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Abstract: Portfolio optimization and quantitative risk management have been studied extensively
since the 1990s and began to attract even more attention after the 2008 financial crisis. This disastrous
occurrence propelled portfolio managers to reevaluate and mitigate the risk and return trade-off in
building their clients’ portfolios. The advancement of machine-learning algorithms and computing
resources helps portfolio managers explore rich information by incorporating macroeconomic
conditions into their investment strategies and optimizing their portfolio performance in a timely
manner. In this paper, we present a simulation-based approach by fusing a number of macroeconomic
factors using Neural Networks (NN) to build an Economic Factor-based Predictive Model (EFPM).
Then, we combine it with the Copula-GARCH simulation model and the Mean-Conditional Value at
Risk (Mean-CVaR) framework to derive an optimal portfolio comprised of six index funds. Empirical
tests on the resulting portfolio are conducted on an out-of-sample dataset utilizing a rolling-horizon
approach. Finally, we compare its performance against three benchmark portfolios over a period
of almost twelve years (01/2007–11/2019). The results indicate that the proposed EFPM-based asset
allocation strategy outperforms the three alternatives on many common metrics, including annualized
return, volatility, Sharpe ratio, maximum drawdown, and 99% CVaR.

Keywords: CVaR; GARCH; Pair Copula; simulation-based optimization; portfolio optimization;
risk management

1. Introduction

Markowitz 1952 pioneered the construction of an optimal portfolio by proposing a Mean-Variance
model, which created an efficient frontier to model a portfolio’s risk and return trade-off. This laid
the foundation for a continuous development of Modern Portfolio Theory (MPT)—a mathematical
framework for assembling and allocating a portfolio of assets (equities and bonds are the most common
asset classes) with the goal of either maximizing its expected return for a given risk constraint or
minimizing its risk for a given expected return constraint. However, a major shortcoming in using
variance as a measure of risk is that it cannot measure the tail risk reliably. Realizing this, (Morgan 1996)
proposed a concept called Value-at-Risk (VaR), which summarized the worst loss over a target horizon
at a determined confidence level. Financial regulators and portfolio managers usually choose 99% as
an appropriate confidence level for stress testing and portfolio hedging purposes. Since VaR is easy to
calculate, it has been widely accepted in the financial world as a main metric for evaluating downside
risk. Besides operational risk, VaR also has applications in the market risk and credit risk domains (see
(Dias 2013), (Embrechts and Hofert 2014) for more details). However, due to the fact that VaR is neither
subadditive nor convex, and that the distribution of real-world financial asset returns data is found to
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exhibit substantial heavy tails and asymmetry around the mean (see (Shaik and Maheswaran 2019)),
(Artzner et al. 1999) proved that VaR is not a coherent measure of risk for asymmetric distribution.

To overcome the above shortcomings of VaR, (Rockafellar and Uryasev 2002) and (Rockafellar
and Uryasev 2000) suggested an alternative metric, known as Conditional Value-at-Risk (CVaR) or
Expected Shortfall (ES). This metric is used to measure the expected loss amount exceeding a given
VaR. Since CVaR inherits most properties of VaR, it accounts for the severity of the losses and satisfies
the subadditivity and convexity properties, which enables CVaR to characterize tail distributions and
estimate risk of assets more accurately. In 2000, R.T. Rockafellar et al. showed that for non-normal
and non-symmetric distributions, these two frameworks revealed significant differences, and were
heavily dataset-specific, as shown in (Krokhmal et al. 2001) and (Larsen et al. 2002). As CVaR only
measures the downside risk, it captures both the asymmetric risk preferences of investors as well as the
incidence of ”fat” left tails induced by skewed and leptokurtic return distributions, judged by major
institutional investors (Sheikh and Qiao 2009) as one of the most appropriate risk measures. Due to
these reasons, we choose CVaR as the risk measure and propose a Mean-CVaR framework for portfolio
optimization. In addition, since the return series of most asset classes exhibit leptokurtosis, heavy tails,
volatility clustering, and interdependence structures, relying solely on the historical return series
with Mean-CVaR would skew the optimal asset allocations. Therefore, we propose employing a pair
copula-GARCH model for capturing both the volatility clustering and interdependence characteristics
in the investment universe.

Finally, in order to capture the impact and benefits from macroeconomy down to the real investment
asset classes, we select a number of important economic variables and build an economic factors-based
predictive model to learn this relationship. The proposed Economic Factor-based Model (EFPM)
uses the pair copula generalized autoregressive conditional heteroskedasticity (GARCH) technique to
simulate macroeconomic variables and feed them into a neural network model to generate return series
for a list of investment assets. The simulated returns are then fed into a Mean-CVaR framework to
obtain the optimal portfolio allocation. Finally, a rolling basis out-of-sample empirical test is conducted
to compare the performance of the resulting portfolio against three alternative benchmarks: equally
weighted (EW), historical return-based (HRB), and direct simulation (DS) approaches.

Traditional portfolio optimization is performed either under historical return or direct simulation
of a series of financial assets based on the learned characteristics of time series. Recent research
has begusn to utilize various artificial intelligence and machine-learning techniques in asset pricing
and market trend predictions to improve profitability. (Chang et al. 2012) proposed a new type of
neural network (involving partially connected architecture) to predict stock price trends from technical
indicators. (Yono et al. 2020) used a supervised latent Dirichlet allocation (sLDA) model to define a new
macroeconomic uncertainty index based on text mining for news and supervised signals generated
from the VIX index. (Zhang and Hamori 2020) applied random forest, support vector machine,
and neural networks to a list of macroeconomic factors, including Producer Price Index (PPI) and
Consumer Price Index (CPI), to demonstrate the effectiveness of these methods in predicting foreign
exchange rates.

Because existing research on machine learning focuses mainly on the predictivity of a variety
of factors for market trends or certain indices, there was not much literature on the simulation
of investment assets based on information learned through macroeconomic factors. In this paper,
we propose to first model the relationship between temporally correlated macroeconomic variables and
a set of investment assets with a feedforward artificial neural network. At the same time, we combine
copula dependence structure with the GARCH(1,1) framework to model and learn the volatility
structure of the macroeconomic factors. The resulting models are used to simulate a large number
of macroeconomic samples as input to feed into the trained neural network. The neural network
fuses the macroeconomic factor samples and maps them onto the investment returns to be used to
derive optimal asset allocation. We demonstrate the effectiveness of this novel approach against other
alternatives over several key performance metrics.
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The remainder of this paper is organized as follows. Section 2 introduces GARCH framework to
model time varying volatility, pair copula construction for dependence structure, and Mean-CVaR
optimization process. The neural network model is then proposed in Section 3 to estimate the
relationship between a list of macroeconomics and returns for the investment assets, which leads a
novel simulation-based portfolio optimization technique. Section 4 documents the empirical results,
and Section 5 summarizes our findings.

2. Mathematical Definition and Preliminaries

In this section, we will go over some key concepts and their mathematical characteristics used in
this simulation-based portfolio optimization framework. Section 2.1 reviews time-varying volatility
and the classical GARCH model as well as its procedure to generate simulated returns for each
investment asset class. Section 2.2 further utilizes the Copula concept to enhance the GARCH model
to take into account the nonlinear relationships within each investment. Section 2.3 presents the
traditional portfolio optimization frameworks using Mean-Variance, Mean-VaR, and lastly Mean-CVaR.
It describes the objective, constraints of the optimization problems and ways to solve them.

2.1. Time-Varying Volatility

One important measure in the financial management area is the risk metric, which is usually
gauged by volatility or standard deviation of return series of investment assets over a certain period of
time. Estimation or prediction of investment assets’ volatility then becomes necessary and vital during
portfolio optimization and risk management. Two of the most classic models of volatilities are the
so-called ARCH (autoregressive conditional heteroskedastic) introduced by (Engle 1982) and GARCH
(generalized autoregressive conditional heteroskedastic) models from (Engle and Bollerslev 1986) and
(Taylor 1987). Let us first review some basic concepts.

Denote Pi,t as the month end price for an investment asset or economics indicator. Thus, the log
return Rt can be expressed as the log-percentage change below:

Rt = log(Pt) − log(Pt−1) (1)

Rt is final time series with mean µ and volatility σt with the assumption that volatility varies over time.
The return series of assets observed across different financial markets all share some common factors
known as “stylized empirical facts.” These facts include the following properties:

• Heavy Tails: the distribution of returns usually shows a power-law or Pareto-like tail index with a
value between two to five for most financial data.

• Gain or Loss Asymmetry: large drawdowns in stock prices or index do not necessarily reflect
equally large upward movements.

• Volatility Clustering: different measures of volatility tend to have positive correlation over multiple
trading periods, which reveals the fact that high-volatility events tend to cluster over time.

In order to capture the time-varying and clustering effects of the volatility, we first introduce
ARCH model assuming return of investment assets or economics indicator is given by:

Rt = µ+ εt (2)

An ARCH (p) process is given by
εt = σtzt (3)

σ2
t = ω+

p∑
i=1

αiε
2
t−i (4)

where {zt} is a sequence of white noise with mean 0 and variance 1, and ω > 0, αi ≥ 0, i = 1, . . . , p.
In this article, we assume {zt} follows a skewed generalized error distribution (SGED), which was
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introduced by (Theodossiou 2015) to accommodate skewness and leptokurtosis to the generalized
error distribution (GED). The probability density function (PDF) for SGED is as follows:

fy =
k1− 1

k

2ϕ
Γ
(1

k

)−1
exp

−1
k

∣∣∣µ∣∣∣k
(1 + sgn(µ)λ)kϕk

 (5)

where u = y−m, m is the mode of the random variable y, ϕ is a scaling constant related to the standard
deviation of y, λ is a skewness parameter, k is a kurtosis parameter, sgn is the sign function of −1 for
u < 0 and 1 for u > 0 and Γ(·) is gamma function.

For simplicity’s sake, given p = 1, we have ARCH(1) process and error term εt with conditional
mean and conditional variance as follows:

E(εt|εt−1) = E(σtzt|εt−1) = σtE(zt|εt−1) = σtE(zt) = 0 (6)

Var(εt|εt−1) = E
(
σ2

t z2
t

∣∣∣εt−1
)
= σ2

t E
(
z2

t

∣∣∣εt−1
)
= σ2

t E
(
z2

t

)
= σ2

t ∗ 1 = σ2
t (7)

and unconditional variance of εt is

Var(εt) = E
(
ε2

t

)
− (E(εt))

2 = E
(
ε2

t

)
= E

(
σ2

t

)
= ω+ α1E

(
ε2

t−1

)
=

ω
1− α1

(8)

since εt is a stationary process and Var(εt) = Var(εt−1) = E
(
ε2

t−1

)
.

As the extension to include flexible lag terms for ARCH model, GARCH (p, q) model considers
the same stochastic process defined under Equation (3) and introduces an additional lagged q-period
conditional variance term within the formulation of conditional variance:

εt = σtzt

σ2
t = ω+

p∑
i=1

αiε
2
t−i +

q∑
j=1

β jσ
2
t− j

(9)

where ω > 0, αi, β j ≥ 0. The simplest and most widely used version for GARCH (p, q) model is
GARCH(1,1):

εt = σtzt

σ2
t = ω+ α1ε2

t−1 + β1σ2
t−1

(10)

It can be shown that the above has a stationary solution with a finite expected value if and only if
α1 + β1 < 1 and its long run variance is VL = E

(
σ2

t

)
= ω

1−α1−β1
. Thus GARCH(1,1) can be rewritten as

εt = σtzt

σ2
t = γVL + α1ε2

t−1 + β1σ2
t−1

(11)

2.2. Dependence Modeling and Pair Copula

There is a large body of research articles that indicate that conditional volatility of economic time
series varies over time. Researchers then proposed the copula technique, which allows us to model a
dependence structure independent of multivariate distribution. (Sklar 1959) first proposed copula to
measure nonlinear interdependence between variables. Then, (Jondeau and Rockinger 2006) proposed
the copula-GARCH model and applied it to extract the dependence structure between financial assets.
Copula plays a vital role in financial management and econometrics and is widely used on Wall Street
to model and price various structured products, including Collateralized Debt Obligations (CDOs).
The key contribution of copula is to separate the marginal distribution from the dependence structure
and improve the correlation definition from linear to also considering nonlinear relationships.

In a review article from (Patton 2012), he defined a n-dimensional copula assuming Y =

(Y1, . . . , Yn )T as random vector with cumulative distribution function F and for i ∈ {1, . . . , n}, letting
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Fi denote the marginal distribution of Yi, thus there exists a copula C : [0, 1]n → [0, 1] such that for all
y = (y1, . . . , yn )T

∈ Rn

F(y) = C
{
F1(y1), . . . , Fn(yn)

}
(12)

In the application of multivariate time series, Patton used a version of Sklar’s theorem and
decomposed the conditional joint distribution given some previous information set into conditional
marginal distribution and conditional copula. For t ∈ (1, . . . , T), let Yt

∣∣∣Ft−1 ∼ F(·
∣∣∣Ft−1) and

Yi,t
∣∣∣Ft−1 ∼ Fi(·

∣∣∣Ft−1) then

F(y|Ft−1 ) = C
{
F1(y1

∣∣∣Ft−1), . . . , Fn(yn
∣∣∣Ft−1)

∣∣∣Ft−1
}

(13)

From the above section of the GARCH model, we now incorporate Equations (2) and (11) to the
multivariate copula, and the white noise term {zt} can be derived from copula structure

zt
∣∣∣Ft−1 ∼ Fzt = Ct(F1,t, . . . , Fn,t) (14)

where zt can be estimated from Rt−µ
σt |Ft−1

.
As the marginal distributions Fi are usually not known or hard to obtain from a parametric

approach, here we propose a nonparametric method to estimate them using the empirical distribution
function (EDF) introduced by (Patton 2012). For a nonparametric estimate of Fi, we use the following
function with uniform marginal distribution:

F̂i(z) ≡ 1
T+1

T∑
t=1

1(ẑi,t ≤ z)

Ûi,t = F̂i(ẑi,t)
(15)

where 1(ẑi,t ≤ z) is the indicator function of 1 when ẑi,t ≤ z.
There are two well-known classes of parametric copula functions, i.e., elliptical family and the

Archimedean copula. Gaussian and t-copulas are the two types from the elliptical family where their
density functions come from elliptical distribution.

Assume random variable X ∼MNormal(0, P) where P is the correlation matrix of X. Gaussian
copula is defined as:

CGauss
P = ΦP

(
Φ−1(u1), . . . , Φ−1(ud)

)
(16)

where Φ(·) is standard normal cumulative distribution function (CDF) and ΦP is the joint CDF for
multivariate normal variable X. This copula above is the same for random variable Y ∼MNormal(µ, Σ)
if Y has the same correlation matrix P as X.

Similar to the Gaussian copula above, if W follows multivariate t-distribution with v degree of

freedom and can be written as W = X/
√
ξ
v where X ∼MNormal(0, Σ) and ξ ∼ χ2

v independent of v.
the t-copula is defined as:

Ct
v,P = tv,P

(
t−1
v (u1), . . . , t−1

v (ud)
)

(17)

where P is the correlation matrix of W, tv,P is the joint CDF of W and tv is the standard t-distribution
with degree of freedom v.

The other important class of copula is the Archimedean copula (Cherubini et al. 2004), which can
be created using a function φ : I→<∗+ , continuous, decreasing, convex, and φ(1) = 0. Such function
is called generator, and pseudo-inverse is defined from the generator function as follows:

φ[−1](v) =
{
φ−1(v) 0 ≤ v ≤ φ(0)
0 φ(0) ≤ v ≤ ∞

(18)
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This pseudo-inverse will generate the same result as the normal inverse function as long as
it is within the domain and range <: φ[−1](φ(v)) = v for every v ∈ I. Given the generator and
pseudo-inverse, Archimedean copula CA can be generated from the following form:

CA(v, z) = φ[−1](φ(v) + φ(z)) (19)

There are two important subclasses of Archimedean copulas that have only one parameter in the
generator—Gumbel and Clayton copulas, as given in Table 1.

Table 1. Gumbel and Clayton Copula Parameters from (Cherubini et al. 2004).

Generator Gumbel Clayton

Generator φα(t) = (− ln t)α φα(t) = 1
α (t
−α
− 1)

Range [1,+∞) [−1, 0)∪ (0,+∞)

C(v, z) e−[(− ln v)α+(− ln z)α]
1
α max

[
(v−α + z−α − 1)−

1
α , 0

]

In practice, the complexity of estimating parameters from multivariate copula increases rapidly
when the dimension of time series data expands. Therefore, (Harry 1996), (Bedford and Cooke 2001),
(Aas et al. 2009), and (Min and Czado 2010) independently proposed a multivariate probability structure
via a simple building block—pair copula construction (PCC) framework. The model decomposes
multivariate joint distribution into a series pair copula on different conditional probability distributions
with an iterative process. The copula definition from Equation (12) can be rewritten using uniformly
distributed marginals U(0, 1), as follows:

C(u1, . . . , un) = F
{
F−1

1 (u1), . . . , F−1
n (un)

}
(20)

where F−1
i (ui) is the inverse distribution function of the marginal. We can then derive the joint

probability density function (PDF) f (·) as follows:

f (y) = c1,..., n
{
F1(y1), . . . , Fn(yn)

}
· f1(x1) · · · fn(xn) (21)

for some (uniquely identified) n-variate copula density c1...n(·) with a conditional density function
given as,

f
(

y
∣∣∣v) = cyv j |v− j

{
F
(
y
∣∣∣v−j

)
, F(vj

∣∣∣∣v−j)
}
· f

(
y
∣∣∣v− j

)
(22)

where for a n-dimensional vector v, vj represents an element from v and v− j is the vector without
element vj.

Therefore, the multivariate joint density function can be written as a product of pair copula
on different conditional distributions. For example, under the bivariate case, the marginal density
distribution of y1

∣∣∣y2 can be written using the formula above as,

f (y1
∣∣∣y2) =

f (y1, y2)

f (y2)
=

c12
{
F1(y1), F2(y2)

}
· f1(y1)· f2(y2)

f (y2)
= c12

{
F1(y1), F2(y2)

}
· f1(y1) (23)

For high-dimension data, there are a large number of combinations for the pair copulas. Therefore,
(Bedford and Cooke 2001, 1999) proposed using a graphic approach known as “regular vine” to
systematically define the pair copula relationship in the tree structure. Each edge in the vine tree
corresponds to a pair copula density. The density of a regular vine distribution is defined by the

multiplication of pair copula densities over n(n−1)
2 edges in a regular vine tree structure and the

multiplication of the marginal densities. (Aas et al. 2009) and (Kurowicka and Cooke 2007) further
introduced canonical vine and D-vine as two special cases of regular vine to decompose the density.
Canonical vine distribution is a regular vine distribution but with unique nodes connected to the
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remaining n− j nodes under each tree. In the D-vine structure, no node in any tree can be connected to
more than two nodes. The n-dimensional density of canonical vine can be written as follows:

f (y1, . . . , yn) =
n∏

k=1

f (yk)
n−1∏
j=1

n− j∏
i=1

c j, j+i|1,..., j−1

{
F
(
y j

∣∣∣y1, . . . , y j−1
)
, F

(
y j+i

∣∣∣y1, . . . , y j−1
)}

(24)

where j denotes the trees and i spans the edge of each tree. The n-dimensional density of D-vine is
given as,

f (y1, . . . , yn)

=
n∏

k=1
f (yk)

n−1∏
j=1

n− j∏
i=1

ci,i+ j|i+1,...,i+ j−1

{
F
(
yi
∣∣∣yi+1, . . . , yi+ j−1

)
, F

(
yi+ j

∣∣∣yi+1, . . . , yi+ j−1
)} (25)

The chart in Figure 1 shows an example of five variable vine copulas constructed from canonical
vine and D-vine structures, respectively.
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Figure 1. (a) 5 variables D-vine; (b) 5 variables canonical vine.

In this paper, we focus on the canonical vine copula structure. To review the simulation techniques
from canonical vine, here are the main steps proposed by (Aas et al. 2009) as shown in Algorithm 1:

Algorithm 1. Simulation algorithm for canonical vine copula.

Generate one sample y1, . . . , yn from canonical vine

Sample u1, . . . , un independently from Uni f orm(0, 1)
y1 = v1,1 = u1

for i← 2, . . . , n
vi,1 = ui
for k← i− 1, i− 2 . . . , 1

vi,1 = h−1
(
vi,1, vk,k, Θk,i−k

)
end for

yi = vi,1
if i == n then

stop
end if
for j← 1, . . . , i− 1

vi, j+1 = h
(
vi, j, v j, j, Θ j,i− j

)
end for

end for
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where function h(y, v, Θ) is defined as the marginal conditional distribution function derived from the
conditional density defined in Equation (22). Thus, when y and v are uniform, i.e., f (y) = f (v) = 1,
F(y) = y, F(v) = v, h(y, v, Θ) has the following form:

h(y, v, Θ) = F(y
∣∣∣v) = ∂Cy,v(y, v, Θ)

∂v
(26)

where Θ denotes the set of parameters for the copula of the joint distribution function of y and v,
further defining h−1(y, v, Θ) as the inverse of the conditional distribution and as the inverse function
of h(·) with respect to y.

To estimate the parameters of the pair copula, (Aas et al. 2009) proposed using the
pseudo-maximum likelihood to estimate parameters sequentially along the multiple layers of pair
copula trees. The log-likelihood is given as,

L(y, v, Θ) =∑n−1
j=1

∑n− j
i=1

∑T
t=1 log

[
c j, j+i|1,..., j−1

{
F
(
y j,t

∣∣∣y1,t, . . . , y j−1,t
)
, F

(
y j+i,t

∣∣∣y1,t, . . . , y j−1,t
)}]

=∑T
t=1 log(c(yt, vt, Θ))

(27)

where c(u, v, Θ) is the density of bivariate copula with parameter Θ.
With the goodness-of-fit test using the Akaike Information Criterion (AIC) metric defined by

(Akaike 1998), we can find the copula family that minimizes this metric as the best copula family for
each tree.

AIC = −2
T∑

t=1

log[c(yt, vt, Θ)] + 2k (28)

where k is the number of parameters in the model. It is used to penalize the log-likelihood by its
complexity. The model selection process involves finding the copula family that minimizes the AIC
score.

2.3. Portfolio Optimization Using Mean-CVaR

In this section, we first review the traditional mean-variance portfolio optimization framework
proposed by (Markowitz 1952). Then we review another classical risk metric, value-at-risk (VaR),
as an alternative to variance. (Rockafellar and Uryasev 2002) and (Rockafellar and Uryasev
2000) extended VaR metrics, which focused on the percentile loss to conditional VaR (CVaR) or
expected shortfall as average of the tail loss. We will then focus on portfolio optimization using the
mean-CVaR framework.

Given a list of N investment assets, the mean-variance optimization is to find the optimal weights
vector w = (w1, w2, . . . , wN)

T of those assets so that the portfolio variance is minimized given a specific
level of portfolio expected returns. This problem can be written as follows,

min
w∈W

wTΣw

s.t.


N∑

i=1
wi = 1

wT y ≥ µ0

(29)

where µ = (y1, . . . , yN)
T is the return vector for each of the N investment asset classes, Σ is the

covariance matrix of the N asset return series, and µ0 is the minimum expected return of the portfolio.
In this framework, Markowitz combined return with covariance matrix as the risk metric. However,

other risk metrics have been introduced to focus on the tail events where losses occur. Value at Risk
(VaR) is one of these measures, proposed by (Morgan 1996) for the extreme potential change in value
of a portfolio under a given probability over a certain predefined time horizon. In this paper, we focus
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on an extension of VaR – Conditioned VaR (CVaR), which is defined as the mean loss that exceeds the
VaR at some confidence level. Mathematically, VaR and CVaR can be written as follows:

VaRβ(w) = min
{
l ∈ R : Ψ(w, l) ≥ β

}
CVaRβ(w) = 1

1−β

∫
f (w,y)≥VaRβ(w)

f (w, y)p(y)dy (30)

where y represents returns with density p(y) and β is the confidence level.
Here we define the loss function as f (w, y) = −wT y and the corresponding probability of the loss

that would not exceed a certain level l can be expressed as Ψ(w, l) =
∫

f (w,y)≤l p(y)dy. Thus, VaRβ(w) is
the VaR and CVaRβ(w) is the expected loss of the portfolio at the β confidence level. It is clear that
CVaRβ(w) ≥ VaRβ(w). (Rockafellar and Uryasev 2002) and (Rockafellar and Uryasev 2000) show that
CVaR can be derived from the following optimization problem without first calculating VaR:

Fβ(w, l) = l + 1
1+β

∫
f (w,y)≥l[ f (w, y) − l]+p(y)dy

VaRβ(w) ∈ argmin
l∈R

(
Fβ(w, l)

)
CVaRβ(w) ∈ min

l∈R
Fβ(w, l)

(31)

where [ f (w, y) − l]+ = max( f (w, y) − l, 0) and Fβ(w, l) is a function of l and convex as well as
continuously differentiable. Furthermore, the integral part under Fβ(w, l) can be simplified by
discretizing based on the density function p(y) to a q-dimension sample,

Fβ(w, l) = l +
1

q(1 + β)

q∑
k=1

[ f (w, yk) − l]+ (32)

Minimizing CVaR as the risk metric is thus equivalent to minimizing Fβ(w, l) from the above
formula. To construct the portfolio optimization using CVaR as the risk metric, we can formulate the
following problem similar to the Mean-Variance problem above,

min
w∈W

Fβ(w, l) = l + 1
q(1+β)

q∑
k=1

Sk

s.t.


Sk ≥ f (w, yk) − l = −wT yk − l

Sk ≥ 0∑N
i=1 wi = 1

wT y ≥ µ0

(33)

where Sk is an auxiliary term to approximate [ f (w, yk) − l]+ so that the problem becomes a linear
programming problem that can be solved easily and does not depend on any distribution assumption
for the return series yk.

3. Neural Net-Based Pair Copula GARCH Portfolio Optimization Framework

In this section, a new approach toward portfolio optimization is proposed using the GARCH
and pair copula techniques to generate simulated return series of investment vehicles from a list of
economic indicators, which are then fitted into the portfolio optimization framework of Mean-CVaR
(presented earlier) to derive the optimal allocation over time.
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3.1. Economic Factor-Based Predictive Model (EFPM)

Historically, linear models like AR, ARMA, and ARIMA were used in forecasting stock returns
introduced by (Zhang 2003) or (Menon et al. 2016). The problem with these models is that they only
work for a particular type of time series data (i.e., the established model may work well for one type of
equity or index fund but may not perform well for another). To solve this problem, (Heaton et al. 2017)
applied deep learning models for financial forecasting. Deep neural networks (also known as artificial
neural networks) are good at forecasting because they can approximate the relationship between input
data and predicted outputs, even when the inputs are highly complex and correlated.

Over the past few decades, many researchers have applied various deep learning algorithms for
forecasting, such as Recurrent Neural Network (RNN) (Rout et al. 2017), Long short-term memory
(LSTM) (Kim and Kim 2019; Nelson et al. 2017), and Convolutional Neural Network (CNN) (Selvin et al.
2017). However, none of these approaches specifically took into account macroeconomic factors in the
learning algorithms to predict stock returns. To the extent of our knowledge, very little work was done
to explicitly explore hidden information and the relationships between macroeconomic factors and
financial asset returns. In this paper, we propose applying a set of well-known and important economic
variables (see Appendix A for detailed descriptions) as the input layer and building a feedforward
neural network model with one hidden layer and one output layer. Our goal is to construct a predictive
model characterizing the relationship between the monthly log-percentage change of macroeconomic
variables and the returns of financial investment instruments.

To discover such relationships, we first partition historical monthly log-percentage change for each
of the macroeconomic variables and log return series of investment assets into a training set and a test
set. The training model for a three-layer neural network is fitted onto the training set and tested on the
test set. This process involves tuning the hyperparameter and finding the optimal numbers of hidden
neurons that minimize the mean squared error between the predictive value and the actual value.

This artificial neural network takes simulation of economic factors as input and produces returns
of investment assets as output. The equation below illustrates the feedforward process of how to map
the input data to the output. The learning process is to seek optimal weights wk, output and w jk that
minimize a defined error function,

ŷi = φoutput

αl +
∑

k→output

wk, output φk

αk +
∑
j→k

w jkxi j


 (34)

where α is bias term, φ is activation function and default to sigmoid function ( ex

1+ex ) in this paper.
The error function is defined as sum of squared error (SSE) between true value and estimated value of
output. To find the optimal weights wk, output and w jk, the learning process uses a gradient descent
method to iteratively update w jk based on w jk → w jk − η

∂SSE
∂w jk

, where η is the learning rate that controls

how far each step moves in the steepest descent direction. Figure 2 shows an example of such a
neural network model constructed based on historical data of economic factors and investment assets,
to be introduced in Section 4.
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3.2. Return Series Simulation from Pair Copula-GARCH Framework

Once the neural network model is constructed between economic factors and investment
assets, we propose generating simulated time series of the monthly log-percentage change from
a pair copula-GARCH framework (presented in Section 2). The simulated time series are then
fed into the above neural network to generate the simulated return series of investment assets.
In this section, we detail the process of simulating the monthly log-percentage change from the pair
copula-GARCH framework.

In this paper, we adopt the popular GARCH(1,1) model described in Equation (11) to model
the time-dependent volatility. GARCH(1,1) is widely used not only for financial assets but also for
macroeconomic variables. (Hansen and Lunde 2005) compared 330 GARCH-type models in terms of
their abilities to forecast the one-day-ahead conditional variance for both foreign exchange rate and
return series for IBM stock. They concluded that there is no evidence that GARCH(1,1) is outperformed
by other models for exchange rate data; however, it is inferior for IBM return. (Yin 2016) applied
univariate GARCH(1,1) with macroeconomic data to model uncertainty and oil returns to evaluate
whether macroeconomic factors affect oil price. (Fountas and Karanasos 2007) used the univariate
GARCH model on inflation and output growth data to test for the causal effect of macroeconomic
uncertainty on inflation and output growth and concluded that inflation and output volatility can
depress real GDP growth.

As the monthly time series data of macroeconomic variables have both time-varying volatility
and nonlinear interdependence structures between their tails, we employ the pair copula-GARCH
model to generate simulated log-percentage change of a list of key macroeconomic factors. Algorithm 2
summarizes this simulation process with the model learned from their historical data using the pair
copula-GARCH framework.
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Algorithm 2. Simulation algorithm for time series of macroeconomic variables.

Generate N sample of Simulated Time Series

1. Compute the monthly log-percentage change of macroeconomic:

Rt = log(Pt) − log(Pt−1)

2. Fit the error term of monthly log-percentage change minus its average for each macroeconomic variable
into the GARCH(1,1) process for time-varying volatility, respectively, based on skewed generalized error
distribution (SGED), generalized error distribution (GED), or Skew Student-t Distribution (SSTD) if the
distribution fit fails to converge with SGED,

for t← 1, 2, . . . , T
εi,t−1 = Rt−1 − µt

σ̂2
i,t = ω+ αi,1ε

2
i,t−1 + βi,1σ̂

2
i,t−1

end for

3. Apply the volatility scaled error term Rt−µt
σt |Ft−1

from the GARCH(1,1) result to fit the empirical distribution
to obtain the CDF for each economic variable, and then use those to fit the canonical vine copula from a
family of Gaussian, t, Gumbel, and Clayton copula using the pair copula construction approach.
Simulate N samples ui, j from canonical vine copula above for each economics variable j.

4. Calculate the quantiles based on the fitted SGED distribution of error terms divided by the volatility for
such quantiles to obtain simulated white noise term,

{
ẑi,T

}
=

F−1(ui, j)
σ(F−1(ui, j))

5. Determine the next step log-percentage change from its joint distribution using sample mean between
time 1 and time T, last period conditional volatility σ̂i,T and the simulated white noise ẑi,T using
the following:

R̂T+1 = µ1:T + σ̂i,T ẑi,T

3.3. Portfolio Optimization under Mean-CVaR Using Simulated Returns

Simulated time series of monthly log-percentage change generated from the pair Copula-GARCH
framework are then fed into the trained neural network model to produce return series of investment
assets. This process maps the simulated economic factors to return series of investment vehicles
through the trained neural network to depict the relationship between economic factors and investment
assets. As shown in Algorithm 2, the log-percentage change of economic factors is obtained by adding
the historical mean to its error term modeled by pair copula and GARCH(1,1). Economic data usually
shows a stronger autocorrelation and thus the estimation of log-percentage change can be enhanced by
adding the various lagged terms of log-percentage change to the mean and error terms modeled by the
GARCH process. However, the goal here is to emulate investment asset returns, which usually have
weaker autocorrelation than economic factors. Moreover, investment returns are typically assumed to
follow a random walk process,

log(Pt) − log(Pt−1) = µ+ εt (35)

where log(Pt) is log price of asset at time t, log(Pt) − log(Pt−1) denotes the one period return of
investment assets, and µ is the drift term. As investment returns are transformed indirectly from the
simulation of economic factors, we carry over this assumption, modeling the time series of economic
factors with a constant mean and time-varying volatility as well as dependency structure modeled by
copula GARCH(1,1).
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Figure 3 summarizes the high-level model architecture describing the process and data flow
from neural network fitting and pair copula-GARCH framework, to the final portfolio optimization.
The process consists of four steps:

(1) Train the neural network with historical economic factors as input layer and the investment asset
returns as output layer.

(2) Learn the pair copula-GARCH model with the historical data from economic factors.
(3) Simulate a large number of economic factor samples based on the learned copula GARCH model.

The samples are fed into the trained neural networks.
(4) The resulting investment asset return samples from the neural network are used to derive the

optimal asset allocation based on mean-CVaR principle.
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Figure 3. Process workflow diagram of Economic Factor-Based Predictive Model (EFPM).

The workflow process starts with collecting historical price series in monthly precision for both
macroeconomic factors and investment assets. We then calculate the log-percentage change in time
series for both groups of data, respectively. Log-percentage change of economic factors used to fit a
univariate GARCH(1,1) process to model the time-varying volatility. We use pair copula construction
to model the tail dependence structure and relationships among those factors. A number of simulated
time series are generated for economic factors to combine the time-varying volatility, tail dependence
structure, and sample mean together.

We build a feedforward neural network to take historical log percentage from economic factors as
input and return series from investment assets as output. This neural network will form the mapping
relationship between the factors and investment returns. Data for both input and output are derived
from the same time horizon. This is analogues-to-factor analysis, which builds a regression-based
model to explain the investment returns with a number of fundamental factors. By a similar logic,
this process utilizes the machine-learning technique to depict such potentially nonlinear relationships.
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Simulated log-percentage changes of economic factors are then fed into trained neural network
models to map them into a series of investment asset returns. As the simulation of economic
factors stem from the copula GARCH(1,1) model, the resulting investment returns would inherit
their characteristics of time-varying volatility, dependence structure, and constant mean of the series.
Portfolio optimization system takes the resulting investment returns as the input to derive the optimal
weight to be implemented for the next allocation period. This process is repeated for each of the
investment cycles.

4. Empirical Exploration and Out-of-Sample Test

In this section, we apply Economic Factor-Based Predictive Model (EFPM) to a list of major
economic factors and mutual funds to test the performance of the resulting portfolios on a rolling
out-of-sample basis.

4.1. Data Collecction

To compare different portfolio optimization approaches, we chose six Vanguard index mutual
funds as the underlying investment instruments and 11 major economic indicators. These index funds
range from large-cap and small-cap (based on the company’s market capitalization) equities in the U.S.,
developed and emerging markets, as well as U.S. real estate and fixed income markets (see Table 2).

Table 2. Investment Instruments.

Security Name Security Symbol

Vanguard 500 Index VFINX
Vanguard Small Cap Index NAESX

Vanguard Total Intl Stock Index VGTSX
Vanguard Emerging Mkts Stock Index VEIEX

Vanguard Total Bond Market Index VBMFX
Vanguard Real Estate Index VGSLX

These six funds are all tradeable securities with a low expense ratio and relatively longer price
history, which makes it easier for us to back-test the model. Using Yahoo! Finance, we collected
historical price data for each fund for nearly seventeen years of data between January 2002 and
November 2019. Each data point contains information such as daily opening, high, low, close,
and adjusted close prices. From these data sets, we extracted only the adjusted close prices at the end
of each month and treated them as the proxy of monthly price series. The price histories are plotted in
Figure 4 for each index fund.

Furthermore, we apply 11 major macroeconomic variables (with the same time horizon as the
index funds, with monthly time series data from January 2002 to November 2019) that reflect most
economic activities in the U.S., including money supply, banking, employment rate, gross production,
and prices from different aspects of the economy. These key variables depict a holistic picture of
the current economic environment and may have predictive power regarding the future trend of
investment vehicles. The detailed descriptions of these 11 macroeconomic variables are shown in
Appendix A.
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4.2. Training and Testing Procedure

Following the process diagram in Section 3.2, we define the model training period as a 60-month
interval to learn the optimal weight of six index funds and test out-of-sample data for the following
month. The strategy is to capture the short-term momentum and the relatively longer-term mean
reversion effects. Thus, the data points in the training and out-of-sample testing are selected to create
a balance of meaningful data size, in order to extract such information and appropriate horizons to
capture useful market signals. We tested different training period durations, between 36 months to
180 months, and determined that 60 months’ horizon appears to be a reasonable balance of capturing
the most recent signals while mining a sufficient pool of historical data. Although there are only
60 data points in the training period to fit the neural network and learn the model, the data samples
are displayed in a monthly cycle rather than a daily cycle. (Krämer and Azamo 2007) argued that
upward tendency in estimated persistence of a GARCH(1,1) model is due to an increase in calendar
time, not to an increase in sample size; therefore, increasing time horizon in the training sample has a
better incremental effect of estimating a GARCH(1,1) model than increasing the sample size itself.

This process of 60 months of training and one month out-of-sample testing is repeated on a rolling
basis starting from January 2002 and continuing until the last data point in the sample. For each
training period, we start with normalizing our training data set so that all the data are within a common
range. For this purpose, we utilize min–max normalization method on both the monthly log returns
of the six index funds and the monthly log-percentage change of the 11 macroeconomic variables.
This normalization tends to accelerate the gradient decent algorithm in the neural network fitting
based on (Ioffe and Szegedy 2015).

For each time period, the testing data set is also normalized in the same manner before being
fed into the Economic Factor-Based Predictive Model (EFPM). As described earlier, EFPM is a neural
network-based model that takes an input of 60-month log-percentage change of 11 macroeconomic
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variables and generates return series for six index funds of the same time horizon. In the training period,
the neural network model further splits this 60-month data set into one training set containing 54 data
points to form the model, and the remaining 6-month data that is used to tune the hyperparameter,
such as number of neurons in the hidden layer. To measure the error in predicted output during this
training period, we employ mean squared error (MSE) metric and select the best network structure
that minimizes the MSE,

MSE =
1
n

n∑
i=1

(Predictedi −Actuali)
2 (36)

where Actuali stands for the actual i-th monthly log-percentage change, and Predictedi represents
predicted values given by EFPM.

This relationship between economics variables and index funds is used to transform the simulated
log-percentage change of economic variables into simulated return series. Simulation of log-percentage
change of economic variables is based on the pair copula-GARCH approach discussed earlier.
See Appendix B for sample pair copula constructions fitted using log-percentage change of economic
variables. As the output of this process, there are 5000 simulated log-percentage change data points
generated from this model. The data is fed into the neural network model to generate 5000 simulated
returns data for the six index funds.

Those simulated return series for investment assets are used as input in the Mean-CVaR
optimization to find out the optimal weights of the portfolio for the next month. In the optimization,
we set confidence level parameter β of CVaR at 99%, and the investor’s expected return parameter µ0

is set as the minimum of 10% (annualized return) and the average return of the past 60 months among
the six investment asset classes.

Portfolio performance for the one-month period is recorded, and this process is repeated the
next month using the previous 60 months data again, to construct an optimal portfolio invested for
the following month. The rolling out-of-sample test stops when there is no further data available to
compute portfolio performance using the optimal weights.

Finally, we compare the entire period of out-of-sample performance using EFPM-based strategy
against the three alternative benchmark methods described below,

1. Equally weighted (EW): index funds in the portfolio are simply allocated equally and rebalanced
to equal weights each month.

2. Historical return-based (HRB): historical monthly log returns of the six index funds are computed
directly as inputs to the Mean-CVaR framework. No simulation is performed here.

3. Direct simulation (DS): monthly log returns of the six index funds are simulated by applying
historical data into the pair copula-GARCH framework without utilizing the neural network
framework and information from 11 major economic variables.

4.3. Computational Results and Discussions

With the proposed EFPM model and three benchmarks above, there are a total of 154 months of
out-of-sample returns. Those returns range from February 2007 to November 2019. To compare the
performance for those strategies, we assume $1000 invested at the end of January 2007 to implement
the four strategies and rebalance them monthly based on the optimal weights generated.

The investment performance for the four strategies are shown in Figure 5; Figure 6 shows the
corresponding optimal allocations for EFPM strategy over time.
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Finally, for comparison purposes, we evaluate the performance of the four strategies by looking at
the summary statistics to gauge their returns and risks. The metrics we choose include annualized
return, annualized volatility, Sharpe ratio, maximum draw-down, and 99% CVaR of all four strategies
during the same time period to compare their effectiveness. Results are summarized in Table 3 below:
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Table 3. Summary of Investment Performance of the Four Strategies.

Summary Statistics EFPM HRB DS EW

Annualized Return 7.4% 4.1% 3.4% 3.9%
Annualized Volatility 8.6% 8.3% 7.2% 13.8%

Sharpe Ratio 0.57 0.20 0.13 0.10
Maximum Drawdown −16.4% −34.8% −23.2% −51.5%

Monthly 99% CVaR −9.3% −13.5% −13.0% −15.6%

The results above show that this proposed strategy of embedding the neural network with
economic factors to simulate the investment return did outperform the direct simulation using pair
copula-GARCH framework on the risk-adjusted return basis. This indicates that there is some
explorable information and predictive power in looking at macroeconomic data when simulating
return series for these investment vehicles.

5. Conclusions and Future Work

A large body of research has been focused on the school of GARCH models and the conditional
dependence structure from copulas. After Jondeau et al. proposed to estimate joint distribution by
combining conditional dependency from copulas in the GARCH context in (Jondeau and Rockinger
2006), many researchers have conducted studies utilizing this framework in the field of conditional asset
allocation and risk assessment (Wang et al. 2010) in non-normal settings. Meanwhile, with the uptick
in research and advancement of modeling and computational efficiency within artificial intelligence
and machine learning, these techniques have emerged as a potential tool in analyzing financial market
and optimizing investment strategy. Machine learning in this field has mainly focused on predictability
of market trend ((Sezer et al. 2017) and (Troiano et al. 2018)), risk assessment ((Chen et al. 2016) and
(Kirkos et al. 2007)), portfolio management ((Aggarwal and Aggarwal 2017) and (Heaton et al. 2017)),
and pricing for exotics and cryptocurrency.

In this paper, we propose a simulation-based approach for the portfolio optimization problem under
the Mean-CVaR framework. This paper proposes to merge and fuse together the two well-established
techniques of GARCH framework and machine learning in the application of asset allocation. In order
to nudge simulation of investment return to include more market sentiment from a macroeconomics
prospective, we build neural networks to model the relationship between macroeconomic time series
and the investment asset returns. The time series of economic variables are simulated using pairwise
copula-GARCH framework to capture both effects of time-varying volatility and the dependence
structure based on historical data. Simulations are then translated through the neural network model
to find return series of the final investment assets. Those return series are used to derive optimal
allocation via the Mean-CVaR optimization approach. The out-of-sample test result for this model
outperformed all the benchmarks created without embedding the macroeconomic information through
the neural network.

As our proposed strategy assumes that portfolios incur no transaction cost and employ a
“long-only” strategy, future research should consider slippage and trading costs and possibly adopt
short-selling and leveraging strategies to reflect real-world scenarios. Also, since it is likely that
there exists a causal relationship between the selected macroeconomic variables and index funds’
returns, rather than building the deterministic predictive model utilizing neural network for the
selected index funds, future researchers may employ a Bayesian modeling framework (for example,
the Black—Litterman model proposed by (Black and Litterman 1992), or its modified version with
the Bayesian framework proposed by (Andrei and Hsu 2018)) to build a stochastic predictive model.
This approach may pose some advantages over the former one by incorporating the uncertainty
information related to economic factors into the model. As a result, it could lead to better asset
allocation for portfolios in a dynamic financial market environment.
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With access to various deep neural network and other machine-learning techniques focusing
specifically on time series data such as RNN and LSTM, future research can leverage such advanced
methods to expand the input layer of the universe of macroeconomic factors and the output layer of
investment asset classes, as well as build a deeper hidden layer to search for more trading opportunities
for a dynamically managed portfolio.
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Appendix A Description of 11 Major Economic Indicators

In this paper, we selected 11 major economic indicators from the Economic Research at Federal
Reserve Bank of St. Louis. The Table A1 shows the detailed description for each indicator:

Table A1. List of 11 major macro-economic variables and their descriptions.

Macroeconomic Variables Description

University of Michigan: Inflation Expectation1 Median expected price change next 12 months.

Consumer Price Index for All Urban Consumers2 Average monthly change in the price for goods and services between any two
time periods.

S&P/Case-Shiller U.S. National Home Price Index3 A leading measure of U.S. residential real estate prices

Crude Oil Prices: West Texas Intermediate (WTI)4 Serves as a reference for pricing a number of other crude streams.

Producer Price Index (PPI) for All Commodities5 Measures the average change over time in the selling prices received by
domestic producers

Import Price Index (End Use): All commodities6 Contains data on changes in the prices of goods and services traded between the
U.S. and other countries

Export Price Index (End Use): All commodities7 Contains data on changes in the prices of goods and services traded between the
U.S. and other countries

Trade Weighted U.S. Dollar Index8 A weighted average of the foreign exchange value of the U.S. dollar against the
currencies of major U.S. trading partners.

3 Month Treasury Bill: Secondary Market Rate9 Yields in percent per annum.

Personal Saving Rate10 Percentage of disposable personal income (DPI) as the ratio of personal saving
to DPI.

1-Month London Interbank Offered Rate (LIBOR)11 Average interest rate at which leading banks borrow funds from other banks in
the London market.

1 https://fred.stlouisfed.org/series/MICH.
2 https://fred.stlouisfed.org/series/CPIAUCSL.
3 https://fred.stlouisfed.org/series/CSUSHPISA.
4 https://fred.stlouisfed.org/series/MCOILWTICO.
5 https://fred.stlouisfed.org/series/PPIACO.
6 https://fred.stlouisfed.org/series/IR.
7 https://fred.stlouisfed.org/series/IQ.
8 https://fred.stlouisfed.org/series/TWEXBMTH.
9 https://fred.stlouisfed.org/series/TB3MS.
10 https://fred.stlouisfed.org/series/PSAVERT.
11 https://fred.stlouisfed.org/series/USD1MTD156N.

https://fred.stlouisfed.org/series/MICH
https://fred.stlouisfed.org/series/CPIAUCSL
https://fred.stlouisfed.org/series/CSUSHPISA
https://fred.stlouisfed.org/series/MCOILWTICO
https://fred.stlouisfed.org/series/PPIACO
https://fred.stlouisfed.org/series/IR
https://fred.stlouisfed.org/series/IQ
https://fred.stlouisfed.org/series/TWEXBMTH
https://fred.stlouisfed.org/series/TB3MS
https://fred.stlouisfed.org/series/PSAVERT
https://fred.stlouisfed.org/series/USD1MTD156N
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Appendix B Sample Pair Copula Constructions

When simulating log-percentage changes from 11 major economic variables, we use pair copula
construction to discover the relationship among those variables. Figure A1 is a sample of pair copula
trees generated using 60 monthly time series from February 2002 to January 2007.
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