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Abstract: This paper proposes and investigates a multivariate 4/2 Factor Model. The name 4/2 comes
from the superposition of a CIR term and a 3/2-model component. Our model goes multidimensional
along the lines of a principal component and factor covariance decomposition. We find conditions for
well-defined changes of measure and we also find two key characteristic functions in closed-form,
which help with pricing and risk measure calculations. In a numerical example, we demonstrate
the significant impact of the newly added 3/2 component (parameter b) and the common factor (a),
both with respect to changes on the implied volatility surface (up to 100%) and on two risk measures:
value at risk and expected shortfall where an increase of up to 29% was detected.

Keywords: stochastic covariance; 4/2 model; option pricing; risk measures

1. Introduction

Continuous-time stochastic covariance models are crucial in capturing many stylized facts in
financial data, from heteroscedasticity and fat tails to changing correlations and leverage effects.
Early work in this field focused on discrete time models in the form of generalized autoregressive
conditional heteroskedasticity (GARCH) models (see Engle 2002). The best-known representatives
in continuous time, are the stochastic Wishart family (see Da Fonseca et al. 2007; Gourieroux 2006)
and the Ornstein–Uhlenbeck (OU) family (see Muhle-Karbe et al. 2012) of models, as well as general
linear-quadratic jump-diffusions (see Cheng and Scaillet 2007). These approaches are more realistic
than the classical Black–Scholes lognormal model, but they quickly become intractable as dimensions
increase in terms of the number of parameters and simulation paths, commonly known as the “curse of
dimensionality”. Recent papers (see De Col et al. 2013; Escobar 2018) have presented models built from
linear combination of tractable one-dimensional counterparts. These models involve fewer parameters
than Wishart- or OU-type approaches, owing to a reduction in dimensionality while providing a
closed-form solution to financial problems.

In this paper, we introduce a multivariate mean-reverting stochastic volatility factor model
that combines 1/2 (Heston-type, Heston 1993) and 3/2 processes (Platen 1997) for the modeling of
volatility. Such underlying volatility processes were coined 4/2 by Grasselli (2017). Our paper takes
advantage of the factor structure in asset prices and allows for a mean-reverting structure on the
assets thereby aiming at capturing either multivariate commodity behavior or multiple volatility
indexes (see Gnoatto et al. 2018 for an alternative multivariate non-mean-reverting generalization
based on a pairwise-structure applied to the exchange-rate market). In particular, our setting reduces
the dimension of the parametric space which is a way of controlling the “curse of dimensionality”
making parameters identifiable and popular estimation methods feasible. Secondly, the presence
of independent common and intrinsic factors, each with its own stochastic volatility, enables an
elegant separable structure for characteristic functions (c.f.s) and captures several stylized facts, such
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as: stochastic volatility, stochastic correlation among stocks (see Engle 2002), co-movements in the
variances (see Diebold and Nerlove 1989), multiple factors in the volatilities (see Heston et al. 2009)
and stock correlations (see Da Fonseca et al. 2007). Thirdly, a factor representation is compatible
with economical interpretations, where common factors are exogenous variables explaining financial
markets, and intrinsic factors relate to companies’ intrinsic risks. Lastly, closed-form expressions are
available for joint c.f.s; this is useful for derivative pricing and risk management calculations via Fourier
transformations, and it makes c.f.-based estimations methods feasible (see Carr and Madan 1999; Caldana
and Fusai 2013; Fusai et al. 2018).

The rationale for a 4/2 volatility process rather than a 1/2 or 3/2 model is masterly presented
in Grasselli (2017) for a one-dimensional structure. For instance, as observed by the author, the 1/2
process predicts that the implied volatility skew will flatten when the instantaneous volatility increases
(crises), while the 3/2 model predicts steepening skews. The empirical violation of the Feller condition
in the 1/2 model is also noted, which makes volatility paths stay closer to 0 for a longer period
than empirically supported, while the 3/2 model admits extreme paths with spikes in instantaneous
volatility. The two processes complement each other as they imply very different dynamics for the
evolution of the implied volatility surface. It stands to reason that such a convenient underlying drive
for multidimensional structures should be used to improve not only marginal volatility behavior,
but also the dependence structure.

We obtain an analytical representation for the c.f. of the vector of asset prices, which is in
closed-form for non-mean-reverting nested cases. This type of c.f. is helpful for derivative pricing
purposes. We also produce a second conditional c.f. that can be used for exact simulations of the
non-mean reverting assets given the terminal volatilities, where the latter can be simulated exactly via
chi-squares. We identify a set of conditions that not only produces well-defined changes of measure,
but also avoids local martingales; hence, it can be used for risk-neutral pricing purposes.

Our results were applied numerically to parameters inspired by commodity prices1. There is a
vast literature on commodity modeling (see, for instance, Chiarella et al. 2013; Schwartz 1997, and more
recently Schneider and Tavin 2018). In our numerical study, we investigated the impact of the new
parameters (b, the weight of 3/2 in the overall instantaneous volatility) on the shape of the implied
volatility surface and the values of two risk measures: VaR and expected shortfall.

2. Model Description

Next, we define the model in a filtered probability space (Ω,F ,P ,F) where F0 contains all
subsets of the (P−) null sets of F and F is right-continuous. We first provide the processes under
the historical measure P , then followed by the processes under a (conveniently chosen) risk-neutral
measure Q. Suppose that X(t) = (X1(t), . . . , Xn(t))′ is a vector of asset prices with the following
P-measure representation:

1 This can also be applied to volatility indexes, such as those reported by the Chicago Board Options Exchange (CBOE),
which are clearly a mean-reverting asset class with stochastic volatility.
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Whenever necessary, we assume n = p and A = (aij)n×p to be an orthogonal matrix. In this
setting, ci and c̃i represent risk premiums of asset Xi(t) associated with the common and intrinsic
factors, respectively. β = (βij)n×n is an invertible matrix, which captures the spillover at the expected
return level Xi(t) on asset Xj(t). In other words, it represents the impact from other assets on the long
term average price of the current one.

Based on the quadratic variation relationship defined in this model, if we assume that BP
j , BP

j (t)
⊥,

B̃P
i (t), B̃P

i (t)
⊥ are independent Brownian motions with −1 ≤ ρj ≤ 1 and −1 ≤ ρ̃i ≤ 1. Then,

dWj(t) = ρjdBP
j (t) +

√
1− ρ2

j dBP
j (t)

⊥

dW̃i(t) = ρ̃idB̃P
i (t) +

√
1− ρ̃2

i dB̃P
i (t)

⊥.
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The transformation Y = ln X would create a multivariate Ornstein–Uhlenbeck process with a 4/2
stochastic factor structure:
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ṽi(t)

)
dW̃i(t)



J. Risk Financial Manag. 2019, 12, 159 4 of 21

This general model includes a notable particular case, which is a direct generalization of
Grasselli (2017) to a factor setting when βij = 0, i, j = 1, . . . , n ; this case is studied in more detail and it
is named FG, given its analytical flexibility.

3. Results

This section describes viable changes of measure and two key characteristic functions of the
targeted multivariate process; one for pricing and the other for simulations. The proofs are presented
in Appendix A.

3.1. Change of Measure

Here, we explore the topic of creating a risk-neutral measure Q for pricing purposes. As noted
by Grasselli (2017); Platen and Heath (2010) and Baldeaux et al. (2015) among others, a risk-neutral
measure may not be supported by data in the presence of a 3/2 model (e.g., 1√

v(t)
), as the parametric

constraints needed for the discounted asset price process to be a Q- martingale are violated with real
data; hence, we can only produce a strict Q-local martingale (i.e., Q would be absolute continuous
but not equivalent to P). In such situation, the standard risk-neutral pricing methodology would fail
(biased prices), and we have to turn to the benchmark approach for pricing (see Baldeaux et al. 2015).

The next proposition entertains the following changes of measure with constant λj, λ⊥j , λ̃i and

λ̃⊥i (see Escobar and Gong 2019 for other types of changes of measures) then identifies the parametric
conditions needed for the existence of a valid risk-neutral measure Q.

dBQ
j (t) = λj



√

vj(t) +
bj√
vj(t)


 dt + dBP

j (t), dB̃Q
i (t) = λ̃i

(√
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Proof is included in Appendix A.
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3.2. Characteristic Function

This section aims at obtaining an analytical representation for the c.f. If Z(t) = eβtY(t) is defined
such that eβt is a matrix exponential, then Zi(t) is represented as:
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For convenience, we use
(
eβt)

ij as the ij component of the matrix eβt. Note that Zi(t) is no longer
a mean-reverting process although it accounts for time dependent coefficients.

Next, we find the conditional c.f. for the increments of Z, defined as

ΦZ(t),v(t)(T, ω) = E
[
exp

{
iω′(Z(T)− Z(t))

}
| Z(t) = zt, v(t) = vt

]
(7)

Under a risk neutral measure, this c.f. can be used for pricing some financial products, given the
integrability conditions (a discussion of the generalized c.f. as per Grasselli 2017 is beyond the scope
of this paper.). For convenience, we formulate it as v(t) = (v1(t), . . . , vn(t), ṽ1(t), . . . , ṽn(t)).

Proposition 2. Let (Z(t))t≥0 evolve according to the model in Equation (6). The c.f. ΦZ(t),v(t) is then given
as follows:

ΦZ(t),v(t)(T, ω) = E
[
exp iω′(Z(T)− Z(t)) | Z(t) = yt, v(t) = vt

]

=
n

∏
k=1

ΦGG

(
T, 1; Lk(ω), hk(ω), gk(ω), κk, θk, ξk, ρk, bk, ck, vk,t, S∗k,t

)

×
n

∏
j=1

ΦGG

(
T, 1; 0, Lj(ω), hj(ω), gj(ω), κ̃j, θ̃j, ξ̃ j, ρ̃j, b̃j, c̃k, ṽj,t, S∗j

t

)

where ΦGG is a one-dimensional generalization of the c.f. from Grasselli (2017) provided in Lemma A1.

Proof is provided in Appendix A. The c.f. above involves single expected values with respect to
Brownian motion B(t). In each term, ΦGG (i.e., the second set of Brownian W(t)) is eliminated, hence
this is a drastic simplification compared to the original 2n dimensional joint expectation.

A particular, fully solvable case is the FG model (βij = 0, i, j = 1, . . . , n).

Corollary 1. Let (Z(t))t≥0 evolve according to the FG model (βij = 0, i, j = 1, . . . , n). The c.f. ΦZ(t),v(t) is
subsequently presented as follows:

ΦZ(t),v(t)(T, ω) = E
[
exp iω′(Z(T)− Z(t)) | Z(t) = yt, v(t) = vt

]

=
n

∏
k=1

ΦG

(
T, 1; Lk(ω), hk(ω), gk(ω), κk, θk, ξk, ρk, bk, ck, vk,t, S∗k,t

)

×
n

∏
j=1

ΦG

(
T, 1; 0, Lj(ω), hj(ω), gj(ω), κ̃j, θ̃j, ξ̃ j, ρ̃j, b̃j, c̃k, ṽj,t, S∗j

t

)

where ΦG is the one-dimensional c.f provided by Grasselli (2017) in Proposition 3.1 and given in the Appendix B
for completeness.
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See Appendix A for proof. Next, we turn to the conditional c.f. of the increments of Z given the
terminal value of the CIR processes. This is defined as follows:

ΦZ(t),v(T)(τ, ω) = E
[
exp

[
ω′(Z(T)− Z(t))

]
| Z(t) = zt, v(T) = vT

]
(8)

The above is useful when we need to work with the joint distribution of (Z(T), v(T)) given
(Z(t), v(t)). For such cases, we can try to rely on a convenient simulation scheme combining the
distribution of Z(T) given (Z(t), v(T)) (via Equation (8)) with that of v(T) given v(t), the latter is
known to be non-centered chi-squared. In this way, we can avoid usual discretization algorithms such
as the Euler–Maruyama or Milstein schemes, which are generally not suitable for the CIR process (due
to failure of the Lipschitz condition at 0).

In this vein, when working with the non mean-reverting factor model (βij = 0, i, j = 1, . . . , n),
we can easily adapt the procedures in Grasselli (2017) to provide an exact simulation scheme for the
model given the vector of the independent CIR process at maturity T (i.e., v(T)). This requires only
the c.f. provided next:

Corollary 2. Let (Z(t))t≥0 evolve according to the FG model (βij = 0, i, j = 1, . . . , n). Then, the c.f. ΦZ(t),v(T)
is then given as follows:

ΦZ(t),v(T)(T, ω) =
n

∏
j=1

ΦG,T

(
T, φ; L, hj, gj, κj, θj, ξ j, ρj, bj, cj, vj,T , S∗j,t

)

×
n

∏
i=1

ΦG,T

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,T , S∗it

)

where ΦG,T is the one-dimensional c.f provided by Grasselli (2017) in Proposition 4.1 and given in the Appendix B
for completeness.

Proof of this result is provided in Appendix A. Unsurprisingly, the previous result cannot be
extended to the mean-reverting case, due to the absence of closed formulas for the object:

E
[

exp
{

u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds

)}
| ν(T)

]

which is not solvable even when two of the three deterministic functions B(s), C(s) and D(s) are zero.

4. Discussion: One Common Factor in Two Dimensions

We assume two assets, i.e., X1(t) and X2(t), with one common volatility component, and one
intrinsic factor each. The asset prices thereby follow the system of SDE for i = 1, 2:

dYi(t) = (Li − βiYi(t)) dt

+

(
(ci −

1
2
)[a2

i (
√

v1(t) +
b1√
v1(t)

)2] + (c̃i −
1
2
)(
√

ṽi(t) +
b̃i√
ṽi(t)

)2

)
dt

+ai

(√
v1(t) +

b1√
v1(t)

)
dW1(t) +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃i(t)

dv1(t) = α1(θ1 − v1(t))dt + ξ1

√
v1(t)dB1(t)

dṽi(t) = α̃i(θ̃i − ṽi(t))dt + ξ̃i

√
ṽi(t)dB̃i(t)
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with
〈
dBj(t), dWj(t)

〉
= ρjdt,

〈
dB̃i(t), dW̃i(t)

〉
= ρ̃idt for j = 1; i = 1, 2.

The following table (Table 1) gives a baseline parameter set for the one-factor, two-dimensional
4/2 factor model used in the subsequent sections. The choice of parameters in Scenario A was
made by combining the seminal works of Schwartz (1997) (see Oil and Copper in Tables IV and
V) and Heston (1993). Scenario B combines Schwartz (1997) (see Oil and Copper, Tables IV and V)
with Heston et al. (2009). In both cases, we assume a simple structure for the market price of risk
(c1 = c2 = c̃1 = c̃2 = 0)2.

The θ̃i, i = 1, 2 in the table are set to match the long term volatilities as estimated in
Schwartz (1997), which are 0.334 (Oil, Table IV) and 0.233 (Copper, Table V):

E
[

a2
1

(√
v1(t) +

b1√
v1(t)

)2
+

(√
ṽ1(t) +

b̃1√
ṽ1(t)

)2
]

= a2
1

(
2α1b2

1
2α1θ1−ξ2

1
+ 2b1 + θ1

)
+

2α̃1 b̃2
1

2α̃1 θ̃1−ξ̃2
1
+ 2b̃1 + θ̃1 = (0.334)2

(9)

This explains the values of θ̃i in the table.

Table 1. Toy parametric values.

Initial Values

X1(0) = 18, X2(0) = 100
v1(0) = θ1, ṽ1(0) = θ̃1, ṽ2(0) = θ̃2
Commodity Drift, Schwartz (1997)
β11 = 0.301, β12 = 0, β21 = 0, β22 = 0.369
L1 = 3.09β11 = 0.93, L2 = 4.85β22 = 1.79
Commodity St. Volatility, Heston (1993); Schwartz (1997). Scenario A
α1 = α̃1 = α̃2 = 2
θ1 = 0.01, θ̃1 = 0.0753, θ̃2 = 0.0124
ξ1 = ξ̃1 = ξ̃2 = 0.1
ρ1 = ρ̃1 = ρ̃2 = −0.5
Commodity St. Volatility, Heston et al. (2009); Schwartz (1997). Scenario B
α1 = α̃1 = α̃2 = 0.2098
θ1 = 0.1633, θ̃1 = 0.0685, θ̃2 = 0.0689
ξ1 = ξ̃1 = ξ̃2 = 0.1706
ρ1 = ρ̃1 = ρ̃2 = −0.9
New parameters.
c1 = c2 = c̃1 = c̃2 = 0
a1 = a2 = 0.75
b1 = b̃1 = b̃2 = 0.008

The present section considers two independent cases. First, we study the impact of the parameters
b1, b̃1 and b̃2 on implied volatility surfaces and on two risk measures for a portfolio of underlyings.
We then assess the impact of the commonalities a1 and a2 on these same targets, i.e., implied volatilities
and risk measures. To ensure that the cases lead to reasonable assets behavior, we report the expected
return, variance of return for each asset, as well as the correlation between two assets and the leverage
effects in Tables 2 and 3 under Scenarios A and B, respectively.

We simulated 500,000 paths with dt = 0.1 and considered the following scenarios for b: b1 = 0.008,
b̃1 = b̃2 = 0; b1 = 0, b̃1 = b̃2 = 0.008; b1 = b̃1 = b̃2 = 0 and b1 = b̃1 = b̃2 = 0.008.

2 Variations on c will be studied in future research as part of a calibration exercise (see Medvedev and Scaillet 2007 for viable
approaches and Escobar and Gschnaidtner 2016 for some pitfalls).
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Table 2. First four moments for scenarios on 3/2 component (b), Scenario A.

b1 = 0.008, b̃1 = b̃2 = 0 b1 = 0, b̃1 = b̃2 = 0.008 b1 = b̃1 = b̃2 = 0 b1 = b̃1 = b̃2 = 0.008

E[X1(T)−X1(0)
X1(0)

] 0.0494 0.0489 0.0503 0.0480

E[X2(T)−X2(0)
X2(0)

] 0.0760 0.0754 0.0764 0.0750

V[X1(T)−X1(0)
X1(0)

] 0.0663 0.0680 0.0618 0.0729

V[X2(T)−X2(0)
X2(0)

] 0.0367 0.0390 0.0323 0.0445
Corr(ln X1(T) , ln X2(T)) 0.3194 0.0896 0.1060 0.2799
Corr(ln X1(T) ,< ln X1(T) >) −0.4287 −0.4520 −0.4443 −0.4406
Corr(ln X2(T) ,< ln X2(T) >) -0.4148 −0.4511 −0.4420 −0.4280

Table 3. First four moments for scenarios on 3/2 component (b), Scenario B.

b1 = 0.008, b̃1 = b̃2 = 0 b1 = 0, b̃1 = b̃2 = 0.008 b1 = b̃1 = b̃2 = 0 b1 = b̃1 = b̃2 = 0.008

E[X1(T)−X1(0)
X1(0)

] 0.0514 0.0504 0.0527 0.0499

E[X2(T)−X2(0)
X2(0)

] 0.0774 0.0775 0.0787 0.0754

V[X1(T)−X1(0)
X1(0)

] 0.0360 0.0606 0.0247 0.1022

V[X2(T)−X2(0)
X2(0)

] 0.0359 0.1508 0.0248 0.0723
Corr(ln X1(T) , ln X2(T)) 0.7533 0.0099 0.4698 0.0156
Corr(ln X1(T) ,< ln X1(T) >) −0.4509 −0.2031 −0.5560 −0.0273
Corr(ln X2(T) ,< ln X2(T) >) −0.4496 −0.0398 −0.5517 −0.2444

Similarly, we considered the following scenarios for a: a1 = a2 = 0; a1 = 0.75, a2 = 0; a1 = 0,
a2 = 0.75 and a1 = a2 = 0.75. Tables 4 and 5 present key statistics for the returns under Scenarios A
and B, respectively.

Table 4. First four moments for scenarios on commonalities (a), Scenario A.

a1 = a2 = 0 a1 = 0.75, a2 = 0 a1 = 0, a2 = 0.75 a1 = a2 = 0.75

E[X1(T)−X1(0)
X1(0)

] 0.0491 0.0492 0.0493 0.0492

E[X2(T)−X2(0)
X2(0)

] 0.0761 0.0757 0.0746 0.0759

V[X1(T)−X1(0)
X1(0)

] 0.0658 0.0727 0.0660 0.0732

V[X2(T)−X2(0)
X2(0)

] 0.0371 0.0370 0.0444 0.0447
Corr(lnX1(T) , lnX2(T)) 0.0000 −0.0011 0.0004 0.2841
Corr(lnX1(T) ,< lnX1(T) >) −0.4523 −0.4400 −0.4529 −0.4430
Corr(lnX2(T) ,< lnX2(T) >) −0.4507 −0.4521 −0.4285 −0.4279

Table 5. First four moments for scenarios on commonalities (a), Scenario B.

a1 = a2 = 0 a1 = 0.75, a2 = 0 a1 = 0, a2 = 0.75 a1 = a2 = 0.75

E[X1(T)−X1(0)
X1(0)

] 0.0514 0.0496 0.0512 0.0500

E[X2(T)−X2(0)
X2(0)

] 0.0768 0.0772 0.0756 0.0752

V[X1(T)−X1(0)
X1(0)

] 0.0420 0.0733 0.0420 0.0857

V[X2(T)−X2(0)
X2(0)

] 0.0507 0.0564 0.0746 0.0719
Corr(lnX1(T) , lnX2(T)) 0.0004 −0.0000 −0.0005 0.0039
Corr(lnX1(T) ,< lnX1(T) >) −0.1126 −0.0047 −0.3203 −0.2634
Corr(lnX2(T) ,< lnX2(T) >) −0.1600 −0.2544 −0.0164 −0.0111

4.1. Pricing Option

The section prices European call option on the asset X1 based on our 4/2 generalized factor model.
It explores the implied volatility surface in a three-dimensional plot with strike prices as the x-axis,
time to maturity as the y-axis, and corresponding implied volatility as z-axis. We take the strike prices
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K to be 15, 16.4, 17.8, 19.2, 20.6, and 22 and the expiry dates T are 0.2, 0.36, 0.52, 0.68, 0.84 and 1.0.
By choosing these strike prices, we account for the in-the-money, at-the-money, and out-of-the-money
options, given the initial asset price 18. Subsequently, for each strike price and expiry date, we can
obtain a simulated call price as follows

c(T, K) = e−rTEQ[(X1(T)− K)+],

where X1(T) is approximated using the Euler method.
We extract the implied volatility by matching the Black–Scholes option price formula with

simulated call prices and solve for the volatility parameter. Hence, we can treat the dynamics of Y(t)
as an O-U process such that:

dY(t) = (L1 − 0.5σ2 − βY(t))dt + σdW∗(t).

Next, we consider the two cases described above. The first one studies the impact of b, which
represents the size of the 3/2 component on the covariance; and the second examines the impact of a,
the size of the commonality.

In the case of b, we first extract the implied volatility surface by matching the standard BS formula
for changes on b and b̃ respectively (see Figures 1 and 2).

(a) b̃1=0, b1 between (0, 0.008) (b) b̃1=0.008, b1 between (0, 0.008)

Figure 1. Impact of b1 (common factor, 3/2 component) on implied volatility, Scenario A.

(a) b̃1=0, b1 between (0, 0.008) (b) b̃1=0.008, b1 between (0, 0.008)

Figure 2. Impact of b1 (common factor, 3/2 component) on implied volatility, Scenario B.
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For Scenario A, Figure 1a,b illustrates that even small changes in (b1) the common factor 3/2
component (from 0 to 0.008) can lead to a 7% difference in implied volatility (from 0.275 to 0.295,
or 0.285 to 0.305). The joint effect of the common and intrinsic 3/2 components (b1 and b̃1) can be
obtained by combining those two figures leading to a 11% change (from 0.275 to 0.305) in the presence
of relatively small values of b.

For Scenario B, we observe that the impact of intrinsic factor on volatility surface is more
significant than in Scenario A through a comparison of Figure 2a,b. The effect of b1 on implied
volatility increase by approximately 31% (0.145 to 0.19), as shown in Figure 2a, when only the common
factor is present. In Figure 2b, we observe a volatility “smile" with the difference of approximately
12.2% (0.245 to 0.275). The joint effect of the common and intrinsic 3/2 components in this case is 100%
(0.145 to 0.29).

Figures 1 and 2 jointly demonstrate that, given different underlying process for common and
intrinsic factors, the impact of the 3/2 component can be crucial.

Next, we study a, the weight of the common factor (commonality). We again extract the implied
volatility surface from matching the standard BS formula for changes on a.

Figure 3a,b displays the significant increase in implied volatility due to the commonality of the
asset with the market (a1). The change in implied volatility can increase up to 12.5% (from 0.28 to
0.315) in Scenario A and up to 30% (from 0.22 to 0.32) in Scenario B.

(a) a1 between (0, 1). Scenario A (b) a1 between (0, 1). Scenario B

Figure 3. Impact of commonality (a1) on implied volatility.

4.2. Risk Measures

This section examines the impact of b and a on important risk measures, in particular the value at
risk (VaR) and the expected shortfall (ES). For clarity and calculation purposes, these measures are
defined as follows:

α = P (X(T) ≤ −VaRα) (10)

ES = − 1
α

∫ α

0
VaRγdγ (11)

where X(T) = ω1(X1(T)− X1(0)) + ω2(X2(T)− X2(0)) is the profit and loss portfolio with equal
weights (w1 = w2 = 1/2) (see DeMiguel et al. 2007 for a rationale and support of this simple strategy).
We let α vary from 0.001 to 0.2 with a discretization size of 200.

We first study the impact of b1, b̃1 and b̃2 on VaR and ES for a fixed value of α = 0.01. Figure 4a,b
illustrates a substantial increase in VaR, from 16 (when all b values are set to zero) to 19.5 (all b set to
0.008), which is a 21% increase (α = 0.01) due to the presence of b. In other words, an investor would
have to set aside 21% more capital in the presence of 3/2 components. Similarly, ES increases from
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−21 in the presence of 3/2 components to −18.5 in their absence, which constitutes a 12% increase in
the average VaR.
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Figure 5a,b also displays a substantial increase in VaR, from 17.5 (all b set to zero) to 22.5 (b set
to 0.008), which represents a 28.6% increase (α = 0.01) due to b. This means 28.6% more capital is
required in the presence of 3/2 components. Similarly, the ES increases from−27 with 3/2 components
to −19 without them, representing a 29.6% increase in the average VaR.
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Figure 5. Impact of 3/2 components (b) on Risk measures, Scenario B.

A similar analysis was performed with respect to the commonality a, in the presence of stochastic
volatility (in the common factor) versus constant volatility; in other words, we assessed the impact
of a per se and that of stochastic correlation produced by the 4/2 model. Figure 6a demonstrates an
increase in VaR, from 16 to 18.5, a 15.5% increase (α = 0.01). Figure 6b shows that the VaR jumps from
17 to 23, a 35% growth due to the increase in a.
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5. Conclusions

The generalized men-reverting 4/2 factor model is proposed and studied in this paper. We provide
analytical expressions for key characteristic functions and conditions for well-defined changes of
measures. We also explore the impact of b, i.e., the 3/2 component of the model in the volatility
process, and a, the commonalities in the absence and presence of stochastic volatility on the common
factor. These impacts were measured with respect to implied volatility surfaces and two important
risk measures. The results demonstrate that even small values of the 3/2 component (b) can lead to a
100% change in the implied volatility surface, as well as up to 28% and 29% increases in the VaR and
ES measures, respectively.
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Appendix A. Proofs

Proof. Proof of Proposition 1.
The first step is to ensure the change of measure is well-defined and for this we use Novikov’s

condition, i.e., generically

E


exp


1

2

∫ T

0
λ2

(√
ν(t) +

b√
ν(t)

)2

ds




 = eλ2bTE

[
exp

(
λ2

2

∫ T

0
ν(s)ds +

λ2b2

2

∫ T

0

1
ν(s)

ds
)]

< ∞.

From Grasselli, in order for this expectation to exist, we need two conditions:

− λ2

2
> − α2

2ξ2 =⇒ |λ| < α

ξ
(A1)

and

− λ2b2

2
≥ − (2αθ − ξ2)2

8ξ2 =⇒ |λ| ≤ 2αθ − ξ2

2|b|ξ =⇒ ξ2 ≤ 2αθ − 2|λ||b|ξ (A2)

The latter condition in Equation (A2) implies, in particular, that our volatility processes satisfy
Feller’s condition under P andQ; in other words, it ensures all our CIR processes stay away from zero
under both measures.
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Applying Equation (A2) to our setting leads to (i, j = 1, . . . , n):

ξ2
j ≤ 2αjθj − 2ξ j max

{∣∣λjbj
∣∣ ,
∣∣∣λ⊥j bj

∣∣∣
}

(A3)

ξ̃2
i ≤ 2α̃i θ̃i − 2ξ̃i max

{∣∣∣λ̃i b̃i

∣∣∣ ,
∣∣∣λ̃⊥i b̃i

∣∣∣
}

(A4)

Now, we apply Equation (A1) producing two extra set of conditions (i, j = 1, . . . , n):

max
{∣∣λj

∣∣ ,
∣∣∣λ⊥j

∣∣∣
}

<
αj

ξ j
(A5)

max
{∣∣∣λ̃i

∣∣∣ ,
∣∣∣λ̃⊥i

∣∣∣
}

<
α̃i

ξ̃i
(A6)

The second step applies to the case βij = 0 for i, j = 1, . . . , n and it is to ensure the drift of the
asset price equal the short rate:

Li = r, ci =
n

∑
j=1

aij

(
ρjλj +

√
1− ρ2

j λ⊥j
)

, c̃i = ρ̃iλ̃i +
√

1− ρ̃2
i λ̃⊥i

For the most general case (βij 6= 0 for some i or j), the second step should be adapted to any
particular prescribed drift structure under the Q-measure.

The third step is to ensure the drift-less asset price process is a true Q-martingale and not just a
local Q-martingale:

dXi(t)
Xi(t)

= (.) dt +
n

∑
j=1

aij



√

vj(t) +
bj√
vj(t)


 dWQ

j (t) +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃Q

i (t)

Here, we test the martingale property using the Feller nonexplosion test for volatilities, hence
considering the following n2 + n changes of Brownian motion for the volatility processes and checking
the processes do not reach zero under the various measures:

dBQ
ij (t) = aijρj



√

vj(t) +
bj√
vj(t)


 dt + dBP

j (t), dB̃Q
i (t) = ρ̃i

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dt + dB̃P

i (t)

This leads to the following conditions:

ξ2
j ≤ 2αjθj − 2

∣∣aijρjbj
∣∣ ξ j, i, j = 1, . . . , n (A7)

ξ̃2
i ≤ 2α̃i θ̃i − 2

∣∣∣λ̃i ρ̃i b̃i

∣∣∣ ξ̃i, i = 1, . . . , n (A8)

We can combine the first and third steps in Equations (A3), (A7), (A4) and (2) into the final
conditions.
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Proof. Proof of Proposition 2.
We start by defining new processes dSik,t and dSij

t with i, j, k = 1, 2, . . . , n and t ≥ 0.

dZi(t) =
n

∑
j=1

(
eβt
)

ij



(

c̃j −
1
2

)

√

ṽj(t) +
b̃j√
ṽj(t)


 dt +



√

ṽj(t) +
b̃j√
ṽj(t)


 dW̃j




+
n

∑
k=1



(

n

∑
j=1

(
eβt
)

ij

Lj

n

)
dt +

(
n

∑
j=1

(
eβt
)

ij

(
ck −

1
2

)
a2

jk

)(√
vk(t) +

bk√
vk(t)

)2

dt




+
n

∑
k=1

(
n

∑
j=1

(
eβt
)

ij
ajk

)(√
vk(t) +

bk√
vk(t)

)
dWk

=
n

∑
j=1

dSij
t +

n

∑
k=1

dSik,t

By the dependence structure implied by the model, it follows that all S are independent for a fix i,
hence we can transform the characteristic function using the processes S as follows:

ΦZ(t),v(t)(T, ω) =
n

∏
k=1

E
[
exp{iω′ (S·k,T − S·k,t)} | St, v(t)

] n

∏
j=1

E
[
exp{iωi

(
S.j

T − S.j
t

)
} | St, v(t)

]

For each factor j = 1, 2, . . . , n we define S∗k,t = ω′S·k,t = ∑n
i=1 ωiSik,t; the dynamics of S∗k,t can be

expressed as

dS∗k,t = ω′dS·k,t

=


L(ω, t) + hk(ω, t)

(√
vk(t) +

bk√
vk(t)

)2

 dt + gk (ω, t)

(√
vk(t) +

bk√
vk(t)

)
dWk,t

where hk(ω, t) = ∑n
j=1

(
ck − 1

2

)
a2

jk f j(ω, t), L(ω, t) = ∑n
j=1

Lj
n f j(ω, t) and gk (ω, t) = ∑n

j=1 ajk f j(ω, t)

and f j(ω, t) = ∑n
i=1 ωi

(
eβt)

ij. These three functions are deterministic, linear combinations of f j(ω, t).
Next, we find the characteristic function for the increments of S∗k,t:

E
[
exp{iφ

(
S∗k,T − S∗k,t

)
} | S∗k,t, vk(t) = vk,t

]
= ΦGG

(
T, φ; L(ω), hk(ω), gk(ω), κk, θk, ξk, ρk, bk, ck, vk,t, S∗k,t

)
.

The generic function ΦGG is provided in Lemma A1.
It follows similarly for idiosyncratic factors:

dS∗j
t = ω′dS·jt

=

(
n

∑
i=1

ωi

(
n

∑
j=1

(
eβt
)

ij

(
c̃j −

1
2

)))

√

ṽj(t) +
b̃j√
ṽj(t)


 dt

+

(
n

∑
i=1

ωi

n

∑
j=1

(
eβt
)

ij

)

√

ṽj(t) +
b̃j√
ṽj(t)


 dW̃j,t

= hj(ω, t)



√

ṽj(t) +
b̃j√
ṽj(t)




2

dt + gj (ω, t)



√

ṽj(t) +
b̃j√
ṽj(t)


 dW̃j,t

where hj(ω, t) = ∑n
i=1 ωi

(
∑n

j=1
(
eβt)

ij

(
c̃j − 1

2

))
and gj (ω, t) = ∑n

i=1 ωi ∑n
j=1
(
eβt)

ij.
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Combining all pieces together, we obtain:

ΦZ(t),v(t)(T, ω) =
n

∏
k=1

E
[
exp{iω′ (S·k,T − S·k,t)} | St, v(t)

] n

∏
j=1

E
[
exp{iω′

(
S·jT − S·jt

)
} | St, v(t)

]

=
n

∏
k=1

ΦGG

(
T, 1; Lk(ω), hk(ω), gk(ω), κk, θk, ξk, ρk, bk, ck, vk,t, S∗k,t

)

×
n

∏
j=1

ΦGG

(
T, 1; 0, hj(ω), gj(ω), κ̃j, θ̃j, ξ̃ j, ρ̃j, b̃j, c̃j, ṽj,t, S∗j

t

)

Lemma A1. Let the generic process be:

dZ(t) =


L(t) + h(t)

(√
v(t) +

b√
v(t)

)2

 dt + g (t)

(√
v(t) +

b√
v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)

〈dB(t), dW(t)〉 = ρdt

with g (t) differentiable, then

ΦGG (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vt, Zt) = exp
{

u
∫ T

t
A (s) ds

}
ν(t)u bρ

ξ g(t) exp
{
−uρ

g (t) ν(t)
ξ

}

×E
[

ν(T)u bρ
ξ g(T) exp

{
u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds + ρ

g (T) ν(T)
ξ

)}
| Ft

]

where A, B, C and D are provided in the proof.

Proof. Proof of Lemma A1.
Let the generic process be:

dZ(t) =


L(t) + h(t)

(√
v(t) +

b√
v(t)

)2

 dt + g (t)

(√
v(t) +

b√
v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)

〈dB(t), dW(t)〉 = ρdt

We want to find

E
[
euZ(T)|Ft

]
= euZ(t)ΦGG (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vt, Zt)

Letting ν̃(t) = g (t) ν(t) and ν̂(t) = g (t) ln(ν(t)), we have following:

dν̃(t) = αθg (t) dt +
(

g′ (t)− αg (t)
)

ν(t)dt + g (t) ξ
√

ν(t)dB(t), (A9)

and

dν̂(t) =
g′ (t)
g (t)

ν̂(t)dt +
∂ν̂(t)

∂ ln(ν(t))
d ln(ν(t)) +

1
2

∂2ν̂(t)
∂ ln(ν(t))2 < d ln(ν(t)) > (A10)

=
g′ (t)
g (t)

ν̂(t)dt +
g (t) ξ√

ν(t)
dB(t) + g (t) (

αθ

ν(t)
− α)dt− g (t)

ξ2

2ν(t)
dt
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From Equations (A9) and (A10), we solve for
∫ T

t g (s)
√

ν(s)dB(s) and
∫ T

t
g(s)√

ν(s)
dB(s):

∫ T
t g (s)

√
ν(s)dB(s) = g(T)ν(T)−g(t)ν(t)

ξ − αθ
ξ

∫ T
t g (s) ds− 1

ξ

∫ T
t (g′ (s)− αg (s)) ν(s)ds, (A11)

∫ T
t

g(s)√
ν(s)

dB(s) = 1
ξ ln ν(T)g(T)

ν(t)g(t) + α
ξ

∫ T
t g (s) ds + 1

ξ

(
ξ2

2 − αθ
) ∫ T

t
g(s)
ν(s)ds− 1

ξ

∫ T
t g′ (s) ln(ν(s))ds. (A12)

Split W(t) into B(t) and its orthogonal part B(t)⊥:

Z(T) = Z(t) +
∫ T

t
L (s) ds +

∫ T

t
h(s)

(√
ν(s) +

b√
ν(s)

)2

ds

+
∫ T

t
g (s)

(√
ν(s) +

b√
ν(s)

)
(ρdB(s) +

√
1− ρ2dB(s)⊥),

then substitute Equation (A11) and (A12) to eliminate dB(t). Z(t) can be rewritten now as:

Z(T) = Z(t) +
∫ T

t
L (s) ds +

∫ T

t
h(s)

(
ν(s) + 2b +

b2

ν(s)

)
ds +

√
1− ρ2

∫ T

t
g(s)

(
a
√

ν(s) +
b√
ν(s)

)
dB(s)⊥

+ ρ
g (T) ν(T)− g (t) ν(t)

ξ
− αθρ

ξ

∫ T

t
g (s) ds− ρ

ξ

∫ T

t

(
g′ (s)− αg (s)

)
ν(s)ds

+
bρ

ξ
ln

ν(T)g(T)

ν(t)g(t)
+

αbρ

ξ

∫ T

t
g (s) ds +

bρ

ξ

(
ξ2

2
− αθ

) ∫ T

t

g (s)
ν(s)

ds− bρ

ξ

∫ T

t
g′ (s) ln(ν(s))ds

Grouping conveniently, we obtain:

Z(T) = Z(t) +
∫ T

t
A (s) ds +

∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds

+
bρ

ξ
ln

ν(T)g(T)

ν(t)g(t)
+ ρ

g (T) ν(T)− g (t) ν(t)
ξ

+
√

1− ρ2
∫ T

t
g(s)

(
a
√

ν(s) +
b√
ν(s)

)
dB(s)⊥

where

A (s) = L (s) + 2bh(s) +
(

αbρ

ξ
− αθρ

ξ

)
g (s)

B(s) = h(s)− ρ

ξ

(
g′ (s)− αg (s)

)

C(s) = b2h(s) +
bρ

ξ

(
ξ2

2
− αθ

)
g(s)

D(s) = − bρ

ξ
g′ (s)

Let (Gt)t≥0 denote the filtration generated by ν(t), t ≥ 0. Using iterated expectation and
independence, we can write the conditional moment generating function of Z(T) as:

E
[
euZ(T)|Ft

]
= E

[
E
[
euZ(T) | Ft

⋃
Gt

]
| Ft

]
= exp

{
u
(

Z(t) +
∫ T

t
A (s) ds

)}
ν(t)u bρ

ξ g(t) exp
{
−uρ

g (t) ν(t)
ξ

}

×E[ exp
{

u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds +

bρ

ξ
ln ν(T)g(T) + ρ

g (T) ν(T)
ξ

)}

×E
[

exp

{
u
√

1− ρ2
∫ T

t
g(s)

(√
ν(s) +

b√
ν(s)

)
dB(s)⊥

}
| Ft

⋃
Gt

]
| Ft]
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The inner expectation, conditioned on Ft
⋃ Gt, leads to a normal random variable with mean 0

and variance (Ito’s Isometry) u2(1− ρ2)
∫ T

t g2(s)(ν(s) + b2

ν(s) + 2b)ds. Putting all together:

E
[
euZ(T)|Ft

]
= exp

{
u
(

Z(t) +
∫ T

t
A (s) ds

)}
ν(t)u bρ

ξ g(t) exp
{
−uρ

g (t) ν(t)
ξ

}

×E
[

ν(T)u bρ
ξ g(T) exp

{
u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds + ρ

g (T) ν(T)
ξ

)}
| Ft

]

where

A(s) = A(s) + u(1− ρ2)bg2(s)

B(s) = B(s) +
1
2

u2(1− ρ2)g2(s)

C(s) = C(s) +
1
2

u2(1− ρ2)b2g2(s)

Proof. Proof of Corollary 1.
The proof starts similarly to Proposition 2. We start by defining new processes dSij,t and dSi

t with
i, j = 1, 2, . . . , n and t ≥ 0.

dZi(t) =

[(
c̃i −

1
2

)(√
ṽi(t) +

b̃i√
ṽi(t)

)
dt +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃i

]

+
n

∑
j=1


 Li

n
dt +

(
cj −

1
2

)
a2

ij



√

vj(t) +
bj√
vj(t)




2

dt + aij



√

vj(t) +
bj√
vj(t)


 dWj




= dSi
t +

n

∑
j=1

dSij,t

By the dependence structure implied by the model, it follows that all S are independent for a fix i,
hence we can transform the characteristic function using the processes S as follows:

ΦZ(t),v(t)(T, ω) =
n

∏
j=1

E
[
exp{iω′

(
S·j,T − S·j,t

)
} | St, v(t)

] n

∏
i=1

E
[
exp{iωi

(
Si

T − Si
t

)
} | St, v(t)

]

For each factor j = 1, 2, . . . , n we define S∗j,t = ω′S·j,t = ∑n
i=1 ωiSij,t, the dynamics of S∗j,t can be

expressed as

dS∗j,t = ω′dS·j,t

=


L(ω) + hj(ω)



√

vj(t) +
bj√
vj(t)




2

 dt + gj (ω)



√

vj(t) +
bk√
vj(t)


 dWj,t

where hj(ω) = ∑n
i=1 ωi

(
ci − 1

2

)
a2

ij, L(ω) = ∑n
i=1 ωi

Li
n and gj (ω) = ∑n

i=1 ωiaij. Next, we find the
characteristic function for the increments of S∗j,t:

E
[
exp{iφ

(
S∗j,T − S∗j,t

)
} | S∗j,t, vj(t) = vj,t

]
= ΦG

(
T, φ; L, hj, gj, κj, θj, ξ j, ρj, bj, cj, vj,t, S∗j,t

)
.

The generic function ΦG is provided in the Appendix B.
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Similarly for the idiosyncratic factors dSi
t with i = 1, 2, . . . , n:

dS∗it = ωidSi
t = hi(ω)

(√
ṽi(t) +

b̃i√
ṽi(t)

)2

dt + gi (ω)

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃i,t

where hi(ω) = ωi

(
c̃i − 1

2

)
and gi (ω) = ωi.

Combining all pieces together, we obtain:

ΦZ(t),v(t)(T, ω) =
n

∏
j=1

E
[
exp{iω′

(
S·j,T − S·j,t

)
} | St, v(t)

] n

∏
i=1

E
[
exp{iωi

(
Si

T − Si
t

)
} | St, v(t)

]

=
n

∏
j=1

ΦG

(
T, φ; L, hj, gj, κj, θj, ξ j, ρj, bj, cj, vj,t, S∗j,t

)
×

n

∏
i=1

ΦG

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,t, S∗it

)

Proof. Proof of Corollary 2.
The proof uses Corollary 1, where we express the joint c.f. as the product of one dimensional c.f.s

of 4/2 type.

ΦZ(t),v(t)(T, ω) =
n

∏
j=1

E
[
exp{iω′

(
S·j,T − S·j,t

)
} | St, v(t)

] n

∏
i=1

E
[
exp{iωi

(
Si

T − Si
t

)
} | St, v(t)

]

=
n

∏
j=1

ΦG

(
T, φ; L, hj, gj, κj, θj, ξ j, ρj, bj, cj, vj,t, S∗j,t

)
×

n

∏
i=1

ΦG

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,t, S∗it

)

Hence, every one of these functions (ΦG (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vt, Zt) = E
[
euZ(T) | Ft

]
)

capture the c.f. of a process of the type:

dZ(t) =


L + h

(√
v(t) +

b√
v(t)

)2

 dt + g

(√
v(t) +

b√
v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)

〈dB(t), dW(t)〉 = ρdt

It is not difficult to realize therefore that the c.f. given v(T) can be similarly computed for every
one of those processes, hence one can infer:

ΦZ(t),v(T)(T, ω) =
n

∏
j=1

ΦG,T

(
T, φ; L, hj, gj, κj, θj, ξ j, ρj, bj, cj, vj,T , S∗j,t

)

×
n

∏
i=1

ΦG,T

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,T , S∗it

)

where ΦG,T (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vT, Zt) = E
[
euZ(T) | Ft ∪ v(T)

]
is provided next in Appendix B.
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Appendix B. Helpful Results

Given the 4/2 process, the following c.f. are used in this paper:

dZ(t) =


L + h

(√
v(t) +

b√
v(t)

)2

 dt + g

(√
v(t) +

b√
v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)

〈dB(t), dW(t)〉 = ρdt

•

ΦG (T, u; L, h, g, α, θ, ξ, ρ, b, c, vt, Zt) = E
[
euZ(T)|Ft

]

= exp
{

uZ(t) +
α2θ

ξ2 (T − t) + u
(

r + 2(h− 1
2
)g2b− gραθ

ξ
+

gbρα

ξ

)
(T − t) + u2(1− ρ2)g2b(T − t)

}

×



√
Au

ξ2sinh
(√Au

2 t
)




mu+1

ν(t)
1
2 +

mu
2 − αθ

ξ2 − ugbρ
ξ

(
Ku(T)−

ugρ

ξ

)−
(

1
2 +

mu
2 + αθ

ξ2 +
ugbρ

ξ

)

× exp
{

ν(t)
ξ2

(
−
√

Au coth
(√

Au(T − t)
2

)
+ α− ugρξ

)} Γ
(

1
2 + mu

2 + αθ
ξ2 +

ugbρ
ξ

)

Γ(mu + 1)

×1 F1


1

2
+

mu

2
+

αθ

ξ2 +
ugbρ

ξ
, mu + 1,

Auν(t)

ξ4(Ku(T)− ugρ
ξ ) sinh2

(√
Au(T−t)

2

)


 ,

with

Au = α2 − 2ξ2
(

u
(

gρα

ξ
+ (h− 1

2
)g2
)
+

1
2

u2(1− ρ2)g2
)

,

mu =
2
ξ2

√(
αθ − ξ2

2

)2

− 2ξ2
(

u
(

gbρ

ξ

(
ξ2

2
− αθ

)
+ (h− 1

2
)g2b2

)
+

1
2

u2(1− ρ2)g2b2
)

,

Ku(T) =
1
ξ2

(√
Au coth

(√
Au(T − t)

2

)
+ α

)

•

ΦG,T (T, u; L, h, g, κ, θ, ξ, ρ, b, c, vt, Zt) = E
[
euZ(T)|Ft ∪ v(T)

]

= exp
{

uZ(t) + u
(

r + 2(h− 1
2
)g2b− aραθ

ξ
+

bρα

ξ

)
(T − t) + u2(1− ρ2)g2b(T − t)

}

× exp
{

ugρ

ξ
(ν(T)− ν(t)) +

ugbρ

ξ
log

ν(T)
ν(t)

}

×
√

Au sinh
(

α(T−t)
2

)

α sinh
(√

Au(T−t)
2

) exp
(

ν(T) + ν(t)
ξ2

(
α coth

(
α(T − t)

2

)
−
√

Au coth
(√

Au(T − t)
2

)))

×
I

2
ξ2

√(
αθ− ξ2

2

)2
+2ξ2Bu

(
2
√

Auν(T)ν(t)

ξ2sinh
(√

Au(T−t)
2

)
)

I 2αθ
ξ2 −1

(
2α
√

ν(T)ν(t)

ξ2sinh
(

α(T−t)
2

)
) ,

with

Bu = u
(

gbρ

ξ

(
ξ2

2
− αθ

)
+ (h− 1

2
)g2b2

)
+

1
2

u2(1− ρ2)g2b2,
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