
Journal of

Risk and Financial
Management

Review

Neural Network Models for Empirical Finance †

Hector F. Calvo-Pardo *, Tullio Mancini and Jose Olmo

Department of Economics, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK;
T.Mancini@soton.ac.uk (T.M.); J.B.Olmo@soton.ac.uk (J.O.)
* Correspondence: calvo@soton.ac.uk
† Tullio Mancini acknowledges financial support from the University of Southampton Presidential Scholarship

and Jose Olmo from ‘Fundación Agencia Aragonesa para la Investigación y el Desarrollo’.

Received: 27 September 2020; Accepted: 26 October 2020; Published: 30 October 2020
����������
�������

Abstract: This paper presents an overview of the procedures that are involved in prediction with
machine learning models with special emphasis on deep learning. We study suitable objective
functions for prediction in high-dimensional settings and discuss the role of regularization methods
in order to alleviate the problem of overfitting. We also review other features of machine learning
methods, such as the selection of hyperparameters, the role of the architecture of a deep neural
network for model prediction, or the importance of using different optimization routines for model
selection. The review also considers the issue of model uncertainty and presents state-of-the-art
methods for constructing prediction intervals using ensemble methods, such as bootstrap and Monte
Carlo dropout. These methods are illustrated in an out-of-sample empirical forecasting exercise that
compares the performance of machine learning methods against conventional time series models for
different financial indices. These results are confirmed in an asset allocation context.

Keywords: machine learning; neural networks; dropout methods; LASSO techniques;
financial modeling

1. Introduction

Statistical science has changed a great deal in the past ten years, and it is continuing to change,
in response to technological advances in science and industry. The world is awash with big and
complicated data, and researchers are trying to make sense out of it. While traditionally scientists
fit a few statistical models by hand, they now use sophisticated computational tools in order to
search through a large number of models, looking for meaningful patterns and accurate predictions.
Standard statistical models have been extended in many ways. Models now allow for more predictors
than observations, accommodating nonlinear relationships, interactions between the predictors, and,
in particular, the presence of strong correlations (multicollinearity). One of the main advantages
of these novel models based on machine learning techniques is the gain in predictive performance
when compared to standard statistical models and the ease of manipulation due to the availability of
toolboxes and off-the-shelf routines that make their implementation straightforward, even in large
dimensions that are characterized by many covariates and increasingly complex datasets.

Nowadays, machine learning (ML) technology is widespread: from web searches to content
filtering on social networks to recommendations on e-commerce websites. ML identifies objects in
images, transcribes speech into text, matches news items, posts or products with users’ interests, and
selects the relevant results of the search, making use of a class of techniques, called deep learning. Deep
learning allows for computational models that are composed of multiple processing layers to learn
representations of big complex datasets, uncovering intricate structure within them. These methods
have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object
detection, and many other domains, such as drug discovery and genomics, being increasingly present in

J. Risk Financial Manag. 2020, 13, 265; doi:10.3390/jrfm13110265 www.mdpi.com/journal/jrfm

http://www.mdpi.com/journal/jrfm
http://www.mdpi.com
http://www.mdpi.com/1911-8074/13/11/265?type=check_update&version=1
http://dx.doi.org/10.3390/jrfm13110265
http://www.mdpi.com/journal/jrfm

J. Risk Financial Manag. 2020, 13, 265 2 of 22

consumer products, such as cameras, smartphones, or computerized personal assistants. For example,
Apple’s Siri, Amazon’s Alexa, Google Now, or Microsoft’s Cortana employ deep neural networks to
recognize, understand, and answer human questions.

A defining characteristic of machine learning models is its ability to accommodate a large set
of potential predictor variables and different functional forms. The definition of machine learning is
often context-specific. We use the term to describe a diverse collection of high-dimensional models for
statistical prediction, combined with regularization methods for model selection that is based on a
variety of penalty functions. The development of algorithms to implement the optimization procedures
in an efficient manner is also an intrinsic part of this novel methodology. Machine learning was initially
developed for prediction; this is particularly relevant in empirical finance, in which the object of interest
is usually the prediction of an asset return or its conditional volatility. The literature on machine
learning for empirical finance modeling has grown enormously in recent years, see, for example,
Chinco et al. (2019). These authors apply the Least Absolute Shrinkage and Selection Operator (lasso)
to make rolling one-minute-ahead return forecasts using the entire cross-section of lagged returns
as candidate predictors. The lasso increases both the out-of-sample fit and forecast-implied Sharpe
ratios. This out-of-sample success comes from identifying predictors that are unexpected, short-lived,
and sparse. Another recent influential study on empirical finance modeling is Gu et al. (2020).
These authors perform a comparative analysis of machine learning methods for measuring asset risk
premiums. These authors study a set of candidate models that include linear regression, generalized
linear models with penalization, dimension reduction via principal components regression and partial
least squares, and compare these methods against machine learning methods, such as regression
trees (including boosted trees and random forests) and neural networks. This study demonstrates the
presence of large economic gains to investors while using forecasts from regression trees and neural
networks, in some cases doubling the performance of leading regression-based strategies from the
literature. A more general treatment of the topic can be found in Friedman (1994), which provides
an early unifying review across the relevant disciplines (applied mathematics, statistics, engineering,
artificial intelligence, and connectionism); LeCun et al. (2015) that provides a general overview of deep
learning, and Goodfellow et al. (2016), which provides a thorough textbook treatment.

Our aim in this paper is to present an overview of machine learning methods that complements the
work of Gu et al. (2020). Rather than introducing the main features of the above methods for prediction
in high-dimensional settings, we focus on feedforward neural networks and, in particular, in deep
learning models. Our objective is to explain, in detail, the optimization problem that characterizes
the prediction in machine learning models. Model overfit is an important feature of these models,
due to the estimation of a large number of parameters. To correct for this, regularization methods are
introduced and their properties discussed at length. We distinguish different types of penalty functions
in a mean square prediction error setting and discuss the properties of methods, such as lasso, elastic
net, or ridge regressions. We also pay particular emphasis to the role of the tuning parameters that
determine the quality of the predictions, such as the length and depth of a neural network, the constant
characterizing the contribution of the penalty function to the optimization problem, and the effect of
other hyperparameters that are fine tuned through cross-validation, model dropout (e.g., Smyl 2020),
and other optimization methods. In contrast to Gu et al. (2020), our overview is more focused on the
understanding of the underlying mechanisms necessary to implement an artificial neural network. In
this overview, we are also concerned with recent topics that have gained significant attention in the
deep learning literature, such as the optimality of the architecture (e.g., Calvo-Pardo et al. 2020) or the
measurement of the uncertainty around model predictions. We discuss, in some detail, the choice of
bootstrap methods, see Tibshirani (1996) for a simulation-based review of the topic, and the Monte
Carlo dropout of Smyl (2020).

Finally, in the same spirit of Chinco et al. (2019) and, more specifically, Gu et al. (2020), we also
propose an application of these methods that illustrates its relevance in empirical finance. Whereas
these authors highlight the advantages of using regression trees and neural networks for asset pricing

J. Risk Financial Manag. 2020, 13, 265 3 of 22

(measuring the risk premium on risky assets) as compared to linear regression and techniques that
are based on dimension reduction, our empirical exercise performs a comparative study against
conventional time series models that are widely used for empirical finance modeling. In particular,
we present a forecasting exercise of the conditional mean and volatility of asset returns for three
U.S. financial indices. Our objective in this section is twofold. First, we aim to assess the predictive
performance of a modern deep neural network model and then compare it against a traditional time
series model that carries out a transitory-permanent decomposition of the asset price. The permanent
component captures the trend of the log-price and the transitory component models the log-returns
on the financial indices. The transitory component also accommodates the presence of conditional
heteroscedasticity by fitting a GARCH(1,1) model. The statistical comparison in predictive performance
is done by implementing a Diebold and Mariano (1995) test of predictive accuracy. The results
of the empirical analysis provide overwhelming evidence in favor of the neural network model
for the three financial indices. Second, as in Gu et al. (2020), we add economic significance to
the comparison. To do this, we compare the Sharpe ratios between optimal portfolios that were
constructed from a combination of the three financial indices. The optimal combination is obtained
while using Markowitz’s (1952) mean-variance and minimum-variance portfolios as the investor’s
objective functions. Portfolio performance is done estimating an out-of-sample Sharpe ratio. The results
confirm the above findings on the outperformance of machine learning models over sophisticated time
series models in terms of economic performance.

The paper is structured as follows. Section 2 discusses the choice of suitable objective functions in
machine learning problems. Section 3 presents recent advances in deep learning and focuses on deep
neural networks. Section 4 studies the role of uncertainty in machine learning models and discusses
recent advances on the analysis of uncertainty while using these novel procedures. Section 5 presents
an empirical comparative study of these methods for modeling the conditional mean and volatility of
financial returns for several financial indices. Section 6 summarizes the contributions of the study.

2. The Objective Function in Machine Learning Problems—Minimization Versus Regularization

This section lays out the optimization problem that is common in the machine learning
literature. Machine learning describes a diverse collection of high-dimensional models for statistical
prediction, combined with regularization methods for model selection and mitigation of overfitting.
The high-dimensional nature of machine learning enhances the flexibility of the methodology relative
to more traditional econometric prediction techniques. However, with enhanced flexibility comes a
higher propensity to overfitting the data. Therefore, it is necessary to consider objective functions that
penalize the excessive parametrization of the model. The final goal of machine learning methods is to
achieve an approximate optimal specification with a manageable computational cost. In this section,
we describe candidate optimization functions for supervised and unsupervised machine learning
problems and then discuss the role of regularization.

2.1. Unsupervised Learning

ML algorithms can be broadly categorized as unsupervised or supervised. Unsupervised learning
algorithms aim at uncovering useful properties of the structure of the input dataset, i.e., there is no
y, and given that the true data generating process (DGP) pdata(X) is unknown, the goal is to learn
pdata(X), or some useful properties of it, from a random sample of i = 1...N realizations of input
data only, {Xi}, on the basis of which the empirical distribution p̂data(X) obtains. Letting pmodel(X; θ)

be a parametric family of probability distributions indexed by θ that estimates the unknown true
pdata(X), unsupervised learning corresponds to finding the parameter vector θ that minimizes the
dissimilarity/distance between pmodel(X; θ) and p̂data(X):

θML ∈ arg min
θ

DKL(p̂data||pmodel) ≡ arg min
θ

EX∼ p̂data
[log p̂data(X)− log pmodel(X; θ)] (1)

J. Risk Financial Manag. 2020, 13, 265 4 of 22

noticing that θML is the maximum likelihood estimaton and DKL(p̂data||pmodel) denotes the
Kullback–Leibler divergence. To obtain this, we note that

θML = arg max
θ

pmodel(X; θ) (2)

and pmodel(X; θ) = ∏N
i=1 pmodel(Xi; θ), which, after taking logs and dividing by N, is equivalent to

θML = arg max
θ

1
N ∑N

i=1 log pmodel(Xi; θ) = arg max
θ

EX∼ p̂data
[log pmodel(X; θ)],

by the analogy principle.
The cross-entropy in the above expression is simply−EX∼ p̂data

[log pmodel(X; θ)]: since log p̂data(X)
does not depend on θ, minimizing DKL is equivalent to minimizing the cross-entropy, or ‘empirical
risk minimization’, e.g., the mean-squared error is the cross-entropy between the empirical distribution
and a Gaussian model. In machine learning (ML), the cross-entropy is called ‘cost function’, J(θ),
while, in statistics, it is called the ‘loss function’, l(θ) ≡ L[p̂data(X), pmodel(X; θ)]. Examples of popular
unsupervised deep learning models, not necessarily parametric, are k-means clustering, auto-encoders,
and generative adversarial networks (GANs).

2.2. Supervised Learning

Supervised learning methods aim to develop a computational relationship (formula/algorithm)
between P inputs (predictors, features, explanatory or independent variables), X = {...xp...}, and
K outputs (dependent or response variables), y = {...yk...}, for determining/predicting/estimating
values for y, given only the values of X, in the presence of unobserved/uncontrolled quantities
z = {...zu...} :

yk = gk(...xp...; ...zu...), ∀k,

where gk(·) denotes a functional form relating the input observed variables, the unobserved variables
and the dependent variables. In order to reflect the uncertainty that is associated with the unobserved
inputs z, the above relationship is replaced by a statistical model:

yk = fk(...xp...) + εk : εk ∼ Fε(εk),E[εk|...xp...] = 0, ∀k.

By construction, this model satisfies that Eε[yk|...xp...] = fk(...xp...), with Eε[·|=] denoting the
conditional expectation evaluated under the distribution function of the error term conditional on
the information set =. For simplicity, we drop the k subscript, which indicates that we are assuming
that there are separate models for each output k, ignoring that they depend on the same set of
input variables:

y = f (X) + ε : f (X) = Eε[y|X] (3)

i.e., to the extent that the error term ε is a random variable, the output variable y becomes a random
variable.1 Specifying a set of observed input values X, specifies a distribution of output values, y, the
mean of which is the target function f (X). The input and output variables can be real or categorical,
but categories can be always converted into ‘indicators’ or ‘dummies’ that are real-valued.

More specifically, supervised learning algorithms aim to obtain a useful approximation f̂ (X) to
the true (unknown) ‘target’ function f (X) in (3) by modifying (under constraints) the input/output

1 In practice, strategies that treat the K outputs as a joint system often improve accuracy.

J. Risk Financial Manag. 2020, 13, 265 5 of 22

relationship f̂ (X) that it produces, in response to differences {yi − ŷi} (errors) between the predicted
ŷi = f̂ (Xi) and real yi system outputs:

f̂ (X) ∈ arg min
g(X)

1
N ∑N

i=1 L[yi, g(Xi)] (4)

where L(·, ·) is the ‘loss function’, or a measure of distance (error) between yi and ŷi = f̂ (Xi). Common
examples are L[yi, ŷi] = |yi − ŷi| which plugged into (4) corresponds to selecting the median, Med,
of the conditional distribution. More formally, f̂ (X) = Medy,X∼ p̂data

[y|X] that minimizes the Mean
Absolute Error (MAE), or L[yi, ŷi] = [yi − ŷi]

2, which selects the f̂ (X) = Ey,X∼ p̂data
[y|X] that minimizes

the Mean Squared Error (MSE) in (4). Alternatively stated, consider a random sample of i = 1...N
realizations, {yi, Xi}, constituting the empirical distribution p̂data(y, X), the goal of supervised learning
is to learn to predict y from X, estimating p(y|X). Letting pmodel(y|X; θ) be a parametric family of
probability distributions that are indexed by θ that estimates the unknown true p(y|X), supervised
learning corresponds to finding the parameter vector θ that minimizes the dissimilarity/distance
between pmodel(y|X; θ) and p̂data(y|X):

θML ∈ arg min
θ

DKL(p̂data||pmodel) ≡ arg min
θ

Ey,X∼ p̂data
[log p̂data(y|X)− log pmodel(y|X; θ)] (5)

and again, solving (5) is equivalent to cross-entropy minimization,

min
θ
−Ey,X∼ p̂data

log pmodel(y|X; θ).

As an example, notice that, if we set pmodel(y|X; θ) = N(g(X; θ), σ2) in (5), with N(·, ·) a Normal
distribution, we obtain:

min
θ
−Ey,X∼ p̂data

[log pmodel(y|X; θ)] = min
θ
− 1

N ∑N
i=1 log pmodel(yi|Xi; θ)

= min
θ

log(σ[2π])1/2 +
[
2σ2
]−1 1

N ∑N
i=1[yi − g(Xi; θ)]2︸ ︷︷ ︸
≡MSE(θ)


and therefore, cross-entropy minimization corresponds to mean squared error (MSE) minimization
when the model is hypothesized to be Gaussian with mean g(X; θ). In addition, this example shows that
optimally choosing the parameter vector θ̂ = θML, which characterizes f̂ (X) = g(X; θ̂), is equivalent
to solving (4) when L[yi, ŷi] = [yi − ŷi]

2:

f̂ (X) ∈ arg min
g(X)

Ey,X∼ p̂data
[y− g(X)]2 = arg min

g(X)

1
N ∑N

i=1[yi − g(Xi)]
2

Therefore, approximating/learning the unknown function f (X) corresponds to estimating the
unknown true conditional probability p(y|X), once we conjecture a parameterization pmodel(y|X; θ)

for it. Popular supervised deep learning models, which are not necessarily parametric, are support
vector machines (SVMs) based on kernel methods, k-nearest neighbor regression, or decision trees.

Notice that (4) is the available sample {yi, Xi} analog to solving for the global prediction error
in (3):

f̂ ∈ arg min
g(X)

∫
{EεL[f (X) + ε, g(X)]} pdata(X)dX (6)

J. Risk Financial Manag. 2020, 13, 265 6 of 22

where pdata(X) is the unknown true data generating process. As an example, replace
L[yi, ŷi] = [yi − ŷi]

2 in (6) in order to obtain the standard expressions for the bias-variance trade-off in
the Mean Squared Error (MSE):

f̂ ∈ arg min
g(X)

∫ {
Eε[f (X) + ε− g(X)]2

}
pdata(X)dX

= arg ming(X)

∫
[f (X)− g(X)]2 pdata(X)dX︸ ︷︷ ︸

MSE(f̂)

+
∫ {

Eε[ε
2|X]

}
pdata(X)dX︸ ︷︷ ︸

Variance of the noise ε

where the MSE(f̂) denotes the MSE of f̂ (X) averaged over all training samples of size N that could be
realized from the system with probabilities that are governed by pdata(X) and Fε(ε). It can be further
decomposed as:

MSE(f̂) ≡
∫

MSE[f̂ (X)]pdata(X)dX =
∫

Var[f̂ (X)]pdata(X)dX+
∫

Bias2[f̂ (X)]pdata(X)dX

where Bias2[f̂ (X)] = { f (X) − Eε[f̂ (X)]}2 measures the square of the difference between the target
function f (X) and the average approximation value at a particular sample X, Eε[f̂ (X)].

Problem (6) defines the target performance measure for prediction in supervised learning/function
approximation: as future new input only observations become available, collected in a prediction or
test sample ’>’, {yi, Xi}N>

i=1, we want to predict (estimate) a likely output value using f̂ (Xi), such that
ŷi = f̂ (Xi), where f̂ (X) was obtained from (4) exploiting the available sample, {yi, Xi}N

i=1. Computing

then 1
N> ∑N>

i=1 L[yi, ŷi] allows for the researcher to evaluate the out-of-sample performance of the

algorithm/function approximation f̂ (X), showing that accurate approximation and future prediction
are one and the same objective.2 As future data is unavailable, the standard practice is to divide
the available sample {yi, Xi}N

i=1 into two disjoint parts: a training/learning sample ’x’ {yi, Xi}Nx

i=1

in (4) where f̂ (X) obtains, and a prediction/test sample {yi, Xi}N>
i=1 where the out-of-sample predictive

performance of f̂ (X) is evaluated, so that N = Nx + N>.
More complex forms of the unknown target function f (X) naturally call for bigger training

samples Nx in order to obtain better representations/approximations f̂ (X). However, this comes at
the expense of increasing the chances of f̂ (X) ‘overfitting’. Overfitting happens when a model that
represents the training data very well represents very poorly unseen data N> in the ‘prediction/test
phase’.3 The reason for overfitting lies on the ‘curse-of-dimensionality’ that the complexity of the

2 Yet another goal of supervised learning is interpretation, as opposed to prediction: there, interest lies in the structural
form of the approximating function that was obtained from (4) in order to understand the mechanism that produced the
data. The identification of the input variables that are most relevant to explain the variation in output, or the nature of
that dependence and how it changes with changes in other inputs, are instead the primary objectives, and the aim is to
understand how the system works.

3 An intuitive way to understand why is as follows. Suppose that we have a sample of size N with which we are trying to
approximate a function of N variables f (x1, ..., xN). If Kolmogorov’s conjecture was right, then we could instead approximate
a degree N polynomial function of just one variable, say x1, f (x1, ..., xN) = g(x1) = ∑N

i=1 aixi
1 and problem (4) would reduce

to a parametric least squares (OLS) solution:

f̂ (X) = f (X;â) ∈ arg min
{ai}

1
N ∑N

i=1[yi −∑N
i=1 aixi

1]
2

Because there are N normal equations (one for each) in N unknowns (sample observations), we would obtain a unique
solution â, corresponding to a ‘perfect fit’ of the sample/training data. If then one more sample observation was collected,
N> = {yN+1, xN+1

1 }, and we wanted to test the predictive ability of f̂ (X) = ∑N
i=1 âixi

1, almost with probability one
yN+1 6= ŷN+1 = ∑N

i=1 âi(xN+1
1)i , i.e., the prediction error [yN+1 − ŷN+1]2 will be very big, indicating ‘overfitting’. In big

J. Risk Financial Manag. 2020, 13, 265 7 of 22

unknown target function creates: as the number of input variables P upon which f (X) depends
increases, the necessary sample size for accurately approximating f (X) grows exponentially, i.e., at a
rate N1/P, rendering all training samples very sparsely populated. Note that this is the case, even if we
set ε = 0 in (3), converting (4) into an interpolation problem, i.e. reducing the MSPE to an MSE-only
problem still requires a large enough training sample for the approximation to be accurate.

Because Nx is finite, problem (4) does not have a unique solution4. Therefore, one must restrict the
set of admissible functions to a smaller set G than the set of all possible functions g(X). To see the effect
of restricting the class of admissible functions in (4), denote, by f ∗(X) ∈ arg min

g(X)
1

N> ∑N>
i=1 L[yi, g(Xi)]

and by f ∗G(X) ∈ arg min
g(X)∈G

1
N> ∑N>

i=1 L[yi, g(Xi)] the best approximation in the unrestricted and restricted

classes of functions, respectively, both in terms of out-of-sample performance, N>. The difference in
out-of-sample performance between the solution from (4) and f ∗(X) (‘excess test error’ E) can then be
decomposed, as follows:

E ≡ 1
N>

∑N>
i=1 L[yi, f̂ (Xi)]− 1

N> ∑N>
i=1 L[yi, f ∗(Xi)]

=
1

N>
∑N>

i=1 {L[yi, f̂ (Xi)]−L[yi, f ∗G(Xi)]}︸ ︷︷ ︸
Estimation error

+ {L[yi, f ∗G(Xi)]−L[yi, f ∗(Xi)]}︸ ︷︷ ︸
Approximation error

.

The approximation error increases the more restrictive the class of functions G is, unless the true
unknown target function f (X) happens to belong to G, in which case f ∗G(X) = f ∗(X). The estimation
error depends on how good the algorithm/approximation f̂ (X) is (1st term) as well as on how well
the selected class of functions G can best represent the complexity of the unknown target function f (X)
(second term).

’Universal approximators’ for the class of all continuous target functions f (X) are classes of
functions G = {g(X) : g(X) = ∑Z

z=1 azb(X|γz), γz ∈ Rq} that could exactly represent f (X) if the
sample size was not finite, i.e., f (X) = ∑∞

z=1 a∗z b(X|γz) for some set of expansion coefficient values
{a∗z}∞

z=1, and that nonetheless approximate well with a small number Z of coefficients. Therefore,
universal approximators minimize the approximation error and estimation error, minimizing the
out-of-sample performance difference E between the solution from (4) and f ∗(X), i.e., if the training
sample size was infinite, lim

Nx→∞
f̂ (X) = f (X; θ̂) = ∑∞

z=1 âzb(X|γ̂z) = ∑∞
z=1 a∗z b(X|γz) = f (X) with

θ̂ = θ̂ML = {âz, γ̂z}∞
z=1, and therefore, lim

N>→∞

1
N> ∑N>

i=1 L[yi, f̂ (Xi)] = 0 (’Oracle property’). However,

because the training sample size is finite, Z < ∞ and 1
N> ∑N>

i=1 L[yi, f̂ (Xi)] > 0. Choosing Z corresponds
then to ‘model selection’: as entries {az}Z

z=1 are added, the approximation is able to better fit the training
data, increasing the variance component of (6), but decreasing the bias. The bias decreases because
adding entries enlarges the function space spanned by the approximation f̂ (X). With a finite sample
size, the goal is to choose a small Z that keeps the variance and bias small, so that (6) can be expected
to remain small.

Examples of function classes that are universal approximators beyond feed-forward neural
networks (described below), are radial basis functions, tensor product methods, and regression trees.
Regression trees and their extension, Random Forests, are ‘tree-structured’ methods that are commonly
used for flexibly estimating regression functions where out-of-sample performance is important.
’Tree-structured’ methods have dictionaries of the form {1{X∈R}}R, where 1{.} is an indicator function,

data problems, where P > N (or is close to N), overfitting means that the approximation obtained from (4) will almost
surely perform poorly in unseen data, i.e., in (6).

4 If Nx = +∞ (and with an infinitely fast computer), then we would directly compute f (X) from (3) predicting the mean of y
for each value of X.

J. Risk Financial Manag. 2020, 13, 265 8 of 22

and R represents subregions of the space of all possible values of X ∈ RP, R ⊆ RP. The most common
example is 1{X∈R} = ∏P

p=1 1{up≤xp≤vp}, with the 2P coefficients {up, vp}P
p=1 representing the respective

lower and upper limits of the region (hyper-rectangle) on each input xp axis. Usually, only Z disjoint
regions are chosen, {Rz}Z

z=1, so that X ∈ Rz =⇒ f̂ (X) = az, meaning that X in the same region have the
same ‘approximation’ value az (with an obvious abuse of notation, but with a similar interpretation).
Recursive partitioning tree-structured methods are also universal approximators, in the sense defined
previously, i.e., f̂ (X) = ∑∞

z=1 a∗z 1{X∈Rz} = f (X). Choosing the optimal number of regions Z is a
formidable combinatorial optimization problem, but recursive partitioning is an approximate solution
when employing greedy optimization strategies. This effectively results in sequentially splitting
the initial sample {yi, Xi}N

i=1, starting with the single covariate xp that minimizes the mean-squared
error of the resulting subsamples (or leaves). When considering one different covariate at a time, the
mean-squared error is therefore sequentially reduced. However, too many subsamples (a very deep
tree) would correspond to a very large Z, which risks overfitting. Therefore, in practice, a very deep
tree is estimated and then pruned (or regularized) to a more sparse tree, using cross-validation to select
the optimal depth.5

2.3. Regularization Methods

In general, the choice of the set of admissible functions G is based on considerations outside the
data and it is usually done by the choice of a learning method.6 Choosing a learning method can be
modeled as adding a penalty term λΩ[g(X)] to restrict solutions to (4):

f̂ (X; λ) ∈ arg min
g(X)

1
Nx ∑Nx

i=1 L[yi, g(Xi)]+λΩ[g(X)] (7)

where λ (‘regularization parameter’) modulates the strength of the penalty functional Ω[·] over all
possible functions g(X). The choice of a penalty functional is made on the basis of ‘outside the data
information’ about the unknown target f (X), e.g., on the basis of a prior over the class of models g(X),
Pr[g(X)]. A natural choice for f̂ (X) would then be the function that is most probable given the data:

f̂ (X) ∈ arg max
g(X)

Pr[g(X)|{yi, Xi}] (8)

which is known as maximum a posteriori probability (MAP) estimate. According to Bayes’ theorem,
the probability of a model given the training data is proportional to the likelihood that the training
data have been generated by the model times the probability of the model:

Pr[g(X)|{yi, Xi}] ∼Pr[{yi, Xi}|g(X)]Pr[g(X)], (9)

If Pr[{yi, Xi}|g(X)] = N(0, σ2) then (3) implies that

Pr[{yi, Xi}|g(X)] =Pr[{Xi}]∏Nx

i=1(2πσ)−1 exp{−ε2
i /2σ2}

with εi = yi − g(Xi). Substituting the above expression into (9), taking logs and discarding terms not
involving g(X) yields an equivalent expression to (8):

f̂ (X) ∈ arg min
g(X)

1
σ2 ∑Nx

i=1[yi − g(Xi)]
2−2 log Pr[g(X)]

5 See Friedman (1994) or Athey and Imbens (2019) for further details.
6 The class of functions g(X) = ∑M

m=1 amb(X|γm), γm ∈ Rq are commonly known as ‘dictionaries’. The choice of a learning
method selects a particular dictionary. Examples of dictionaries that are universal approximators are feed-forward
neural networks, radial basis functions, recursive partitioning tree-structured methods, and tensor product methods.
See Friedman (1994) for additional details.

J. Risk Financial Manag. 2020, 13, 265 9 of 22

that coincides with (7) if L(·, ·) is the quadratic loss function and λΩ[g(X)] = −2σ2 log Pr[g(X)].
The quantity λΩ[g(X)] naturally captures that reductions in the noise variance σ2 lead to increasing
weight on the training data part Pr[{yi, Xi}|g(X)] in determining the approximation f̂ (X), relative to
the prior Pr[g(X)]. For example, restricting g(X) ∈ G, as above, can be achieved by setting Ω[g(X)] =
H{bias2[g(X)]} with H{h} = 0 · 1{h=0} + ∞ · 1{h 6=0} (with the convention that ∞ · 0 = 0), since, when
h = 0 = bias2[g(X)] ⇔ g(X; θ̂) = ∑Z

z=1 âzb(X|γ̂z), i.e., learning f̂ (X; λ) in (4) reduces to parameter
learning, f̂ (X; λ) = g(X; θ̂, λ),where θ = {az, γz}Z

z=1.
Additional parametric or non-parametric penalty terms can be added to (7), with the result

of further restricting the solutions in the approximation subspace of G that respect that particular
penalty. By the addition of a penalty term (or ‘regularization’), the aim is to improve the out-of-sample
performance of the approximation f̂ (X; λ), reducing its chances to ‘overfit’, without affecting its
training error. Non-parametric penalties can be of the form Ω[g(X)] =

∫
|Dg(X)|2dX, where, for

example, |Dg(X)|2 = ∑n
j=1(

∂g
∂xj

)2 is the norm of the gradient of the functions in the class, with larger
values of λ penalizing functions that oscillate more (i.e., that are ‘less smooth’).

Parametric penalties would, instead, penalize functions g(X) not in a particular parametric family
k(X|θ). That is, g(X) /∈ {k(X|θ), θ ∈ Rq} =⇒ Ω[g(X)] = ∞, transforming (4) into an equivalent
parameter estimation problem:

θ̂λ ∈ arg min
θ

1
Nx ∑Nx

i=1 L[yi, k(Xi|θ)] + λv[θ] (10)

where the penalty function v[θ] admits different forms that are widely used in the recent ML literature:
(i) ‘ridge’ (L2 regularization): v[θ] = ∑

q
j=1 θ2

j , penalizing approximations with large parameter values7;

(ii) ‘subset selection’: v[θ] = ∑
q
j=1 1{θj 6=0}, which penalizes approximations with a large number

of parameters (requiring combinatorial optimization); and, (iii) ‘bridge’: vv[θ] = ∑
q
j=1 |θj|v, which

coincides with ’ridge’ when v = 2 and it is a continuous approximation of the subset selection penalty
as v→ 0. When v = 1, L1 regularization obtains, akin to the ‘least absolute shrinkage and selection

operator’, popularly known as LASSO; (iv) ‘weight decay’: vw[θ] = ∑
q
j=1

(θj/w)2

1+(θj/w)2 approaches ‘ridge’

as w→ ∞ and subset selection as w→ 0. Smaller values of v and w privilege approximations with a
small number of parameters. (v) ’(Stochastic) Gradient descent’: v[θ] = 1

Nx ∑Nx

i=1 L[yi, k(Xi|θ)],, which
penalizes ‘paths’ that do not follow the ‘steepest descent’, Oθv[θ] = 1

Nx ∑Nx

i=1 OθL[yi, k(Xi|θ)], when
searching for the value θ̂λ that minimizes (10) with f̂ (X; λ) = k(X|θ̂), i.e. a high value of λ privileges
’τ−paths’ θτ+1 = θτ − εOθv[θτ] that reach θ̂λ taking the least possible number of steps τ, each of
which depends on ε or ’learning rate’. Because ε governs the strength of the gradient Oθv[θτ] in the
updating of θτ , choosing λ is equivalent to the choice of ε, a free hyperparameter to be ‘fine tuned’ or
optimized during training.

When instead of using all available Nx observations in the training sample, we randomly
subsample from {yi, Xi} and form a ‘minibatch’ with B < Nx observations, v[θ] = 1

B ∑B
i=1 L[yi, k(Xi|θ)]

is called a ‘stochastic gradient descent (SGD) penalty’. SGD can be combined with ‘momentum’,
where the size of the updating step depends on how large an exponentially decaying moving
average sequence of past gradients is, α : θτ+1 = θτ − ε

1−αOθv[θτ]. Momentum then adds another
hyperparameter α, with larger values of α ∈ (0, 1) corresponding to a higher reliance on previous
gradients, leading to a larger step size when updating. Current optimization methods, like AdaGrad,
RMSProp, or Adam, supplement SGD (with or without ‘momentum’) to allow the learning rate ε to

7 ‘Early stopping’ the number of training iterations (‘epochs’) over the learning sample once the out-of-sample performance of
the approximation starts to increase, can be shown to be equivalent to L2 regularization (Goodfellow et al. 2016). Similarly,
‘dropout’ when applied to neural network (NN) methods, has been shown to be equivalent to L2 regularization with
a penalty strength parameter λ that is inversely proportional to the precision of the prior of a deep Gaussian process
characterizing the NN parameters (Gal and Ghahramani 2016).

J. Risk Financial Manag. 2020, 13, 265 10 of 22

‘adapt’, shrinking or expanding according to the entire history. For example, Adam combines RSMProp
and momentum, which is directly incorporated with exponential decay rates, ρ1, ρ2 ∈ [0, 1), for the
first two moment estimates, s1 and s2, of the gradient Oθv[θτ], initialized at the origin, s1 = s2 = 0.
Subsequently, the bias-corrected updates of the first and second moments, ŝ1 = ρ1s1+(1−ρ1)Oθv[θτ]

1−ρτ
1

and

ŝ2 = ρ2s2+(1−ρ2)[Oθv[θτ]]
′Oθv[θτ]

1−ρτ
2

, are used in order to update the parameters: θτ+1 − θτ= −ε ŝ1√
ŝ2+δ

.
An alternative optimization method is exponentially decaying the average of the squared gradient,

so that the updating can converge even faster. For example, RSMProp uses an exponentially decaying
average with decay rate ρ ∈ [0, 1) that discards history from the extreme past and employs the
squared gradient, initializing at the origin, s = 0. Subsequently, the update of s given by ŝ =

ρs+ (1− ρ) [Oθv[θτ]]
′ Oθv[θτ] is used in order to update the parameters: θτ+1− θτ= − ε√

ŝ+δ
Oθv[θτ].

Back-propagation is the method for computing the gradient of the cost function in (10), Oθ J(θ) =
1

Nx ∑Nx

i=1 OθL[yi, k(Xi|θ)] + λOθv[θ], which itself is a function of the gradients of the loss function and
penalty terms. Those gradients are computed ‘backwards’, as dictated by the ‘chain rule of calculus’,
since they are compositions of functions of the parameters θ. Once those gradients are computed, SGD
or other optimization algorithms are used to perform the learning/approximation exploiting them.

Finally ‘bagging’ (‘bootstrap aggregating’) is also a powerful regularization method that can
combine parametric and non-parametric penalties. It involves creating B different datasets from
the training sample Nx by sampling with replacement NB = Nx observations, and solving (7) on
each of the B different training datasets, f̂B(X; λ). The out-of-sample performance of the B-ensemble
predictor is then 1

N> ∑N>
i=1

1
B L[yi, f̂B(Xi; λ)]. Because sampling is done with replacement, each dataset b

for b = 1, · · · , B is missing some of the observations from the original dataset Nx with high probability,
which reults in different approximations f̂b(X; λ) which make different errors in the test sample N>.
Those errors will tend to cancel out if sampling is random, improving the out-of-sample performance
of the B-ensemble model relative to its members.

How is λ determined? Because choosing the strength of the penalty λ determines the solution
approximation f̂ (X; λ) to (7)—and hence (10)—this is referred to as ‘model selection’. Ideally, one
would like to choose the λ that maximizes the out-of-sample performance of f̂ (X; λ):

λ̂ ∈ arg min
λ

1
N>

∑N>
i=1 L[yi, f̂ (Xi; λ)]. (11)

However, different ‘splittings’ of the available sample into complementary learning and test
subsamples, N = Nx + N>, are going to provide different values of λ̂. To avoid the computational
burden that are associated with computing λ̂ for all possible assignments (N

Nx) and then minimizing the
average over these replications, this process is instead approximated by dividing the available sample
of size N into K disjoint subsamples of approximately equal size, N/K. Each of the subsamples denoted
as Nxk, for k = 1, . . . , K is used as ‘test sample’ in (11), such that the complement sample N − Nxk is
used as training sample in (7) to fit the model. By doing so, we obtain K different approximations
f̂K(X; λ), each of which is evaluated once on the test sample Nxk. Averaging the results over K in (11),
we obtain 1

K{ 1
NK ∑NK

i=1 L[yi, f̂K(Xi; λ)]}, and solving for λ̂ returns λ̂K, as determined by ’K-fold’ cross
validation.

3. Neural Networks for Prediction

This section analyzes artificial neural networks. This is, arguably, the most powerful modeling
device in machine learning and the preferred approach for complex machine learning problems, such
as computer vision, natural language processing, pattern recognition, biomedical diagnosis, and others
(see Schmidhuber (2015) and LeCun et al. (2015) for overviews of the topic). Artificial neural networks
are divided into shallow and deep networks, depending on the number of hidden layers used to predict
the output. The flexibility of neural networks with several layers draws from their ability in order to
incorporate nonlinear interactions between the predictors, being denominated deep neural networks

J. Risk Financial Manag. 2020, 13, 265 11 of 22

or, more generally, deep learning methods. The complexity of these methods entails, by construction, a
lack of interpretation and transparency for disentangling the relationship between the predictors and
the output.

Our analysis focuses on traditional feedforward networks. These consist of an input layer
of predictor variables, one or more hidden layers that interact and nonlinearly transform the
predictors, and an output layer that aggregates hidden layers into an ultimate outcome prediction.
Deep learning builds on feedforward neural networks (NN) or multi-layer perceptrons (MLPs) in
order to learn unknown target functions of increasing complexity. MLPs are then compositions of
single-layer/shallow NNs, each hidden unit of which (or ‘neuron’) is fully connected to the hidden
units of the subsequent layer, to capture the fact that information flows forward from the inputs X
to the output y. Thus, artificial neural networks, or MLPs, are similar to biological neural networks:
they are collections of connected units called neurons. An artificial neuron receives inputs from other
neurons, computes the weighted sum of the inputs, and maps the sum via an activation function to the
neurons in the next layer, and so on until it reaches the last layer or output. Accordingly, the network
is free of cycles or feedback connections that pass information backward.8

Single-layer/shallow NNs are universal approximators (Hornik 1991; Cybenko 1989) and they
have dictionaries of functions of the form {b(X|γ1) = s(W′1X + b1) : γ1 = (b1, W1), W′1X =

[... ∑P
p=1 wzpxp...]′ ∈ RZ1} where s(·) : RZ1 → RZ1 is a vector-valued ‘activation function’ (i.e., applied

unit-wise), mapping the output from the single hidden layer h1 = W′1X + b1 ∈ RZ1 and the
bias of each hidden unit z ∈ RZ1 in the single hidden layer, b1 ∈ RZ1 , into the output, ŷ =

∑Z1
z=1 w2zsz(W′1X + b1) + b2z ≡ f̂ (X; θ1), with the weights w2 ∈ RZ1 and bias b2 ∈ R being the

parameters {az}Z1
z=1 of the function class G that is defined above, i.e., θ1 = (w2, b2; b1, W1) ≡ (a; γ1).

Popular choices for the activation function include: (i) Rectified linear units (ReLu), s(h) = max{0, h};
(ii) Softplus, s(h) = log(1 + eh); (iii) Hard tanh, s(h) = max{−1, min{1, h}}; (iv) Sigmoid or ‘logistic’,
s(h) = (1 + e−h)−1; or, (v) Maxout, s(h) = max

j∈Gi
hj, where the number of hidden units z in layer l, Zl , is

divided into groups of k values, {(z1, ..., zk), ..., (zZl−k+1, ..., zZl)}, and Gi = {(i− 1)k + 1, ..., ik} is the
set of indices into the inputs for group i. All of the activation functions s(·) have in common that a
certain threshold must be overcome for information to be passed forward, much alike neurons in the
human brain, which need to receive a certain amount of stimuli in order to be activated. The threshold
hurdle creates a nonlinearity that allows for artificial NNs to learn nonlinear and non-convex unknown
target functions f (X).

Single-layer NNs are also known as ‘three-layer’ networks, where the inputs X form the first
layer. The second or ‘hidden’ layer h1 is comprised of (b1, W1, s(·)) : h1 = s(W′1X + b1), and the third
corresponds to the output layer, ŷ = w′2s(h1) + b2 ∈ R. A deep NN (DNN) is constructed by adding
hidden layers, with each subsequent one taking as inputs the output of the previous ones. For example,
a ‘four-layer’ NN that adds one hidden layer to a ‘three-layer’ NN (or shallow/single-layer NN),
rather than simply taking the linear combination of the dictionary entries of single-layered NNs,
{b(X|γ1)} , would result in the collection of functions that are represented by the dictionary {b(X|γ2) =

s(W′2s(W′1X + b1) + b2) : γ2 = (b1, b2, W1, W2), W′1X = [... ∑P
p=1 wzpxp...]′ ∈ RZ1 , W2 ∈ RZ1×Z2}.

Adding hidden layers then results in parameter addition, increasing the variance, and reducing the
bias. The overall effect on performance (i.e., on generalization/test error) will depend on how well the
resulting dictionary matches the unknown target function f (X). Additionally, although it is an open
question in the deep learning literature, why do over-parameterized DNNs perform well in terms of
generalization/test error, original contributions due to Pascanu et al. (2013), and Montufar et al. (2014)

8 MLPs that allow information to flow backwards are called recurrent neural networks and they are discussed in
Goodfellow et al. (2016).

J. Risk Financial Manag. 2020, 13, 265 12 of 22

show that deeper ReLu architectures have more flexibility to express the behavior of the unknown
target function, relative to equally sized single-layer/shallow architectures.

An incipient strand of the literature (e.g., Arora et al. 2019; Allen-Zhu et al. 2019) building on the
Rademacher complexity of both the function class being approximated and of the dataset shows that
the dictionaries of deeper architectures can better capture interactions between the units of different
layers through the composition of functions that they can represent.

Generally, a DNN approximation f̂ (·) : RP → R of size Z = ∑L
l=1 Zl with L ∈ N hidden layers

and Zl ∈ N nodes per layer l, is of the form:

f̂ (X) ≡ f (X; ΛL) = w′L+1s(W′LhL−1 + bL) + bL+1

= f ◦ f ◦ ...◦
L−composition

f (X; Λ1)

where s(·) : RZL−1 → RZL is the vector-valued activation function that maps the output from the
previous hidden layer hL−1 = s(W′L−1hL−2 + bL−1) ∈ RZL−1 and the bias of each hidden unit
z ∈ RZL in the last hidden layer L, bL ∈ RZL , into the output layer l = L + 1, with weights
wL+1 ∈ RZL and bias unit bL+1 ∈ R. The matrices Wl = [w1...wZl] ∈ RZl−1×Zl contain the weights
wz ∈ RZl−1 of each hidden unit z = 1...Zl for each hidden layer l = 1...L, with Z0 = P the
dimension of the input vector X ∈ RP; ΛL≡ [θL; Z, L, {Zl}L

l=1; ε, λ, α] is the collection of parameters
θL = [(wL+1, bL+1)...(W1, b1)] and hyperparameters [Z, L, {Zl}L

l=1] and [ε, λ, α] to be learned and/or
‘fined tuned’ by the optimization algorithm

Approximating the unknown target function f (X) with a DNN is then equivalent to parameter
estimation:

Λ̂L ∈ arg min
ΛL

1
Nx ∑Nx

i=1 L[yi, f (Xi; ΛL)] + λv[θ] (12)

where it is standard practice to ‘cross-validate’ the choice of hyperparameters [Z, L, {Zl}L
l=1] and

[ε, λ, α] before estimating the parameters that characterize the restricted class of functions/models
that are represented by the dictionary {b(X|γL) : γL = (b1, ..., bL, W1, ..., WL)} augmented by the
output layer weights and bias, (wL+1, bL+1), θL = [(wL+1, bL+1)...(W1, b1)], that solve the ‘empirical
risk minimization’ problem (12). In deep learning, standard choices are: (i) a cross-entropy cost/loss
function, L[·, ·]; (ii) a ReLu activation function s(·), which naturally leads to sparse settings, whereby
a large portion of hidden units are not activated, thus having zero output (LeCun et al. 2015); (iii) a
SGD penalty v[θ], usually combined with momentum α, as optimization method; and, (iv) network
architecture size, depth, and nodes per layer, [Z, L, {Zl}L

l=1], as well as learning rate, ε, that depend on
the characteristics of the dataset, {yi, Xi}N

i=1. Performance is then assessed on the test sample, from

evaluating 1
N> ∑N>

i=1 L[yi, f (Xi; Λ̂L)].
In practice, ‘tuning’ or optimizing the hyperparameters is a daunting task in terms of processing

time and computational capacity, e.g., only determining the optimal depth (number of layers L)
and nodes per layer ({Zl}L

l=1) for architectures of a given size Z involves solving an NP-hard
combinatorial optimization problem because L, {Zl}l ∈ N, i.e., are integer values (Judd 1990). Yet,
in Calvo-Pardo et al. (2020), we show that recent advances in combinatorial optimization software
(RStudio) can be exploited to optimally allocate hidden units ({Zl}L

l=1) within (‘width’) and across
(‘depth’, L) layers in deep architectures of a given size Z = ∑L

l=1 Zl . Adopting the lower bound on the
maximal number of linear regions that a ReLu DNN can approximate as the maximization criterion,
see Montufar et al.’s (2014), we obtain

LB(L, {Zl}L−1
l=1 ; P) ≡

(
∏L−1

l=1

⌊
Zl
P

⌋P
)

∑P
r=0 (

Z−∑L−1
l=1 Zl
r).

J. Risk Financial Manag. 2020, 13, 265 13 of 22

Similarly, upper bounds, or maximal number of linear regions of a function approximated by a network
architecture with rectified linear units of size Z, have been recently characterized by Raghu et al.’s
(2017) Theorem 1 to equal

UB(L, {Zl}L
l=1; P) = O

([
Z
L

]ZP
)

from which they conclude that the maximal number of regions approximated by a shallow ReLu NN,
UB(1, Z; P), is always smaller than the maximal number of regions approximated by an equally-sized
deep ReLu NN, UB(L, {Zl}L

l=1; P) : ∑L
l=1 Zl = Z:

UB(1, Z; P) < UB(2,
Z
2

; P) < ... < UB(L,
Z
L

; P)

We effectively solve (12) in two-stages:

(L̂, {Ẑl}L̂
l=1) ∈ arg max

(L,{Zl}L−1
l=1)

LB(L, {Zl}L−1
l=1 ; P) (13)

Λ̂L(L̂, {Ẑl}L̂
l=1) ∈ arg min

ΛL(L̂,{Ẑl}L̂
l=1)

1
Nx ∑Nx

i=1 L[yi, f (Xi; ΛL)]+λv[θ] (14)

The first stage optimization (13) solves for the optimal depth L̂ and the number of hidden units
per layer (or optimal width, layer-wise) {Ẑl}L̂

l=1 given the network architecture size, Z = ∑L
l=1 Zl .9

The outcome of the first stage is an optimal deep network architecture in the sense of maximizing
the expressive power of the approximation f (X; ΛL) within the restricted class of functions that are
generated by the dictionary {b(X|γL) : γL = (b1, ..., bL, W1, ..., WL)}. The second stage optimization
(14) proceeds, just as in (12), but takes as given the optimal values of the hyperparameters (L̂, {Ẑl}L

l=1)

from the first stage (13), i.e., ΛL(L̂, {Ẑl}L̂
l=1) = [θL; Z, (L̂, {Ẑl}L̂

l=1); ε, λ, α]. Rather than engaging into
time and computer intensive ‘fine tuning’ of the whole set of hyperparameters [Z, L, {Zl}L

l=1; ε, λ, α]

while training the deep architecture to estimate/learn θL, as in (12), proceeding in two-stages
considerably saves on runtime and memory while improving performance, as we show in the next
section. Finally, notice that being the first stage conditional on the architecture size, bigger and more
complex datasets {yi, Xi}N

i=1 will naturally summon architectures with more hidden units, Z.
Deep neural networks have become so powerful, because of (i) the availability of large datasets,

necessary to ‘train’ them, and because of the rapid improvements in (ii) computational power10 and in
(iii) optimization algorithms and software. Deep neural networks are characterized by a large number
of parameters that need to be ‘optimized’ during ‘training’. This is called ‘fine-tuning’ or ‘optimally
fitting a neural network’ to the ‘training sample’. The backpropagation optimization algorithm informs
the machine of how it should change the internal parameters used to compute the representation in
each layer from the representation in the previous layer. Software optimization methods (e.g, Adam,

9 The first stage optimization (13) is a constrained combinatorial optimization problem:

(L̂, {Ẑl}L̂
l=1, {µl}L̂

l=1) ∈ arg max
(L,{Zl}L−1

l=1 ,{µl}L
l=1)

LB(L, {Zl}L−1
l=1 ; P) + ∑L−1

l=1 µl(P− Zl) + µL(−L)

where {µl}L̂
l=1 ∈ RL is the collection of L Lagrange multipliers that are associated with the L− 1 constraints, Zl ≥ P, l =

1...L− 1, and with the constraint L > 0, because the constraint on the architecture size Z = ∑L
l=1 Zl is incorporated into the

maximand. Since L, {Zl}L
l=1 ∈ N, we also solve in two stages to reduce the computational burden. In the first stage of (13),

the number of hidden units are optimally allocated for a given depth,
{

L, {Ẑl}L
l=1

}
, while, in the second stage of (13), the

optimal depth is sought after for a given allocation of hidden units,
{

L̂, {Zl}L̂
l=1

}
.

10 Particularly, of graphics processing units (GPUs), suited to perform the linear algebra operations at the root of ‘fitting’
neural networks, e.g., Google DeepMind optimized a deep neural network while using 176 GPUs for 40 days to beat the
best human players in the game Go.

J. Risk Financial Manag. 2020, 13, 265 14 of 22

Adagrad, RMSprop) that implement SGD or any of its variants, allow for substantial gains in the
necessary time and computational power when training models with millions of parameters, and it
is nowadays often paired with step size ‘adaptive regularization’. It is also now standard practice to
do regularization while optimizing (e.g., via ‘weight decay’, ‘dropout’, or ‘batch normalization’) to
prevent overfitting and improve the performance of DNNs ‘out-of-sample’.

‘Batch normalization’ (Ioffe and Szegedy 2015; not to be mistaken with ‘minibatch regularization’)
is a method of adaptive reparameterization that is best suited for training very deep models that
involve the composition of several functions or layers. By normalizing the output of each layer
before forwarding it as input to the next layer, the unexpected effect of many functions being
composed together changing simultaneously is removed, allowing for the gradient to update the
parameters under the assumption that the other layers do not change. As a result, it allows the use
of higher learning rates, ε, which are less sensible to the initialization of parameters. Concretely,
the normalization involves computing:

hzl =
1
σ
(hzl − µ), z ∈ B : µ =

1
|B| ∑z∈B hzl , σ =

√
δ + 1

|B| ∑z∈B(hzl − µ)2

with δ ≈ 10−8 being set to prevent the undefined value
√

0, and B denoting a minibatch of output
units hzl in layer l = 1...L.

Another recent methodology introducing randomness into deep neural networks is ‘Dropout’.
This method discards a small, but random, portion of the neurons during each iteration of training to
prevent neurons from co-adapting, providing a powerful regularization method (Srivastava et al. 2014).
The intuition is that, since several neurons are likely to model the same nonlinear relationship
simultaneously, discarding a random fraction of them forces them to perform well, regardless of
which other hidden units are in the model.

With dropout, each input and hidden unit z in layer l = 1...L, hzl , is pre-multiplied by a random
variable rzl ∼ F(rzl), hzl = rzl · hzl , ∀(z, l), prior to being fed forward to the activation function of
the next layer, hzl+1 = sz(∑

Zl
z=1 wzl+1hzl + bzl+1), ∀z = 1...Zl+1. For any layer, l, rl is then a vector

of independent random variables, rl = [r1l , ..., rZl l] ∈ RZl . Standard choices for the probability
distribution F(rl) are (i) the Normal, i.e., F(rl) = N(1, I), or (ii) the Bernoulli, in which case each
rzl has probability p of being 1 (and 1− p of being 0). The vector rl is then sampled and multiplied
element-wise with the outputs of that layer, hzl , in order to create the thinned outputs, hzl , which are
then used as input to the next layer, hzl+1. When this process is applied at each layer l = 1...L, this
amounts to sampling a sub-network from a larger network. In the ML literature, common choices for
p are 0.8 for the input layer, l = 1, and 0.5 for the units in hidden layers, in l = 2...L.

During learning, the derivatives of the loss function are backpropagated through the sub-network.
At test time, the weights are scaled down as Wl = pWl , l = 1...L, resulting in a DNN (without dropout)
that allows for the conduct of approximate inference. It is actually exact for many classes of models
that do not have nonlinear hidden units, like the softmax regression classifier, regression networks
with conditionally normal outputs, or deep networks with hidden layers without nonlinearities.
This efficient test time procedure is an approximate model combination that (i) scales down the
weights of the trained neural network, (ii) works well with other distributed representation models,
e.g., restricted Boltzmann machines, and (iii) acts as a regularizer. Beyond the MLPs discussed, an
array of alternative architectures have been proposed, including convolutional and recurrent NNs,
which target specific data structures, like vision tasks and sequential data handling, respectively.
See Goodfellow et al. (2016) for a detailed textbook treatment.

4. Uncertainty and Deep Learning

Neural networks are widely used in prediction tasks due to their unrivaled performance and
flexibility in modeling complex unknown functions of the data. Although these methods provide
accurate predictions, the development of tools for estimating the uncertainty around their predictions

J. Risk Financial Manag. 2020, 13, 265 15 of 22

is still in its infancy. As explained in Hüllermeier and Waegeman (2020) and Pearce et al. (2018),
out-of-sample pointwise accuracy is not enough. The predictions of deep neural network models
need to be supported by measures of uncertainty that shed light on the reliability of the predictions.
Recent literature in machine learning has focused on the construction of algorithms in order to measure
the uncertainty around the predictions of neural network methods. The first subsection reviews
methods for assessing the uncertainty regarding the model predictions.

4.1. Uncertainty in Model Prediction

Despite their unrivaled success in prediction and forecasting tasks, deep learning models struggle
in conveying the uncertainty or degree of statistical confidence/reliability associated with those
forecasts. Some recent contributions in the ML literature have made progress in the provision
of prediction intervals for the point forecasts that are provided by deep learning models trained
with dropout. For example, Gal and Ghahramani (2016) show that a NN with arbitrary depth and
nonlinearities, with dropout being applied before every hidden layer and a parametric L2 penalty
v[θ] = ∑L

l=1

{
‖Wl‖2

2 + ‖bl‖2
2

}
, minimizes the Kullback–Leibler divergence between an approximate

(variational) distribution, q(θ)—over matrices θ = (W1, ..., WL) with columns randomly set to zero,
Wl = Mldiag[rzl]

Zl
z=1, rzl ∼ Bernoulli(pl), l = 1, ..., L, z = 1, ..., Zl—and the posterior of a deep Gaussian

process, p(θ|y; X),, which is intractable:

−∑N
i=1
∫

q(θ) log p(yi|Xi; θ)dθ+ DKL(q(θ)||p(θ))
∝ −∑N

i=1
log p(yi |Xi ;θ̂)

τN + ∑L
l=1

{
pl l2

2τN ‖Ml‖2
2 +

l2

2τN ‖bl‖2
2

}
where the first and second terms in the sum are approximated. In the first term, each term in
the sum over N is approximated by Monte Carlo integration with a single sample θ̂b ∼ q(θ) to
obtain an unbiased estimate of log p(yi|Xi; θ̂). In the second, l denotes prior length-scale, and τ

model precision, i.e., p(y|X; θ) = N(ŷ(X; θ), 1
τ I) : ŷ(X; θ) = −2

√
ZLWLs(... −2

√
Z1W2s(W1X + b1)...) and

variance-covariance matrix 1
τ I. The sampled θ̂b result in realizations from the Bernoulli distribution

[rb
l] equivalent to the binary variables in the dropout case, i.e., sampling B sets of vectors of realizations

from the Bernoulli distribution {[rb
l]}B

b=1 with [rb
l] = [rb

zl]
Zl
z=1, giving {Wb

1, ..., Wb
L}B

b=1, with which
the first two moments of the predictive distribution p(yi|Xi; θ̂) are estimated (by moment-matching).
The first moment, 1

B ∑B
b=1 ŷ(X; Wb

1, ..., Wb
L), is known as Monte Carlo (MC) dropout and, in practice,

it corresponds to performing B stochastic forward passes through the NN and averaging the results
(model averaging). The second moment, 1

τ I + 1
B ∑B

b=1 ŷ(X; Wb
1, ..., Wb

L)
′ŷ(X; Wb

1, ..., Wb
L), equals the

sample variance of B stochastic forward passes through the NN plus the inverse model precision,
providing a measure of the uncertainty that is attached to the deep NN point forecast.

Under the assumption that the approximation error is negligible, the predictive variance can be
estimated as

σ̂2
MC = σ̂2

e +
1
B

B

∑
b=1

ŷ(X; Wb
1, ..., Wb

L)
′ŷ(X; Wb

1, ..., Wb
L), (15)

with σ̂2
e = 1

N> ∑N>
i=1
(
yi − f̄MC(Xi)

)2 a consistent estimator of σ2
e under homoscedasticity of the error

term, also see Smyl (2020) and Kendall and Gal (2017). A suitable prediction interval for yi under the
assumption that p(ŷ |X, θ) is normally distributed is

f̄MC(Xi)± z1−α/2σ̂MC. (16)

An alternative approach to MC dropout for estimating the uncertainty about the predictions
is to use bootstrap methods, see Tibshirani (1996). Bootstrap procedures provide a reliable solution
in order to obtain predictive intervals of the output variable. We proceed to explain how bootstrap
works in a DNN context. Let {Xi}Nx

i=1 be a sample of Nx observations of the set of covariates, with

J. Risk Financial Manag. 2020, 13, 265 16 of 22

Xi ∈ RNx×P. Let {y}Nx

i=1 ∈ R be the output variable and define X¬i = (Xi, yi) ∈ RNx×(P+1). Applying
the naive bootstrap that was proposed by Efron (1979) to this multivariate dataset, we generate the
bootstrapped dataset X¬,? = {X¬,?

i }Nx

i=1 = {y?i , X?
i }Nx

i=1 by sampling with replacement from the original
dataset X¬. By repeating this procedure B times, it is possible to obtain B bootstrapped samples
defined as {X¬,?(b)}B

b=1. Each bootstrap sample is fitted to a single neural network in order to obtain an
empirical distribution of bootstrap predictions f (X?(b); θ̂?(b)); with θ̂?(b) the set of bootstrap parameters
for b = 1, . . . , B. In this context, a suitable bootstrap prediction interval for yi at an α significance
level is [q̂α/2, q̂1−α/2], with q̂α the empirical α−quantile obtained from the bootstrap distribution of
f (Xi; θ̂?(b)), for b = 1, . . . , B.

Alternatively, under the assumption that the error ε is normally distributed, we can refine the
empirical predictive interval using the critical value from the Normal distribution. A suitable prediction
interval for Xi, with i = 1, . . . , Nx, is

f (Xi; θ̂?(b))± z1−α/2σ̂?
ε , (17)

with f (Xi; θ̂?(b)) the pointwise prediction of the model and z1−α/2 the critical value of a N(0, 1)
distribution at an α significance level; σ̂?2

ε = σ̂?2
θ̂
(Xi) + σ̂2

e . Under homoscedasticity of the error term

εi, the aleatoric uncertainty σ2
e is estimated from the test sample as σ̂2

e = 1
Nx ∑Nx

i=1

(
yi − f (Xi; θ̂)

)2
,

with θ̂ the set of parameter estimates that were obtained from the original sample X¬. The epistemic
uncertainty is estimated from the bootstrap samples as σ̂?2

θ̂
(Xi) =

1
B ∑B

b=1[f (Xi; θ̂?(b))− f̄ (Xi)]
2, with

f̄ (Xi) =
1
B

B

∑
b=1

f (Xi; θ̂∗(b)). (18)

This bootstrap prediction interval can be further refined by exploiting the average prediction
in (18). In this case, the variance of the predictor is σ?2

θ̂
(Xi) =

1
B σ̂?2

θ̂
(Xi) and the relevant prediction

interval is
f̄ (Xi)± z1−α/2σ̂?

ε , (19)

with σ̂?2
ε = σ?2

θ̂
(Xi) + σ2

e , where σ2
e = 1

Nx ∑Nx

i=1
(
yi − f̄ (Xi)

)2. This expression assumes that the
covariance between the predictions from the different bootstrap samples is zero.

4.2. Causal Inference and Interpretability

A recent area of interest in machine learning methods is the development of methods allowing
to add interpretability to the outputs of these models. A typical example is to assess the causal
relationship between the input and output variables. Recent progress in this direction has been done
by Belloni et al. (2014); Farrell (2015); Athey and Imbens (2019); and, Farrell et al. (2019).

The goal of interpretation tasks is to use the structural form of the approximating function
f̂ (X) to try to understand the mechanism that produced the data {yi, Xi}N

i=1. Interest lies then in
the identification of those input variables that are the most relevant to the variation in the output,
the nature of the dependence of the output on the most relevant inputs, or how that dependence
changes with changes in the values of other inputs. Conducting valid inference rests on the amount of
correct information learned about the system (i.e., minimizing the bias at the expense of increasing the
variance), rather than just prediction accuracy (where some bias is optimally traded-off against the
resulting reduction in the variance). Although both are often in conflict, which limits the inferential
abilities of ML methods, it is not always the case.

Athey and Imbens (2019) note that one way to perform valid (causal) inference would be to
adapt the ‘out-of-sample’ performance objective in ML cost/loss functions to control for confounders
or for discovering treatment effect heterogeneity, as is standard in the model-based statistics and
econometrics literatures. Allen-Zhu et al. (2019) within the ML literature, and Farrell (2015) within

J. Risk Financial Manag. 2020, 13, 265 17 of 22

the econometrics literature, obtain nonasymptotic bounds. Based on Farrell (2015), the latter obtains
conditions for valid two-step causal inference after first-step deep learning estimation. A survey
regarding the differences between the two literatures and recent progress made along integrating both
are provided in Athey and Imbens (2019).

5. Empirical Application

The aim of this section is to illustrate the suitability of machine learning methods for prediction in
empirical finance modeling. We follow a similar structure to Gu et al. (2020). These authors perform a
comparative study of machine learning methods for the canonical problem of empirical asset pricing:
measuring asset risk premiums. Gu et al. (2020) consider neural network models and regression trees
with the aim of identifying the best performing methods against more conventional methods that
are based on linear regression models and ordinary least squares. In a similar spirit, we conduct a
prediction exercise to compare the suitability of feedforward neural networks against conventional
time series models for the conditional mean and volatility of asset returns.

We consider the monthly prices of the S&P, the Dow Jones, and the Nasdaq indices, starting from
30-02-1972 until 30-07-2020. The out-of-sample forecasting accuracy is compared against a GARCH(1, 1)
benchmark; the comparison is conducted in terms of out-of-sample mean squared prediction error
(MSPE) and in terms of optimal portfolio allocation while using out-of-sample Sharpe ratios. In order
to obtain the out-of-sample forecasts, a fixed rolling window approach with 50 steps is applied. Thus,
the period following 30-06-2016 (included) is used for out-of-sample evaluation.

First, the asset prices are transformed into log returns, and apply standard stationarity tests of the
analyzed series. We conduct the Dickey–Fuller test allowing for a maximum of 10 lags. The unit root
null hypothesis is rejected at 0.01 significance level in all cases; additionally, we also perform the KPSS
test and fail to reject the null hypothesis of stationarity in all cases at 0.1 significance level.

Following the recent literature on deep learning and time series forecasting focused on enhancing
the forecasting accuracy of DNNs by using time series decomposition (see Smyl 2020; Hansen and
Nelson 2003; Méndez-Jiménez and Cárdenas-Montes 2018 among others), the present paper couples
the MC-dropout approach of Gal and Ghahramani (2016) with time series decomposition. In this
framework, we usually identify a trend component Tt, a seasonal component Ψt, and a random
component Ξt. Assuming additive decomposition, the time series can be modeled as Xt = Ξt +Ψt +Tt.
Figure 1 reports an additive decomposition of the analyzed time series11.

Based on the algorithm of Smyl (2020), the present paper will fit and forecast the trend component
while using an exponential smoothing model, and the random component using either a DNN or a
GARCH(1,1) model 12. When a GARCH(1,1) is fitted, the final forecast will be the sum of the individual
forecasts Ξ̂t+1 + T̂t+1. When the DNN model is considered, B stochastic forward passes are performed
in order to forecast the random component Ξt+1; to each of these random stochastic forward passes
the forecasted trend T̂t+1 is added, and B point forecasts of {X̂b

t+1}B
b=1 are obtained. The point forecast

of the log prices is the mean X̄t+1 over the B forward passes.
For each time series analyzed, a neural network with three hidden layers of 50 nodes each, trained

with Adam optimizer with learning rate 0.001, an exponential decay rate for the first moment estimates
(β1) equal to 0.900, and an exponential decay rate for the second moment estimates (β2) equal to 0.999
is fitted. We also consider a dropout rate of 0.1 across all layers and 300 epochs. The input layer
comprises the multivariate time series with relative lagged values (up to k = 10). Additionally, in order
to ensure the proper training of the network, the input data Ξt−k for k = 1, · · · , 10 are normalized in
order to guarantee that the regressors have zero mean and unit standard deviation.

11 The seasonal component is not reported, as the magnitude was approximately 0 with the highest value observed 3e−04.
12 As robustness exercise, we also consider a GARCH(1,1) fitted on the time series Xt.

J. Risk Financial Manag. 2020, 13, 265 18 of 22
report an additive decomposition of the analyzed time series11.

1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05

1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05

1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05 1976/09 1985/01 1993/05 2001/09 2010/01 2018/05

−0
.2

−0
.1

0.
0

0.
1

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

Monthly Return - S&P Random Component - S&P Trend Component - S&P
−0
.2

−0
.1

0.
0

0.
1

−0
.1
0

−0
.0
5

0.
00

0.
05

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

Monthly Return - Dow Jones

Monthly Return - Nasdaq

Random Component - Dow Jones Trend Component - Dow Jones

Random Component - Nasdaq Trend Component - Nasdaq

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

−0
.1
5
−0
.1
0−
0.
05

0.
00

0.
05

0.
10

Figure 1: Decomposed Time Series

Based on the algorithm of Smyl (2020), the present paper will �t and forecast the

trend component using an exponential smoothing model, and the random component

using either a DNN or a GARCH(1, 1) model 12. When a GARCH(1,1) is �tted, the

�nal forecast will be the sum of the individual forecasts Ξ̂t+1 + T̂t+1. When the DNN

model is considered, B stochastic forward passes are performed to forecast the random

component Ξ̂t+1; to each of these random stochastic forward passes the forecasted trend

T̂t+1 is added, and B point forecasts of {X̂b
t+1}Bb=1 are obtained. The point forecast of

the log prices is the mean X̄t+1 over the B forward passes.

For each time series analyzed, a neural network with three hidden layers of 50 nodes

each, trained with Adam optimizer with learning rate 0.001, an exponential decay rate

for the 1st moment estimates (β1) equal to 0.900, and an exponential decay rate for the

2st moment estimates (β2) equal to 0.999 is �tted. We also consider a dropout rate of

11The seasonal component is not reported as the magnitude was approximately 0 with the highest

value observed 3e−04.
12As robustness exercise, we also consider a GARCH(1,1) �tted on the time series Xt.

26

Figure 1. Monthly returns and trend and random component decompositions.

As mentioned earlier, a fixed rolling window approach is implemented in order to obtain 50
one-step-ahead forecasts. We first evaluate the performance of the proposed approach against a
GARCH(1, 1) model in terms of MSPE while using the one-sided Diebold–Mariano (DM) test (1995),
with hypothesis:

H0 : MSPEi
nn ≥ MSPEi,j

GARCH (20)

and the alternative is
H1 : MSPEi

nn < MSPEi,j
GARCH (21)

with i = 1, 2, 3 indicating the three time series analyzed and j = 1, 2 defining the two alternative
methodologies used to predict with a GARCH(1,1) model—a first methodology that decomposes
the analyzed time series and combines the point forecast from a GARCH(1,1) with an exponential
smoothing, and a second methodology that does not decompose the time series and directly forecast
with a GARCH(1,1).

The results of the predictive ability test are as follows. For the S&P index, the test statistic of the
DM1 is 2.3970 with a p-value of 0.0102 and the test statistic of DM2 is 2.5262 with p-value of 0.0074.
For the Dow Jones index, the test statistic of the DM1 is 2.4729 with a p-value of 0.0084 and the test
statistic of DM2 is 2.0435, with p-value of 0.0232. For the Nasdaq index, the test statistic of the DM1 is
2.7578 with a p-value of 0.0041 and the test statistic of DM2 is 3.9139 with p-value of 0.0001. The reported
p-values show the outperformance of the DNN approach against a GARCH(1,1) benchmark.

In order to further validate the out-of-sample performance of the proposed approach, the present
paper compares the MC-dropout against a GARCH(1,1) benchmark in terms of portfolio returns for a
given optimal strategy. In particular, we will consider a mean-variance portfolio, with the weights
defined as:

J. Risk Financial Manag. 2020, 13, 265 19 of 22

min
ω

ω′Σ̂ω−ω′x̂

s.t. ω′1 = 1
(22)

with ω ∈ R3 is the vector of the portfolio weights invested in the three indices considered, Σ̂ ∈ R3×3 is
the estimated covariance matrix, x̂ ∈ R3 is the vector of the expected returns, and 1 ∈ R3 is a vector of
ones. The covariance matrix is defined as:

Σ̂ = diag(σ̂)P̂diag(σ̂) (23)

with diag(σ̂) being the diagonal matrix with estimated standard deviations, and P̂ the
correlation matrix13. The present paper considers two portfolio strategies: the mean-variance and
minimum-variance portfolios (the latter obtains by imposing x̂ = 0 in the constrained minimization
in (22)). Knowing that holding the portfolio ω

strategy
t for a time ∆t gives the out-of-sample return

for t + ∆t and by imposing ∆t = 1, the rolling window approach used in order to evaluate the
out-of-sample performance of a given strategy is as follows: at time t, the one-step-ahead conditional
mean and volatility of the three stocks are forecasted while using either a GARCH(1, 1) or a DNN
model. We construct the dynamic covariance matrix Σ̂t+1 from estimates of the conditional variances
and covariances over rolling windows. Based on the forecasted X̂t+1 and Σ̂t+1, the constrained
minimization in (22) is solved and weights ω

strategy
t computed. The return of the portfolio in t + 1

will be the weighted mean of the observed returns of the three stocks in t + 1, with weights ω
strategy
t :

Υt+1 = ω
strategy ′
t xt+1.

By implementing a fixed rolling window forecasting exercise, the above procedure is repeated
50 times to obtain 50 out-of-sample Υt+1 from either the GARCH(1, 1) or the DNN model. This allows
for us to estimate the out-of-sample Sharpe ratios as:

Sharpe ratioi =
Υ̂p − Υr f

σ̂p
(24)

with Υ̂p being the mean return of the portfolio, Υr f the risk-free rate (assumed equal to 0), and σ̂p the
portfolio standard deviation.

Figure 2 reports the cumulative returns of the four different strategies considered. One could
notice how a portfolio strategy (either mean-variance or minimum variance) that is based on DNN
forecasts outperforms a strategy based on GARCH(1,1) forecasts. In particular, the annualized
Sharpe ratios of the mean-variance and minimum-variance portfolios obtained from the forecasted
return and volatility from a DNN are: 0.6777 and 0.7562, respectively; the annualized Sharpe ratios
that are obtained from a GARCH(1,1) forecasts are 0.2686 for the mean-variance and 0.3175 for the
minimum-variance portfolio.

The above results extend some of the empirical findings in Gu et al. (2020). These authors compare
the forecasting performance of ReLu DNNs against linear models and tree-based approaches also in
terms of out-of-sample portfolio returns. Gu et al. (2020), based on the out-of-sample forecasts of the
individual stock returns, construct a zero-net investment portfolio—that buys and sells the highest
and lowest expected returns stocks respectively—and a value weight portfolio. By comparing the
out-of-sample returns of the portfolio strategies exploiting the forecasts of the competing models, they
show that portfolio strategies that are based on NN forecasts dominate those based on forecasts of
both linear models and tree-based algorithms. If Gu et al. (2020) show that ReLu DNNs can be used
to define portfolio strategies based only on the forecasted conditional means of the asset returns, the

13 The constrained minimization in (22) allows for short selling but not for leverage effect.

J. Risk Financial Manag. 2020, 13, 265 20 of 22

present paper—by considering the minimum-variance and mean-variance portfolios—improves upon
their results, showing that optimal portfolio allocation strategies can also be constructed on ReLu
DNNs’ forecasted conditional volatilities, or on a combination of conditional mean and conditional
volatilities of stock returns.

2017 2018 2019 2020

Time

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

C
um

ul
at

iv
e

R
et

ur
ns

Cumulative Returns

Figure 2: Out-of-sample cumulative returns of the four portfolio strategies analyzed: in black

the minimum-variance portfolio from the DNN, in green the minimum-variance portfolio ob-

tained from GARCH forecasts, in blue the mean-variance portfolio obtained from a DNN, in

red the mean-variance constructed from GARCH forecasts.

based on the out-of-sample forecasts of the individual stock returns, construct a zero-net

investment portfolio �that buys and sells the highest and lowest expected returns stocks

respectively� and a value weight portfolio. By comparing the out-of-sample returns of

the portfolio strategies exploiting the forecasts of the competing models, they show that

portfolio strategies based on NN forecasts dominate those based on forecasts of both

linear models and tree-based algorithms. If Gu et al. (2020) show that ReLu DNNs can

be used to de�ne portfolio strategies based only on the forecasted conditional means of

the asset returns, the present paper �by considering the minimum-variance and mean-

variance portfolios� improves upon their results, showing that optimal portfolio allocation

strategies can also be constructed on ReLu DNNs' forecasted conditional volatilities, or

on a combination of conditional mean and conditional volatilities of stock returns.

6 Conclusions

We frame our paper in a recent literature on machine learning for empirical �nance such

as Chinco et al. (2019) and Gu et al. (2020). In contrast to these studies, we present an

overview of the procedures involved in prediction with machine learning models and pay

special emphasis on deep learning. We study suitable loss functions for classi�cation and

prediction, regularization methods, learning algorithms for model selection, and optimal

29

Figure 2. Out-of-sample cumulative returns of the four portfolio strategies analyzed: in black the
minimum-variance portfolio from the deep neural network (DNN), in green the minimum-variance
portfolio obtained from GARCH forecasts, in blue the mean-variance portfolio obtained from a DNN,
in red the mean-variance constructed from GARCH forecasts.

6. Conclusions

We frame our paper in a recent literature on machine learning for empirical finance such as
Chinco et al. (2019) and Gu et al. (2020). In contrast to these studies, we present an overview of the
procedures that are involved in prediction with machine learning models and pay special emphasis
on deep learning. We study suitable loss functions for classification and prediction, regularization
methods, learning algorithms for model selection, and optimal architectures of deep neural networks.
The paper also analyzes modern methods for constructing prediction intervals in deep neural networks
and providing a gentle introduction to causal inference.

Empirically, we illustrate the relevance of machine learning methods for financial forecasting
and portfolio allocation and assess its performance as compared to traditional time series models
while using statistical and economic performance measures. In line with the empirical findings of
Gu et al. (2020), we find overwhelming evidence in favor of machine learning techniques, in particular,
deep learning methods.

Author Contributions: The authors have contributed equally in both theory and empirical sections of the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

J. Risk Financial Manag. 2020, 13, 265 21 of 22

References

Allen-Zhu, Zeyuan, Yuanzhi Li, and Yingyu Liang. 2019. Learning and generalization in overparameterized
neural networks, going beyond two layers. Paper presented at Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, December 8–14, pp. 6158–69.

Arora, Sanjeev, Rong Ge, Behnam Neyshabur, and Yi Zhang. 2019. Stronger generalization bounds for deep nets
via a compression approach. arXiv arXiv:1802.05296.

Athey, Susan, and Guido W. Imbens. 2019. Machine learning methods that economists should know about.
Annual Review of Economics 11: 685–725. [CrossRef]

Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen. 2014. High-dimensional methods and inference
on structural and treatment effects. Journal of Economic Perspectives 28: 29–50. [CrossRef]

Calvo-Pardo, Hector F., Tullio Mancini, and Jose Olmo. 2020. Optimal Deep Neural Networks by Maximization
of the Approximation Power. Available online: https://ssrn.com/abstract=3578850 (accessed on
10 September 2020).

Chinco, Alex, Adam D. Clark-Joseph, and Mao Ye. 2019. Sparse signals in the crossâ-section of returns. The Journal
of Finance 74: 449–92. [CrossRef]

Cybenko, George. 1989. Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals
and Systems 2: 303–14. [CrossRef]

Diebold, Francis X., and Robert S. Mariano. 1995. Comparing Predictive Accuracy. Journal of Business & Economic
Statistics 13: 253–63.

Efron, Bradley. 1979. Bootstrap methods: Another look at the jackknife. Annals of Statistics 7: 1–26. [CrossRef]
Farrell, Max H. 2015. Robust inference on average treatment effects with possibly more covariates than

observations. Journal of Econometrics 189: 1–23. [CrossRef]
Farrell, Max H., Tengyuan Liang, and Sanjog Misra. 2019. Deep Neural Networks for Estimation and Inference.

arXiv arXiv:1809.09953.
Friedman, Jerome H. 1994. An overview of predictive learning and function approximation. In From Statistics to

Neural Networks. Berlin and Heidelberg: Springer, pp. 1–61.
Gal, Yarin, and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation: Representing model uncertainty

in deep learning. Paper presented at International Conference on Machine Learning, New York, NY, USA,
June 19–24, pp. 1050–59.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cambridge: MIT Press.
Gu, Shihao, Bryan Kelly, and Dacheng Xiu. 2020. Empirical asset pricing via machine learning. The Review of

Financial Studies 33: 2223–73. [CrossRef]
Hansen, James V., and Ray D. Nelson. 2003. Forecasting and recombining time-series components by using neural

networks. Journal of the Operational Research Society 54: 307–17. [CrossRef]
Hornik, Kurt. 1991. Approximation capabilities of multilayer feedforward networks. Neural Networks 4: 251–57.

[CrossRef]
Hüllermeier, Eyke, and Willem Waegeman. 2020. Aleatoric and epistemic uncertainty in machine learning:

A tutorial introduction. arXiv arXiv:1910.09457.
Ioffe, Sergey, and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv arXiv:1502.03167
Judd, J. Stephen. 1990. Neural Network Design and the Complexity of Learning. Cambridge: MIT Press.
Kendall, Alex, and Yarin Gal. 2017. What uncertainties do we need in bayesian deep learning for computer

vision? Paper presented at Advances in Neural Information Processing Systems, Long Beach, CA, USA,
December 4–9, pp. 5574–84.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521: 436–44. [CrossRef]
Markowitz, Harry. 1952. Portfolio Selection. The Journal of Finance 7: 77–91.
Méndez-Jiménez, Iván and Miguel Cárdenas-Montes. 2018. Time series decomposition for improving the

forecasting performance of convolutional neural networks. In Conference of the Spanish Association for Artificial
Intelligence. Cham: Springer, pp. 87–97.

Montufar, Guido F., Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. 2014. On the number of linear regions
of deep neural networks. Paper presented at Advances in Neural Information Processing Systems, Montreal,
QC, Canada, December 8–13, pp. 2924–32.

http://dx.doi.org/10.1146/annurev-economics-080217-053433
http://dx.doi.org/10.1257/jep.28.2.29
https://ssrn.com/abstract=3578850
http://dx.doi.org/10.1111/jofi.12733
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1016/j.jeconom.2015.06.017
http://dx.doi.org/10.1093/rfs/hhaa009
http://dx.doi.org/10.1057/palgrave.jors.2601523
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1038/nature14539

J. Risk Financial Manag. 2020, 13, 265 22 of 22

Pascanu, Razvan, Guido Montufar, and Yoshua Bengio. 2013. On the number of response regions of deep feed
forward networks with piece-wise linear activations. arXiv arXiv:1312.6098

Pearce, Tim, Alexandra Brintrup, Mohamed Zaki, and Andy Neely. 2018. High-quality prediction intervals for
deep learning: A distribution-free, ensembled approach. Paper presented at International Conference on
Machine Learning, Stockholm, Sweden, July 10–15, pp. 4075–84.

Raghu, Maithra, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. 2017. On the expressive
power of deep neural networks. Paper presented at 34th International Conference on Machine Learning,
Sydney, Australia, August 6–11, vol. 70, pp. 2847–54.

Schmidhuber, Jürgen. 2015. Deep learning in neural networks: An overview. Neural Networks 61: 85–117.
[CrossRef]

Smyl, Slawek. 2020. A hybrid method of exponential smoothing and recurrent neural networks for time series
forecasting. International Journal of Forecasting 36: 75–85. [CrossRef]

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15:
1929–58.

Tibshirani, Robert. 1996. A comparison of some error estimates for neural network model. Neural Computation 8:
152–63. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.ijforecast.2019.03.017
http://dx.doi.org/10.1162/neco.1996.8.1.152
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Objective Function in Machine Learning Problems—Minimization Versus Regularization
	Unsupervised Learning
	Supervised Learning
	Regularization Methods

	Neural Networks for Prediction
	Uncertainty and Deep Learning
	Uncertainty in Model Prediction
	Causal Inference and Interpretability

	Empirical Application
	Conclusions
	References

