semi-definite because θ̂A is efficient under the null. The first
component in M, V(

√
Nθ̂B) can be estimated by Σ̂ ≡ Ĥ−1

0 E[
√

NĜ′0Ĝ0
√

N]Ĥ−1
0 . The second component

V(
√

Nθ̂A) can be estimated consistently using the aforementioned Delta-method. From Theorem 2.1 of
Hausman (1978), under the null, Tn follows a χ2

m−1 distribution. The power of this test will be evaluated
below based on Monte Carlo experiment under a sequence of “local alternatives”.

where t̂xi is a trimming function based on the vector of Xi and Ê(Yi |Xiθ, Z) is a two-dimensional Nadaray-Watson estimator of
conditional expectation.
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3. Monte Carlo Experiments

In this section, we carry out some Monte Carlo experiments to study the finite sample properties of
the test statistic. The DGP is given as:

Y = β1X1 + β2X2 +
√

Z + δ ∗ (β1X1 + β2X2) ∗ Z + U (7)

Parameters are set to be unity: β1, β2 = 1. The data are generated from X1, X2 ∼ χ2(1), Z = X1 + X3 + 3,
X3 ∼ χ2(1) and U ∼ N(0, 1). Some truncation is applied to ensure the X’s and Z are bounded. When δ = 0,
the model is partial linear. As δ increases, the model smoothly transforms from a series of local alternatives
to a two-index model in which Z has interactive effect with β1X1 + β2X2 .

In Table 1 we report the Monte Carlo results from 500 replications with δ = 0, 0.1, 0.2, 0.5.
The parameter of interest here is the ratio of regression coefficients of X2 and X1: θ = β2/β1 = 1.
In the first design with δ = 0, the Robinson differencing estimator θ̂A performs better than the two-index
estimator θ̂B in terms of accuracy (MEAN of estimates with N = 2000: 1.003 vs. 1.045) and efficiency
(Root-Mean-Square-Error (RMSE) with N = 2000: 0.006 vs. 0.008). As δ deviates from zero, while the
Robinson differencing estimator became inconsistent, the 2-index model still provides robust estimation of
θ. For example, when δ = 0.5 and N = 1000, the mean of θ̂A is 0.863 while the mean of θ̂B is 0.997.

The testing results are reported in the lower panel of Table 1. Under H0 (e.g., δ = 0) with N = 2000,
the rejection rate in 500 replication is 3.2% and 8.2%, given the theoretical size is 5% and 10%, respectively.
When the true model deviates significantly from the partial linear model (δ = 0.5), the test has powers close
to one in both samples. As the interaction term becomes smaller, that is, when the true model approaches
a series of local alternatives, the power of the test decreases. For each alternative DGP with a different δ,
the power increases as the sample size increases.

Table 1. Estimation results and rejection rate of H0 in 500 replications.

δ = 0 δ = 0.1 δ = 0.2 δ = 0.5

Mean SD RMSE Mean SD RMSE Mean SD RMSE Mean SD RMSE

N = 1000
P-Linear 1.012 0.110 0.012 0.950 0.079 0.009 0.898 0.057 0.014 0.863 0.040 0.020
2-index 1.070 0.112 0.017 1.038 0.084 0.008 1.011 0.061 0.004 0.997 0.040 0.002

N = 2000
P-Linear 1.003 0.075 0.006 0.947 0.058 0.006 0.905 0.040 0.011 0.866 0.029 0.019
2-index 1.045 0.078 0.008 1.025 0.060 0.004 1.011 0.040 0.002 1.001 0.030 0.001

Rejection rate of H0 : Y = Xiβ0 + G(Zi) + Ui

Size Power

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

N = 1000 0.006 0.038 0.068 0.014 0.094 0.192 0.150 0.374 0.532 0.718 0.898 0.938
N = 2000 0.002 0.032 0.082 0.068 0.170 0.292 0.380 0.705 0.822 0.978 0.996 0.998

Note 1: In the upper panel, I compare the estimation results from both the partial linear model and the two-index
model with varying δ’s. For each design, I run 500 replications with N = 1000 and 2000. MEAN, SD and RMSE
refer to the mean, standard deviation and root-mean-square-error of the estimates, respectively; Note 2: In the
lower panel, I report the rejection rate in 500 replications in each designs. The critical value are set at 1%, 5% and
10% significant levels. When δ = 0, the rejection rate should be close to the theoretical size. When δ significantly
deviates from zero, the test should exhibit a theoretical power of 1.

4. Empirical Results

As motivated in the introduction, we study whether an option’s moneyness and time-to-maturity
affect its implied volatility in an interactive fashion, e.g., do options across different moneyness value have
different term structure? ABS addresses this question by testing whether the in-sample-fit of a partially
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linear model is statistically the same as an unrestricted, nonparametric alternative. We revisit this problem
with a more recent dataset using the testing strategy developed in the previous section.

To be specific, we denote the price of a call option as C, its strike price as K, its time to expiration as T,
and the forward price for delivery at expiration as F8. The B–S formula for a call option is

C = e−rT F[φ(d1)−
K
F

φ(d2)] (8)

where φ(·) is the normal cumulative distribution function, and

d1 =
ln(F/K) + (r + σ2/2)T

σ
√

T
, d2 = d1 − σ

√
T (9)

for a value of the volatility parameter σ constant across different “moneyness” values (defined as K/F) and
time-to-expiration T. For each option price C, with characteristics (K/F, T), Equation (8) can be inverted to
produce the option’s implied volatility. This is the unique value of σ that would make C(K/F, T, σ) on the
right-handside of (8) equal to the observed market price of the option.

As shown by Aıt-Sahalia et al. (2001) (ABS, henceforth), inverting the B–S formula with respect to the
volatility parameter would give to the following model for σ,

σ = m(K/F, T) + ε with E[ε|K/F, T] = 0 (10)

where the unknown transformation m(·, ·) captures the dependency of σ on K/F and T and the error term
ε summarizes potential sources of noise, e.g., bid-ask spread. In practice, option prices (C or P) are quoted
solely based on moneyness and time-to-maturity. As such, it suffices to only include K/F and T at the
right hand-side of (10).

The empirical agenda of this paper is centered on testing the functional form of m(·, ·) in Equation (10).
Based on the testing framework in Section 2, let Y ≡ σ denotes the option implied volatility,
Z ≡ K/F denotes the option’s moneyness, and X ≡ [T, T2] denotes the linear and quadractic term
of time-to-expiration. We test

H0 : m(K/F, T) = g(K/F) + β1T + β2T2 (11)

against a two-index model which permits the interaction between moneyness and time-to-maturity:

Ha : m(K/F, T) = H(β1T + β2T2, K/F) (12)

for a well-defined function H(·, ·) satisfying Assumption 1. Recall that the aforementioned identification
by Ichimura and Lee (1991) allows some regressors to be deterministically related to others in the index9.
As such, β2/β1 is identified.

The empirical sample consists of N = 45,905 observations on S&P 500 index call options traded at
the Chicago Board Options Exchange (CBOE) from September 2012 to December 2018. Data on traded
options is retrieved from OptionMetrics at the Wharton Research Data Services (WRDS). The sample is
restricted to European options with maturities from 1 to 9 months, which are the most actively traded

8 Forward price is defined as F ≡ erTS, with S being the underlying security’s current spot price and r being the risk-free rate that
applies to the life of the forward contract.

9 In Example 4.2 of Ichimura and Lee (1991), they explicitly stated that the index coefficient in h(z; θ) = θ1z + θ2z2 can be identified.



J. Risk Financial Manag. 2020, 13, 287 8 of 12

options. We compute the option premium using the midpoint of bid and ask price, and solve for option
implied volatility based on the B–S formula. Following the “Robinson differencing” and Semiparametric
Least Square procedures, respectively, we obtain the following estimates

Plinear: m̂(K/F, T) = ĝ(K/F)− 0.063
(0.0034)

T + 0.022
(0.0052)

T2 (13)

2-index: m̂(K/F, T) = Ĥ(T − 0.393
(0.005)

T2, K/F) (14)

To illustrate the nonparametric components in these models, we plot ĝ(·) and Ĥ(·, ·) in Figures 1 and 2,
respectively. As can be seen from Figure 2, the term structure of volatility is generally downward-sloping
for options across different moneyness values, which provides evidence against the hypothesis that
time-to-maturity and moneyness affects implied volatility in an interactive fashion. To reassure,
we compute the test statistic Tn based on (5), which turns out to be 0.433, leading to the acceptance
of the partially linear model with a p-value equals 0.51.

Figure 1. The “volatility smile” in a partially linear model. Note: Blue dots are data points in the sample
and the smooth line is the estimated function via kernel..
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Figure 2. implied volatility surface in two index model. Note: This graph depicts the interpolated implied
volatility surface (IVS). The time-to-maturity axis describes the term structure for options with different
moneyness values (K/F), while the moneyness axis describes the shape of “volatility smile” for options
with different time-to-maturity.

Our test result, in the bold part, is in accord with ABS. That is, options across moneyess have identical
term structures. Specifically, volatility first decreases and then increases as a function of time-to-expiration.
From (13), holding moneyness constant, volatility reaches the lowest when time-to-expiration is about
17 month10. Recall that the term structure of volatility captures the market’s expectation on the future
volatility. If the term structure of CBOE index option is downward-sloping, it implies that investors expect
to see the volatility (risk) of the market going down in the future.

So, why did options holders perceive the market risk to be decreasing as the time-to-expiration
increases? One plausible (but speculative) explanation emerges after a closer look at the equity market
condition in the period from September 2012 to December 2018. The S&P 500 index steadily grew since
the second half of 2012 while the level of CBOE Volatility Index (VIX) was consistently low around 12–20.
Given the expectation of a persistent rise in equity values, even the speculative OTM call options (K/F > 1)
can have intrinsic values when its time-to-maturities is “long enough”. As such, investors may be more
concern about the short-run risk, making the implied volatility higher in shorter terms.

As a robustness check, we repeat the analysis for each year in the sampling period independently.
Parameter estimates and test statistics are reported in Table 2. With the 5% critical value being 3.84,
we reject the partially linear model for the years of 2013 and 2018. In terms of the magnitude, the estimated
test statistic for the year of 2018 is much greater than those from previous years. In March 2018, the US

10 The lowest point of the quadratic part occurs at T = −0.063/(2 ∗ 0.022) = 1.43 year.
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started a prolonged trade war with China, which overturned the steady growth of the S&P 500 index.
As a consequence, the VIX index exceeds 30 in December 2018. Because of the tension between the two
largest economies in the world, options holder become more concern about the long-run risk. This concern,
in turns, is likely to make OTM call options to have an increasing term structure.

Table 2. Parameter Estimates and Test Statistics in Sub-samples.

2012 2013 2014 2015 2016 2017 2018

Partially Linear

β1 0.058 −0.089 −0.093 −0.035 −0.039 −0.080 −0.053
0.011 0.006 0.008 0.010 0.009 0.005 0.004

β2 0.009 0.042 0.053 0.015 0.028 0.052 0.029
0.017 0.008 0.012 0.016 0.014 0.008 0.006

2-Index β2/β1
0.093 −0.757 −0.710 0.347 0.675 −0.690 −0.714
0.033 0.110 0.015 0.012 0.011 0.008 0.502

Test Statistic Tn 0.030 19.301 2.849 0.018 0.007 0.444 46.199

5. Conclusions

Through a kernel-based goodness-of-fit test, Aıt-Sahalia et al. (2001) show that a partially linear model
permitting a flexible “volatility smile” and an additive quadratic time effect is a statistically adequate
depiction of the option implied volatility data. This paper develops an alternative specification test
based on the shape of implied volatility surface at different “moneyness” values. Our test statistic has a
conventional Hausman form and can be applied to test additivity of other econometric models.

The proposed theoretical test advances the ongoing empirical literature on volatility trading in the
following way. Various extant studies have explored the term structure of implied volatility; for example,
Zhang et al. (2010) notes the average term structure of VIX future price is upward sloping. As such,
a long-short portfolio consists of options with different time-to-maturity may generate abnormal return.
The proposed test provides a way of checking the robustness of a given trading strategy across options
with different moneyness values. That is, if the test fails to reject the partially linear model, one may feel
more confident to execute the aforementioned strategy with at-the-money options. Because at-the-money
options have the highest liquidity, the transaction costs (e.g., bid-ask spread) will be reduced dramatically.

There are several extensions that we would like to consider as future research: (a) It is possible to
consider a more general additive model as the null specification: H(X, Z; β0) = G(X; β0) + g(Z), where
G(·) is known. This so-called partially parametric model is being studied in Henderson and Parmeter
(2015). In our empirical context, it would allow for a more flexible term structure of option implied volatility.
(b) It would also be interesting to compare the proposed Hausman-type test with extant specification tests
for a partially linear structure in terms of size and power.
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