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Abstract: We use the concept of coarsened posteriors to provide robust Bayesian inference via
coarsening in order to robustify posteriors arising from stochastic frontier models. These posteriors
arise from tempered versions of the likelihood when at most a pre-specified amount of data is used,
and are robust to changes in the model. Specifically, we examine robustness to changes in the
distribution of the composed error in the stochastic frontier model (SFM). Moreover, coarsening is
a form of regularization, reduces overfitting and makes inferences less sensitive to model choice.
The new techniques are illustrated using artificial data as well as in a substantive application to large
U.S. banks.
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1. Introduction

The stochastic frontier model (SFM) is a standard tool in the estimation of efficiency from observed
data. Robustness of SFM has not been examined thoroughly in the literature although many alternative
distributional assumptions have been proposed for the error components of the model.1 Bayesian
analysis of SFM is widely used due to the convenience allowed by Markov Chain Monte Carlo in dealing
with latent inefficiencies that are present in the model, particularly under alternative distributional
assumptions. Feng et al. (2019) proposed a semiparametric model for stochastic frontier models,
specifically, the one-sided error term is approximated by a log-transformed Rosenblatt-Parzen kernel
density estimator. In a Monte Carlo study, they found that that the kernel-based semiparametric
model performs better than the commonly-used exponential stochastic frontier model. Their study
also indicates that the kernel model shows similar performance to a non-parametric model.

Our motivation in this paper is to take into account the previous literature with an eye towards
making the posterior (and, therefore, statistical inferences) more robust to misspecification. For example,
standard inference in stochastic frontier models does not take into account not only outliers but, perhaps
more importantly, deviations of the assumed distributions of two-sided and one-sided error terms from
their actual counterparts. To the extent that the actual distributions are unknown (see, for example,
Feng et al. 2019 for details) misspecification is quite likely so, in practice, statistical inferences are likely
to be misleading.

A robust posterior, in the general case, has been proposed by Miller and Dunson (2019). Specifically,
rather than conditioning on the observed data assumed to be generated by the model, we condition on
the event that the model generates data that are distributionally close to the observed data. This technique
allows examining robustness to changes in the distribution of the composed error in SFM. Additionally,

1 For excellent surveys, see Greene (1999) and Parmeter and Kumbhakar (2014).
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coarsening is a form of regularization, reduces overfitting and makes inferences less sensitive to model
choice. When we are interested in the estimation of efficiency, returns to scale, productivity growth,
etc., this is clearly a desirable goal.

2. Model

Suppose we have observed data x ∈ X ⊆ Rn and the “ideal” data is X∗-ideal in the sense that it
is a random sample from the true data generating process (DGP). We focus on the case of i.i.d data
whose distribution has density p(xi|θ), where θ ∈ Θ ⊆ RM is a parameter and Θ is the parameter space.
The usual posterior p(θ|x) may not be robust if there are outliers and/or we are not certain that the
density p(xi|θ) is the true one.

A robust posterior is defined by Miller and Dunson (2019) in the i.i.d case as follows:
p(θ|d

(
P̂X∗ , P̂x

)
< r), where P̂x = n−1 ∑n

i=1 δxi is the empirical distribution of x and similarly for
P̂X∗ , for some discrepancy measure D(·, ·) and a given r > 0. Therefore, we condition on the event that
the empirical distribution of actual data is close to the empirical distribution of data generated by the
model, using a certain discrepancy function between probability measures.

If Po and Pθ for θ ∈ Θ have densities po and pθ, respectively, the Kullback–Leibler divergence is
defined as:

D(Pθ, Po) =

∫
Θ

po(χ) log
po(χ)

pθ(χ)
λ(dχ), (1)

where λ is the Lebesgue measure. Miller and Dunson (2019) have derived the following approximation
to the posterior under the assumption that r has an exponential distribution with parameter α:

p(θ|d
(
P̂X, P̂x

)
< r) ∝ p(θ)

n∏
i=1

p(xi|θ)
ζ
≡ pζ(θ|x), (2)

where ζ = α
α+n and p(θ) is the prior. The approximation is accurate when n� α or α� n. The main

objective of such “coarsened” posteriors is robustness to small changes in the shape of the distribution
of the data, i.e., the data generating process. The approximation avoids altogether computation of
D
(
P̂X, P̂x

)
or the term

∫
Θ po log po which is independent of θ. The interpretation of the coarsened

posterior is that it adjusts the sample size from n to nζ, so effectively we have a smaller sample size.
In this paper we consider the production SFM2:

yi = x′iβ+ vi − ui, i = 1, . . . , n, (3)

where xi ∈ Rk is a vector of regressors, and vi ∼ iidN
(
0, σ2

v

)
, ui ∼ iidN+

(
0, σ2

u

)
, i = 1, . . . , n,

(vi, ui)⊥xi, i = 1, . . . , n. Let σ2 = σ2
v + σ2

u and λ = σu
σv

and define the parameter vector θ = [β′, σv, σu]
′.

The augmented posterior is:

p(yi, ui|xi,θ) ∝ σ−1
v σ−1

u exp
{
−

1
2σ2

v
(yi + ui − x′iβ)

2
−

1
2σ2

u
u2

i

}
, i = 1, . . . , n. (4)

The marginal density of yi is p(yi|xi,θ) =
∫
∞

0 p(yi, ui|xi,θ)dui and is available in closed form:

p(yi|xi,θ) ∝ σ−1 exp

− (yi − x′iβ)
2

2σ2

Φ
(
−
λ
σ
(yi − x′iβ)

)
, i = 1, . . . , n, (5)

where Φ(·) is the standard normal distribution function; see Kumbhakar and Lovell (2000, p. 78).

2 The cost frontier is obtained by taking −yi and −xi. Moreover, the extension to the case of panel data is straightforward.
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Suppose we have a prior p(θ) and y = [yi; i = 1, . . . , n], X = [xi; i = 1, . . . , n] denote the data.
A coarsened posterior that uses at most ζn out of n observations is:

pζ(θ|y, X) ∝ p(θ)
n∏

i=1

p(yi|xi,θ)
ζ. (6)

Similarly, we can define the coarsened augmented posterior:

pζ(θ, u|y, X) ∝ p(θ)
n∏

i=1

p(yi, ui|xi,θ)
ζ, (7)

where u = [u1, . . . , un]
′. For the SFM it becomes:

pζ(θ, u|y, X) ∝ p(θ)σ−ζn
v σ−ζn

u exp

− ζ

2σ2
v

n∑
i=1

(yi + ui − x′iβ)
2
−

ζ

2σ2
u

n∑
i=1

u2
i

. (8)

With a nearly flat prior of the form3:

p(θ) ∝ σ−(n+1)
v exp

{
−

q

2σ2
v

}
, p(σu) ∝ σ

−1
u , p(β) ∝ const., (9)

the posterior becomes:

pζ(θ, u|y, X) ∝ p(θ)σ−ζn−n−1
v σ−ζn−1

u exp

− ζ

2σ2
v

q + n∑
i=1

(yi + ui − x′iβ)
2

− ζ

2σ2
u

umn
i=1u2

i

. (10)

Inferences can be implemented using Gibbs sampling with data augmentation based on drawing
random numbers from the posterior conditional distributions summarized in Table 1.

1. Draw regression parameters from

β|σv, σu, u, y, X ∼ Nk

(
b,
σ2

v
ζ
(X′X)−1

)
, (11)

where b = (X′X)−1X′(y + u).

2. Draw the scale parameter σ2
v as follows:

q + (y−Xβ+ u)′(y−Xβ+ u)

σ2
v/ζ

|β, σu, u, y, X ∼ χ2(n + ζn). (12)

3. Draw the scale parameter σ2
u:

u′u
σ2

u/ζ
|β, σv, u, y, X ∼ χ2(n). (13)

4. Draw technical inefficiencies:

3 The prior for σv with n = 0 has been proposed by Fernández et al. (1997).
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ui|β, σv, σu, u, y, X ∼ N+

(
ûi, σ2

)
, i = 1, . . . , n, (14)

where ûi = −
σ2(yi−x′iβ)

σ2
v

, i = 1, . . . , n.
We implement the Gibbs sampler using 15,000 iterations, the first 5000 of which are discarded to

mitigate possible start-up effects. In all computations, we set n = 0 and q = 0.1. In the neighborhood of

these values, we did not notice the sensitivity of posteriors.4 It should be mentioned that the coarsened
posterior will have better mixing properties corresponding to ζ = 1 (which already mixes well) as the
likelihood is tempered. Convergence was diagnosed successfully using Geweke (1992) diagnostics.

Suppose
{
u(s)

i , s = 1, . . . , S
}

denotes Gibbs draws for technical inefficiencies (i.e., a sample from

the posterior), and set R(s)
i = exp (−u(s)

i ). Then an estimate of firm-specific efficiency is:

R̂i = S−1
S∑

s=1

R(s)
i , i = 1, . . . , n. (15)

Clearly, such measures depend on the amount of coarsening (ζ) and, therefore, there is the
possibility of sensitive dependence on alternative model specifications.

Sometimes, we may have prior information on the regression parameters, β, summarized in the
form:

β|σv ∼ Nk

(
βo,

σ2
v
ζ

Vo

)
, (16)

where the prior mean is βo and the prior covariance matrix is given by σ2
v
ζ Vo, where βo and Vo are

known. In this case, we have to modify (11) as follows:

β|σv, σu, u, y, X ∼ Nk
(
b, V

)
, (17)

where b =
(
X′X + V−1

o

)−1
X′(y + u), and V =

σ2
v
ζ

(
X′X + V−1

o

)−1
.

Table 1. MCMC convergence diagnostics.

Parameters GCD RNE acf(50)

β 1.619 0.582 0.392
σv 1.303 0.618 0.403
σu 1.202 0.588 0.380
u 1.719 0.449 0.344

Notes: GCD is Geweke (1992) convergence diagnostic which follows (asymptotically in the number of MCMC
draws) a standard normal distribution. RNE denotes “relative numerical efficiency” which is equal to one under i.i.d
sampling from the posterior. Moreover, acf(50) denotes autocorrelation of MCMC draws at lag 50. More specifically,
“GCD” is the maximum absolute value across parameters β or u We use the same strategy for RNE and acf(50).

3. Illustration

We give an illustration using two models. Model I is: yi = β1 + β2xi1 + β3xi2 + vi − ui, i = 1, . . . , n,
where β1 = −1, β2 = β3 = 1

2 , with n = 1000 observations, when vi ∼ i.i.dN(0, 0.12) and, independently,
ui ∼ i.i.dN+

(
0, 0.52

)
. Here, xi1 and xi2 are generated from standard normal distributions. Model II has

900 observations generated from the first model, but the last 100 are generated as yi = vi −ui, i = 1, . . . , n,
where vi ∼ i.i.dN

(
0, 0.12

)
and ui ∼ i.i.dN+

(
0, 0.12

)
. Therefore, in the second model, part of the data is

generated from a process without systematic part and lower signal-to-noise ratio.

4 The neighborhood is defined as n + ν and q + s, where ν ∈
[
10−4, 3

]
and s ∈

[
10−4, 1

]
following a uniform distribution.
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In the left panel of Figure 1, we report the true density of efficiency scores along with estimates
of the density for ζ = 1, 0.95, 0.98 and 0.9. The densities corresponding to different values of ζ are
sample densities of posterior mean scores across the sample. In the right panel of Figure 1, we report
100 random efficiency scores corresponding to posteriors with different values of ζ.
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Figure 1. Artificial data, Model I.

From the right panel of Figure 1, the differences between efficiency scores are not so marked as in
Model II whose results are reported in the upper panels of Figure 2. In the lower panel, we report
marginal posterior densities of the parameters β2 and β3. Efficiency scores are markedly different
compared to ζ = 1 and as ζ decreases to 0.8 the efficiency distributions move to the left. The marginal
posteriors of β2 and β3 also seem to be different although they are not far from the posterior mean
when ζ = 1.

J. Risk Financial Manag. 2019, 12, x FOR PEER REVIEW 5 of 10 

 

 
Figure 1. Artificial data, Model I. 

From the right panel of Figure 1, the differences between efficiency scores are not so marked as 
in Model II whose results are reported in the upper panels of Figure 2. In the lower panel, we report 
marginal posterior densities of the parameters 𝛽  and 𝛽 . Efficiency scores are markedly different 
compared to 𝜁 = 1  and as 𝜁  decreases to 0.8 the efficiency distributions move to the left. The 
marginal posteriors of 𝛽  and 𝛽  also seem to be different although they are not far from the 
posterior mean when 𝜁 = 1.  

 
Figure 2. Artificial data, Model II. 

  

Figure 2. Artificial data, Model II.



J. Risk Financial Manag. 2019, 12, 183 6 of 9

4. Empirical Application

We use the banking data of Malikov et al. (2016) to estimate a translog cost frontier with five
input prices, five outputs, a bad output (non-performing loans) and equity included as quasi-fixed
input. The data is an unbalanced panel with 2397 bank-year observations for 285 large, relatively
homogeneous US banks (2001:I–2010:IV). We refer the reader to Malikov et al. (2016) for further details
on the data. Our results are reported in Figures 3 and 4. As ζ increases, the distribution of efficiency
scores shifts to the left, efficiency scores remain, however, highly correlated (upper right panel) and the
posterior densities of both σ and λ shift to the right. Therefore, changes in distributional assumptions
are likely to increase the variance of the error term but also the signal-to-noise ratio λ from 1.2 to
1.8, on the average. From the results in Figure 4, posterior densities of output cost elasticity (ecy),
elasticity with respect to non-performing loans (ecb), technical change (ect) and elasticity with respect to
quasi-fixed equity (ec,eq) remain robust as ζ changes, although this is less so for output cost elasticity
and, therefore, returns to scale.
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Finally, to address the question of selecting ζ, Miller and Dunson (2019) propose a measure of
fit and a measure of model complexity. A measure of fit is given by the average log-likelihood and
the complexity measure is given by the coarsened posterior. Instead, one case uses the log marginal
likelihood:

M(y, X) =
p(θ)pζ(y|X,θ)

pζ(θ|y, X)
∀θ ∈ Θ, (18)

where pζ(y|X,θ) is the tempered likelihood. Since this is an identity, we can use θ = θζ,
the posterior mean, and the denominator can be approximated with a multivariate normal distribution:

pζ(θ|y, X) ' (2π)−M/2
|Vζ|−1/2, where Vζ = S−1

S∑
s=1

(θ
(s)
ζ
− θζ)(θ

(s)
ζ
− θζ)

′

is the posterior covariance

matrix, and M = dim(θ). This is the Laplace approximation to log marginal likelihood (LML),
see DiCiccio et al. (1997). We report the values of LML for ten values of ζ in Figure 5.

Since LML stabilizes at ζ = 0.55 one would be safe to average efficiency distributions over the
different values of ζ shown in Figure 3. This is valid as alternative models (corresponding to different

values of ζ) have approximately the same posterior model probability given by: pζ(y, X) =
Mζ(y,X)∑
ζ′Mζ′ (y,X)

.
Moreover, from the upper right panel of Figure 4, these efficiency scores are highly correlated and
slight changes in the data generating process affect only their location. Averaged efficiency densities
and densities of output cost elasticity are presented in Figure 6.
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Figure 6. Robust posteriors of efficiency and output cost elasticity.

The results indicate that efficiency ranges from 60% to slightly less than 100% with a median
near 85%. As output cost elasticity averages 1.2, there seem to exist decreasing returns to scale in
U.S large banks (the returns to scale measure is 1/ecy) with constant returns enjoyed by a sizable
number of banks, and increasing returns being only exceptional. Finally, as model uncertainty increases
(corresponding to lower values of ζ), ecy increases slightly and its posterior shifts to the right (upper left
panel of Figure 4).

Finally, in Table 1 we provide diagnostic measures to ensure that our MCMC draws provide
access to the true posterior.

5. Concluding Remarks

We have proposed the concept of coarsened posteriors to robustify inferences from SFM. In an
application to U.S banks, we find that economies of scale and technical change can be estimated
in a relatively robust way, including elasticities with respect to equity and non-performing loans
but efficiency inferences are less robust to the amount of data we use to robustify the posterior.
This causes some concern as small changes in the distributional assumptions may change efficiency
scores considerably. Fortunately, efficiency scores remain highly correlated across the robustness
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parameter (ζ), at least in this application. In terms of future research, it would be interesting to examine
the performance of robust posteriors in more complicated SFM and reconcile differences that arise from
different approaches to modeling inefficiency. Moreover, an interesting avenue for future research
would be based on recent work by Guo et al. (2018) who examined whether a parametric production
frontier function is suitable in the analysis. Guo et al. (2018) developed two test statistics based on local
smoothing and an empirical process, respectively and suggested also residual-based wild bootstrap
versions of these two test statistics. As coarsening provides more robust results it is likely that the
procedures in Guo et al. (2018) would tend to be in favor of the parametric specification although one
has to resolve the issue of applying the Guo et al. (2018) procedures in a Bayesian context.

Funding: This research received no external funding.
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