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Abstract: This paper studies the forecasting ability of cryptocurrency time series. This study is about
the four most capitalised cryptocurrencies: Bitcoin, Ethereum, Litecoin and Ripple. Different Bayesian
models are compared, including models with constant and time-varying volatility, such as stochastic
volatility and GARCH. Moreover, some cryptopredictors are included in the analysis, such as S&P 500
and Nikkei 225. In this paper, the results show that stochastic volatility is significantly outperforming
the benchmark of VAR in both point and density forecasting. Using a different type of distribution,
for the errors of the stochastic volatility, the student-t distribution is shown to outperform the standard
normal approach.

Keywords: Bayesian VAR; cryptocurrency; Bitcoin; forecasting; density forecasting; time-varying
volatility

1. Introduction

Nowadays it is more common to handle your affairs online. According to the World Payments
Report (Capgemini and BNP Paribas 2017), electronic payments are expected to increase by almost
11% each year worldwide from 2015 to 2020. The world is becoming more online accessible due to
innovations and modern technology. Online investing on the open market is due to technology much
easier to do, for example there are applications such as eToro, Robinhood and Plus500 where people
can invest money with their mobile devices.

In the last decades, a new type of currency is launched on the financial market and has gained
importance. In particular, it is a virtual currency of which the main feature is the total absence of any
intrinsic value. In 2009, Nakamoto (Nakamoto 2008) documented the creation of the first decentralised
cryptocurrency, called Bitcoin. Since its introduction, it has been gaining more attention from the media,
the finance industry, and academics. There are several reasons for this interest: Firstly Japan and South
Korea have recognised Bitcoin as a legal method of payment (Bloomberg 2017a; Cointelegraph 2017).
Second, some central banks are exploring the use of cryptocurrencies (Bloomberg 2017b). Third,
the Enterprise Ethereum Alliance was created by a large number of companies and banks to make use
of cryptocurrencies and the related technology called blockchain (Forbes 2017). These are just three of
the many reasons the interest in cryptocurrencies has spiked. After the introduction of Bitcoin, many
cryptocurrencies (around 1000) were created and became a new investment opportunity for trades.
Hereafter, a short overlook of the four most important cryptocurrencies is described.

Bitcoin (BTC) is based on decentralisation, which means that it is controlled and owned by
its users. This decentralisation is often criticised due to the lack of control over the whole system.
Despite this criticism, Bitcoin increased in value from a couple of cents in the beginning (2009) to
about 20,000 US dollar at the end of 2017. Ethereum (ETH, Ethereum 2014) is also decentralised and
features smart contract functionality. Due to this contractual agreement, there is no possibility of fraud,

J. Risk Financial Manag. 2019, 12, 150; doi:10.3390/jrfm12030150 www.mdpi.com/journal/jrfm

http://www.mdpi.com/journal/jrfm
http://www.mdpi.com
https://orcid.org/0000-0002-7302-4543
http://dx.doi.org/10.3390/jrfm12030150
http://www.mdpi.com/journal/jrfm
https://www.mdpi.com/1911-8074/12/3/150?type=check_update&version=2


J. Risk Financial Manag. 2019, 12, 150 2 of 18

downtime, third party interference or censorship. The researcher and programmer Vitalik Buterin
proposed it in late 2013 and Ethereum went live at the end of July in 2015.

Ripple (XRP, Ripple 2012) is founded by Ryan Fugger in 2004. It is a blockchain network that
incorporates both a currency system known as XRP and a payment system. This enables real-time
international payments and is therefore currently used by multiple banks. Litecoin (LTC, Litecoin 2014)
was created in 2011 by Charles Lee and is based on the same peer to peer protocol used by Bitcoin.
It is often considered Bitcoin’s rival due to its improvements in transactions; these transactions are
significantly faster than Bitcoin. Therefore it could be particularly attractive in certain situations to
invest in.

Recently, researchers have started to study cryptocurrencies by applying different models and
techniques. However, apart from Catania et al. (2019), a forecasting analysis of cryptocurrencies
has not been strongly used and proposed. This paper tries to continue the analysis initialised by
Catania et al. (2019) and to improve it by comparing different multivariate models for point and
density forecasting of the four most capitalised cryptocurrencies previously described.

To study and forecast the cryptocurrencies, vector autoregressive models and moreover its
extension to time-varying volatility have been introduced. Vector autoregressions (VARs) are used
in models for empirical macroeconomic applications. VARs were introduced by Sims (1980) and
have been widely adopted for forecasting and analysis of macroeconomic variables. The formulation
of VARs is simple, however they tend to forecast well and are often used as the benchmark to
compare the performance of forecasts among models. Sims and Zha (2006) emphasised the value
of volatility modelling for improving efficiency. Accordingly, taking time variation in volatility into
account should improve the estimation of a VAR-based model and inference common in analysis of
macroeconomic variables. Modelling changes in volatility of VARs should also improve the accuracy
of density forecasts. Forecast densities are potentially either too wide or too narrow, due to shifts
in volatility. D’Agostino et al. (2013) showed that the combination of time-varying parameters and
stochastic volatility improves the accuracy of point and density forecasts. One application of these
regressions on a macroeconomic level is investing in assets, stocks and, as the purpose for this paper,
in cryptocurrencies, as mentioned above.

VAR models can have many parameters if they include many lags, however using non-data
information and turning it into priors is found to greatly improve the forecast performance. In Bayesian
estimation algorithms, the stochastic volatility specification is computationally tractable, while in
frequentist estimation it is captured with a single model. This is one of the reasons, in this paper, the
Bayesian approach is used. Another reason is that the Bayesian approach gives some advantages in
parameter uncertainty, computing of probabilistic statements and estimation with many parameters.
As a standard procedure, the normal distribution is often used as a distribution of the so called “noise”.
For this paper, not only the normal distribution, but also the student-t distribution is used for modelling
the errors.

A strong improvement of our paper is the introduction of time-varying specifications for
multivariate models for better forecasting the cryptocurrencies behaviour. In particular, the use
of time-varying volatility jointly with the multivariate time series is of interest for capturing the
possible heteroscedasticity of the shocks and non-linearities in the simultaneous relations among
the different cryptocurrencies in the models. Moreover, taking into account the time variation in
volatility improves the VAR-based estimation and inference that have been shown in the preliminary
cryptocurrencies analyses.

Our results show that including time-varying volatility and in particular stochastic volatility
provides forecasting gains in terms of point and density forecasting relative to the multivariate
autoregressive model. The inclusion of cryptopredictors can lead to better forecasting with respect
to the benchmark but not strong improvements with respect to time-varying volatility models with
only lags of the cryptocurrencies included. Directional predictability indicates that using stochastic
volatility with heavy tails can be used to create profitable investment strategies.
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The content of this paper is structured as follows. In Section 2, some literature used as research
background is reviewed, especially research in the field of Bayesian VARs and cryptocurrencies.
Section 3 describes the data. Section 4 presents our models, estimation methodology and metrics
used to assess our results, which are discussed in Section 5 together with the major findings. Finally,
Section 6 concludes.

2. Literature Review

Cryptocurrency is becoming a hot topic in academia and outside of it. In particular, in the last
years, the interest in cryptocurrencies has exploded from around 19 billion Dollars in February 2018 to
around 800 billion Dollars in December 2017, thus much research has been done about this subject.
Although Bitcoin is a relatively new currency, there have already been some studies on this topic.

Hencic and Gourieroux (2015) investigated the presence of bubbles in Bitcoin/US Dollar
exchange rate by applying a non-causal AR model; the dynamics of the daily Bitcoin/USD exchange
rate shows episodes of local trends, which can be modelled and interpreted as speculative bubbles.
Cheah and Fry (2015) focused on the same issue; as with many asset classes, they showed that
Bitcoin exhibits bubbles. They found empirical evidence that the fundamental price of Bitcoin
is zero. The volatility of six major currencies against the volatility of Bitcoin was measured by
Sapuric and Kokkinaki (2014), the results indicate a high volatility for Bitcoin exchange rate. Then,
Chu et al. (2015) did a statistical analysis of the log-returns of the exchange rate of Bitcoin against the
US Dollar and the generalised hyperbolic distribution is shown to give the best fit. Yermack (2015)
wondered whether Bitcoin can be considered a real currency on the financial market.

Fernández-Villaverde and Sanches (2016) analysed privately issued fiat currencies, checked the
existence of price equilibria and showed that there exists an equilibrium in which price stability is
consistent with competing private monies. However, they also concluded that the value of private
currencies monotonically converges to zero by equilibrium trajectories. Dyhrberg (2016) showed that
the movements of the volatility of Bitcoin has several similarities to gold and the dollar. Bianchi (2018)
investigated if there is a relationship between returns on cryptocurrencies and traditional asset classes.
There was a mild correlation with some commodities, but not that many macroeconomic variables.

Catania et al. (2018) showed that predicting volatility can be improved by using leverage and
time-varying skewness at different forecast horizons. Hotz-Behofsits et al. (2018) used time-varying
parameter VAR with t-distributed measurement errors and stochastic volatility to model three
cryptocurrencies: Bitcoin, Ethereum and Litecoin. Griffin and Shams (2018) investigated whether the
cryptocurrency called Tether is directly manipulating the price of Bitcoin, increasing its predictability.
By using algorithms to analyse the data, they found that purchases with Tether go along with sizeable
increases in Bitcoin prices.

In 2019, there are more studies done on cryptocurrencies. Muglia et al. (2019) investigated the
predictability of the S&P 500 by the movement of Bitcoin, showing that Bitcoin does not have any
direct impact on the predictability of the S&P 500. Catania et al. (2019) found that point forecasting
is statistically significant for Bitcoin and Ethereum when using combinations of univariate models.
They also concluded that density forecasting for all four cryptocurrencies is significant when relying
on time-varying multivariate models.

The exercise in this paper is generalised to multivariate models where the four cryptocurrencies are
predicted jointly using Bayesian VAR models with stochastic volatility as in Koop and Korobilis (2013).
Johannes et al. (2014) predicted stock prices using time-varying parameter and stochastic volatility
VAR models and found statistically and economically significant portfolio benefits for an investor who
uses models of return predictability.

Many institutions tried to investigate the relationship between Bitcoin and the stock market.
An article by Bloomberg (2018) stated that “big investors may be dragging Bitcoin toward Market
correlation”, thus investors looking for high gains may be attracted to the increasing risk of this
cryptocurrency. Stavroyiannis et al. (2019) studied the relation between Bitcoin and the S&P500 and
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found that it does not hold any of the hedge, diversifier, or safe-haven properties and the intrinsic
value is not related to US markets.

There are still no studies that can confirm that Bitcoin is a good stock market predictor. This paper
tries to fill the gap, analysing whether Bitcoin, Ethereum, Litecoin and Ripple can be forecasted by its
lags and other macroeconomic variables.

3. Data

The data collected for the sample span from 8 August 2015 to 28 February 2019, giving a total of
1301 observations. The data can be seen in Figure 1, which shows a big spike around the end of 2017.
Chinn’a “Big Three” exchanges were pending closure around that time; however, the cryptocurrencies
were largely buoyed by a bullish sentiment and went up. In December 2017, the peaks were reached
and a couple days later they dropped. At this time, cryptocurrencies are mainly considered as an
alternative investment, due to the fact that their use for payment is still limited. This can create
correlations with other assets in the financial market for at least two main reasons. The first regards
investors, who usually allocate wealth in a global portfolio and hedge across investments; the second
relates to market sentiments that spread fast among different assets. See the work of Bianchi (2018)
for similar arguments.

Figure 1. Price of the four cryptocurrencies from 8 August 2015 to 28 February 2019.

In this paper, we consider different cryptopredictors, as described below. The choice of these
cryptopredictors is due to the fact that possible correlations between cryptocurrencies and these assets
can be created, because Bitcoin and other currencies are considered as an alternative investment and
their use as payment is still poor. We use the following list of predictors for cryptocurrencies as stated
in Catania et al. (2019) as proxying market sentiments: international stock index prices (the S&P 500,
Nikkei 225 and Stoxx Europe 600); commodity prices (gold and silver); interest rates (the 1-month
and 10-year US Treasury rates); and the VIX closing price. To study the possible dependence between
cryptocurrencies, a transformation is necessary. The percentage daily log returns of cryptocurrencies is
computed as follows:

yt = 100× log(St/St−1),

where St is the price on day t and yt is the cryptocurrency log return. Table 1 reports the descriptive
statistics of the cryptocurrencies. In Figure 2, the transformed data are plotted against time;
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as documented in Chu et al. (2015), the cryptocurrencies display high volatility, non-zero skewness,
very high kurtosis and several spikes.

Table 1. Descriptive statistics, calculated between 8 August 2015 and 28 February 2019.

Coin Bitcoin Ethereum Ripple Litecoin

Maximum 22.5119 41.2337 102.7356 51.0348
Minimum −20.7530 −31.5469 −61.6273 −39.5151

Mean 0.2071 0.4001 0.2781 0.1912
Median 0.2343 −0.0884 −0.3537 0.0000
Std Dev. 3.9543 6.7950 7.4433 5.7424

Skewness −0.2624 0.4898 3.0179 1.2631
Kurtosis 7.8178 7.6368 42.6234 15.3417

Ripple has the highest volatility due to the highest kurtosis. Litecoin has also a high volatility
but not that high compared to Ripple. The other two (Bitcoin and Ethereum) are compared to the
aforementioned cryptocurrencies less volatile, however the kurtosis is still far away from the normal
distribution, which has a kurtosis of three. Another interesting statistic is the skewness; Bitcoin is the
only one with a negative skewness. This indicates that the tail is at the left side of the distribution,
so the probability of lower values than the mean is higher than the normal distribution, which has
a skewness of zero. With a positive skewness, this is the case for the other cryptocurrencies, the
opposite is true. As before, Ripple has the highest skewness, which indicates that Ripple has the
highest probabilities of higher values than its mean.

In Figure 2, the transformation of daily log returns is shown. This gives some more insight into
the cryptocurrencies. Ripple is the most volatile crypto, the descriptive statistics of which are also
indicated. In addition, Ethereum stands out in the first half and after that it is more stable, which
means that it is less volatile. Bitcoin is the most stable crypto according to Figure 2.

Figure 2. Daily log returns of the four cryptocurrencies.

The crypto market is open 24/7, however the predictor variables are not. For this reason, the
data have to be adapted to use for forecasting. The procedure is simple; when the market is closed,
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for a variable, the previous value of that variable is used. This gives a return of zero, however this
is the best way since the variable is actually not changing for a day. Figure 3 shows the plots of the
predictor variables.

Figure 3. Daily log returns of the eight cryptopredictors from 8 August 2015 to 28 February 2019.

4. Methodology

Studies have provided strong evidence of time-varying volatility in macroeconomic variables,
however VARs with constant volatility are used in this paper. By using constant volatility,
the performance of point forecasting should not be affected that much by conditional heteroscedasticity,
which is the case for heteroscedastic models such as GARCH and stochastic volatility.
Heteroscedasticity is a major concern in the regression analysis, as well as in the analysis of variance,
as it can invalidate statistical tests. These tests assume that the errors, obtained by modelling, are
uniform and uncorrelated. For example, the ordinary least squares (OLS) estimator is still unbiased
in the case of heteroscedasticity, thus is inefficient because the actual variance and covariance are
underestimated.

In this paper, three types of specifications are analysed: the standard VAR model, VAR with
stochastic volatility and VAR with GARCH. The reason for multiple specifications of the model
is to really see if the forecasting performance of a more complex model is better than a simple
model. The Bayesian approach gives some advantages, as the parameter uncertainty can be mitigated.
The probabilistic statements can be computed without assumption. Another advantage is that the
estimation of complex nonlinear models with many parameters is feasible. For the stochastic volatility,
two different models are investigated: one where the normal distribution is used and the other where
the student-t distribution is used. These procedures by using these models are not the same, thus could
end up with different results. This way, there can also be a conclusion about which distribution would
give more accurate forecasts between all the models.



J. Risk Financial Manag. 2019, 12, 150 7 of 18

As stated in Catania et al. (2019), the number of lags of the VAR models is selected equal to
three based on the BIC. The lag of interest of the cryptopredictors is the first lag. Thus, eight
models are discussed and used in this paper: Bayesian VAR(3), Bayesian VARX(3), Bayesian
VAR(3)-SV, Bayesian VARX(3)-SV, Bayesian VAR(3)-GARCH, Bayesian VARX(3)-GARCH, Bayesian
VAR(3)-SVt and Bayesian VARX(3)-SVt. These models are constant parameter vector autoregressive
and among the most common models applied in financial and macroeconomic forecasting
(see Koop and Korobilis (2010); Lutkepohl (2007)). Regarding time-varying parameters, we left this
issue as future research. To compare the models with each other, the Bayesian VAR(3) is chosen to be
the benchmark. In the next subsections, the models used for the in-sample analysis and the forecasting
exercise are explained briefly.

4.1. Bayesian VAR

First, the focus is on the benchmark model; the Bayesian VAR(3) model is described as follows:

yt = β1yt−1 + β2yt−2 + β3yt−3 + εt, εt ∼ N(0, Σεt), for t = 1, · · · , T,

with T the number of total days of the data. Since this model is for every cryptocurrency, the equation
above can be rewritten in stacked form:

Yt = Ztβ + εt, β = vec(β1, β2, β3),

Zt = (IN ⊗ Xt),

where Xt = [yt−1, yt−2, yt−3]
′, for every cryptocurrency.

Bayesian VARX

To introduce possible dependence to other variables, it is possible to extend the Bayesian VAR
model, by including other variables of interest. The so-called VARX model can be described as:

yt = β1yt−1 + β2yt−2 + β3yt−3 +
8

∑
j=1

γjWj,t + εi,t, εt ∼ N(0, Σεt), for t = 1, · · · , T,

with T the number of total days of the data and where γj and Wj,t are the parameter and cryptopredictor,
respectively. Since this model is for every cryptocurrency, the equation above can be rewritten in
stacked form:

Yt = Ztβ + εt, β = vec(β1, β2, β3, γ1, · · · , γ8),

Zt = (IN ⊗ Xt),

with T the number of total days of the data and where Xt = [yt−1, yt−2, yt−3, W1t, · · · , W8t]
′, for every

cryptocurrency.

4.2. Bayesian VAR-SV

In the following section, the models with time-varying volatility are described in detail by
differentiating between SV and GARCH. First, the Bayesian VAR(3) with stochastic volatility is similar
to the previous model, however there is a difference in the innovations term. This allows the model to
take different approaches over time, for example in times of high uncertainty there could be a higher
variance in the innovations. For this reason, one should use stochastic volatility, since the model adapts
to the movement and volatility of the time series.
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The Bayesian VAR-SV(3) model is described in the following way:

yt = β1yt−1 + β2yt−2 + β3yt−3 + εt,

εt = A−1Λ0.5
t εt, εt ∼ N(0, Ik), Λt ≡ diag(λ1t, · · · , λkt),

log(λt) = log(λt−1) + νt,

νt = (ν1t, ν2t, · · · , νkt)
′ ∼ N(0, Φ), for t = 1, · · · , T

with T the number of total days of the data and where A is a lower triangular matrix with non-zero
coefficients below the diagonal, which are ones. Λt is a diagonal matrix which contains the time-varying
variances of shocks. This model implies that the reduced form variance-covariance matrix of
innovations to the VAR is var(εt) ≡ Σt = A−1Λt(A−1)′ (Clark and Ravazzolo (2015)).

4.3. Bayesian VAR-GARCH

The Bayesian VAR(3) with GARCH(1,1) innovations is almost the same as the VAR-SV model,
however there is a difference in the innovations term. This allows the model to take different
approaches over time, for example in times of high uncertainty there could be a higher variance
in the errors. It also has a memory over time so it can compare the observations with the past to get
a better estimate of the predictions. For this reason, one should use GARCH over SV, because of the
memory over time.

The Bayesian VAR(3) with GARCH(1,1) innovations is described in the following way:

yt = β1yt−1 + β2yt−2 + β3yt−3 + εt,

εt = H0.5
t ηt, ηt ∼ N(0, Ik), Ht = DtRtDt, Dt = diag(h0.5

1t , · · · , h0.5
kt ),

ht = ω + Bε
(2)
t−1 + Ght−1, for t = 1, · · · , T,

with T the number of total days of the data. R is the conditional correlation matrix. ht follows
a GARCH(1,1) model where ht = [h1t, h2t, · · · , hkt]

′ and ε
(2)
t = [ε2

1t, ε2
2t, · · · , ε2

kt]
′ are

conditional variances and squared errors, respectively. ω and B and G are matrices of coefficients
(Carnero and Eratalay (2014)).

4.4. Bayesian VAR-SVt

The following model description is similar to the VAR-SV, but now with a student-t distribution.
This model, referred to as VAR-SVt, is described as:

yt = β1yt−1 + β2yt−2 + β3yt−3 + εt,

εt = A−1Λ0.5
t εt, εt ∼ t(0, Ik, η), Λt ≡ diag(λ1t, · · · , λkt),

log(λt) = log(λt−1) + νt,

νt = (ν1t, ν2t, · · · , νkt)
′ ∼ t(0, Φ, η), for t = 1, · · · , T

with T the number of total days of the data and η the degrees of freedom. A is a lower triangular matrix
with non-zero coefficients below the diagonal which are ones, Λt is a diagonal matrix, which contains
the time-varying variances of shocks. This model implies that the reduced form variance–covariance
matrix of innovations to the VAR is var(εt) ≡ Σt = A−1Λt(A−1)′ (Clark and Ravazzolo (2015)).

4.5. Forecasting

To forecast the cryptocurrencies, the methodology used is called a rolling window. The estimation
part is from 8 August 2015 to 8 August 2017, i.e. a two-year estimation window. Using the results from
this estimation, the point forecast one-day ahead is calculated. The next forecast is done by estimating
a day later than before, thus from 8 September 2015 to 8 September 2017 . This procedure continues
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until the end of the data is reached (28 February 2019), i.e. 567 days, thus the number of one-day
ahead forecasts is 567. As a prior for the SV and GARCH models, the Minnesota prior is used as
a start. This approach is standard and can be extended to other priors; for this paper, the standard
approach is sufficient enough to investigate the cryptocurrencies. For every one-day forecast, a total
of 6000 simulations are drawn and the first 1000 simulations are burned. This burning of the first
simulation is due to the fact that the first simulations can be correlated and/or inaccurate. Over time,
the simulations are independent of each other and can be used for measures.

4.6. Measures

To compare the performances of the forecasts, we use five different types of measures. The first
three are measures of point forecasts, while the last two are measures of density forecasts. The difference
between measures using point forecasts and measures using density forecasts is that measures using
point forecasts use the mean of the simulations, while measures using density forecasts use all
simulations. Measures using density forecasts give a great view of the full simulation and are not be
averaged out as the measures using point forecasts. However, measures using point forecasts still give
a good interpretation of the performance and are more efficient in time.

The first measure is the so-called 95% credible interval, which is an interval obtained by
simulations. The 2.5% and 97.5% quantiles of the simulations are the lower and upper bounds,
respectively. The idea behind this credible interval is that in 95% of the cases the forecast will be in
this interval. Another measure is the sign predictability, in this paper referred as the “success rate”,
which is the percentage of the forecasts which are in the right direction, as the actual observations.
When the actual observation goes down and the forecast as well, then it counts as a “success”. It is
also a “success” when the actual observation goes up and the forecast as well. In the two other cases,
it counts as a “fail”; in this way, the “success rate” is built. We do not perform sign predictability
tests for the reason indicated by Christoffersen and Diebold (2006). Tests that rely on the sign give no
information about volatility dynamics, which is potentially valuable for detecting sign predictability.

The third measure is called the Root Mean Squared Error (RMSE). The RMSE is preferred
over the Mean Squared Error (MSE) since it is on the same scale as the data. Some authors
(e.g., Armstrong (2001)) recommend the use of the RMSE since it is more sensitive to outliers than
commonly used Mean Absolute Error (MAE). The RMSE is computed for each cryptocurrency series,
i = Bitcoin, Ethereum, Ripple and Litecoin:

RMSEi =

√
∑T−1

t=R (ŷi,t+1 − yi,t+1)2

T − R

where R is the length of the rolling window, T is the number of observations, ŷi,t+1 is the ith
cryptocurrency forecast at time t, and yi,t+1 is the actual observation at time t.

The fourth type of measure is for evaluating the density forecasts; this measure is called the Log
Predictive Score (LS). In the same way as for the RMSE, it is computed for each series:

LSi =
T−1

∑
t=R

ln f (yi,t+1)

where f (yi,t+1) is the predictive density for yi,t+1, given the information up to time t. The fifth measure
is the Continuous Rank Probability Score (CRPS). This is a continuous extension of the RPS and can
be defined by considering an integral of the Brier scores over all possible thresholds x. Denoting the
predicted cumulative density function by F(x) = p(X ≤ x) and the observed value of X by yi,
the continuous ranked probability score can be written for each series as:

CRPSi = E
(∫ ∞

−∞
[F(x)− H(x− yi)]

2dx
)

,
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where H(x− yi) is the Heaviside function that takes the value 0 when the observed value is smaller
than the threshold, and 1 otherwise (Jolliffe and Stephenson 2003, Forecast Verification).

For the RMSE, LS and CRPS, we apply the t-test by Diebold and Mariano (1995) for each model
versus the benchmark. This test gives a p-value which indicates a certain significance level. If in a
table a value has one asterisk, then the model performs better, by a significance level of 5%, than the
benchmark model. If in a table a value has two asterisks, then the model performs better, by a
significance level of 1%, than the benchmark model. The first row of the tables contain the results of
the RMSE, LS and CRPS of the benchmark, which is the BVAR model. Ratios of each models RMSE
and CRPS to the benchmark are done such that entries less than 1 indicate that the given model yields
forecasts more accurate than those from the benchmark. The differences of each models LS to the
benchmark are performed such that a positive number indicates a model beats the baseline.

The other procedure we use is the model confidence set procedure of Hansen et al. (2011) using a
R package called MCS, detailed by Bernardi and Catania (2016). The model confidence set procedure
compares all the predictions jointly and deletes a model if it is significantly worse, finally ending
up with the best possible models of the models that were put in. The models which have a grey
background in tables are chosen to be not significantly worse than the other models.

5. Results

As stated in Section 4.6, we use different measures for point and density forecasting. Initially,
the focus is on point forecasting. The first results of the forecasts are given in Table 2; these are
the percentages of actual observations outside of the 95% credible interval obtained by simulation.
To compare the BVAR model with the BVAR-GARCH model, the forecasts of the BVAR-GARCH model
is only for Ripple not more often in the 95% credible interval. This would imply that the forecasts
are less volatile using the BVAR-GARCH model compared to the BVAR model, and for Ripple this
would be the opposite. This is in line with the expectations since the kurtosis of Ripple (see Table 1)
is significantly higher than the other cryptocurrencies. The BVAR-SV and BVARX-SV models have
the highest percentages of all the cryptocurrencies except for Bitcoin. This would suggest that using
Stochastic Volatility will not give a good prediction overall using credible intervals. The results between
the BVAR model and the BVARX model are close to each other, thus there is not a clear distinction
between these two models. However, the BVARX-GARCH model is the model that stands out the most,
which gives the most forecasts in the 95% credible interval, the only exceptions are the BVAR-GARCH
model for Ethereum and the BVARX-SV model for Bitcoin.

Overall, the use of the cryptopredictor variables would be helpful to simulate forecasts due to the
fact that in almost every case using the cryptopredictor variables would give a lower percentage of
actual observations outside of the 95% credible interval. Using a student-t distribution in the SV model
is only for Bitcoin more often out of the interval, which is expected as Bitcoin is the least volatile of the
cryptocurrencies. Including the cryptopredictor variables into the SV-t model, this percentage is only
smaller for Ripple, however not by a lot.

Table 2. Percentage of actual observations outside of the 95% credible interval retrieved by simulation.

Cryptocurrency Bitcoin Ethereum Ripple Litecoin

BVAR 8.9947 5.1146 4.7619 6.5256
BVAR-SV 5.8201 21.517 14.991 16.755

BVAR-GARCH 5.9965 3.7037 5.4674 4.4092
BVARX 9.1711 4.5855 4.9383 6.7019

BVARX-SV 3.5273 13.404 8.9947 8.9947
BVARX-GARCH 5.6437 4.0564 4.0564 3.351

BVAR-SVt 7.7601 6.5256 9.7002 10.582
BVARX-SVt 8.1129 6.3492 9.1711 10.582
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For every cryptocurrency, the credible intervals are also plotted (see Figures A1–A4 in
Appendix A). In these figures, the credible interval of the BVAR models are pretty steady for all
cryptocurrencies, hence these models are not capturing the volatile movements of the data that well.
When one uses a more expanded version, e.g., the BVAR-SV or BVAR-GARCH model, the credible
levels captures the movements better; when there are shocks, the credible levels adapt to its movement.
However, the BVARX-SV models stands out the most; there is much noise in the credible levels,
thus using the predictors would not be helpful to give a more narrow credible interval to predict one
day ahead.

Table 3 shows the results for the second point forecasting measure previously described.
This predictability is not statistically tested but gives an insight into the accuracy of the movement
of the forecasts. The returns are used to see if the direction of predictions is correct. The BVAR-SV
model is compared to the BVAR model and BVAR-GARCH model in all cases more in the right
direction. Another observation is that only for Ethereum and Ripple including the cryptopredictor
variables predict the direction more precisely. The reason for this behaviour would be that Ripple is
more dependent on market movement than the other cryptocurrencies. However, the percentages
are under 50% or close to 50%, which would imply that these models (BVAR and BVAR-GARCH)
cannot predict the movement very precise. That statement only applies for now on the prediction of
the cryptocurrency going up or down.

An important observation of this table is that the stochastic volatility models have the best scores
overall and are in some cases about 60–67%, which is much more precise than for example 35.45% of
the BVAR-GARCH for Bitcoin. This is especially the case for the SV model with a student-t distribution,
thus using a SV model with student-t distribution is the best way, among these models, to forecast the
direction of the cryptocurrencies.

Table 3. Percentage of forecasts in the right direction (up or down).

Cryptocurrency Bitcoin Ethereum Ripple Litecoin

BVAR 51.675 43.563 48.325 44.621
BVAR-SV 51.852 55.556 55.556 55.732

BVAR-GARCH 35.45 37.39 38.801 38.448
BVARX 47.795 45.15 49.735 43.034

BVARX-SV 51.852 56.085 56.614 50.794
BVARX-GARCH 35.097 41.446 41.975 36.861

BVAR-SVt 61.905 62.963 61.905 67.901
BVARX-SVt 62.434 62.963 58.025 67.725

Moving to the last point forecast measure, Table 4 contains the results of the ratio of the RMSE.
For these results, the RMSE of the benchmark model (BVAR) and the ratios of the other models are
reported. As expected in the descriptive statistics, Ripple is the cryptocurrency with the highest RMSE
due to the high kurtosis.

For Ripple and Litecoin, the SV models are significantly better than the benchmark model.
The GARCH model is in all cases not significantly better than the benchmark; the cause could be that
cryptocurrencies do not follow such dynamics. We could state that including the cryptopredictor
variables does not affect the RMSE of the models enough to increase the performance of the forecasts.
For Bitcoin, there is no model significantly better performing than the VAR, this could be caused by
the aforementioned stability of Bitcoin compared to the other cryptocurrencies.
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Table 4. Ratio of RMSE against benchmark.

Cryptocurrency Bitcoin Ethereum Ripple Litecoin

BVAR 4.6091 5.6996 7.6627 6.7055

BVAR-SV vs. BVAR 0.99466 0.99466 0.98465 ** 0.97735 **
BVAR-GARCH vs. BVAR 1.0072 1.0106 1.0189 1.0163
BVARX vs. BVAR 1.0111 1.0113 1.0057 1.0098
BVARX-SV vs. BVAR 0.99585 0.99598 0.98555 ** 0.98187 *
BVARX-GARCH vs. BVAR 1.013 1.02 0.99486 1.0065
BVAR-SVt vs. BVAR 0.99593 0.98915 ** 0.98254 ** 0.98709 **
BVARX-SVt vs. BVAR 0.99744 0.98927 * 0.98349 ** 0.98774 **

Notes: (1) The “X” indicates models with the cryptopredictor variables included, the “t” indicates that
the student-t distribution is used. (2) For BVAR, the benchmark model, the table reports the RMSE, for
other models it reports the ratio between the RMSE of the current model and the benchmark. Entries less
than 1 indicate that forecasts from current model are more accurate than forecasts from the benchmark
model. (3) ** and * indicate RMSE ratios are significantly different from 1 at 5% and 10%, according to the
Diebold–Mariano test. (4) Gray cells indicate models that belong to the Superior Set of Models delivered by
the Model Confidence Set procedure at confidence level 10%.

The grey areas indicate the model confidence set; this also confirms our conclusion that using the
SV model is in almost every case (except for Litecoin and VARX-SV) in this set. If one wants to forecast
these cryptocurrencies with one of these models, then the preferred option, by looking at the RMSE,
is using stochastic volatility.

Tables 5 and 6 contain the results of the density measures CRPS and PL. The results of the CRPS
measure are not that different from the RMSE. One difference is that by the CRPS, GARCH outperforms
the VAR for Bitcoin and for Ripple if the cryptopredictor variables are included. Hence, the density of
Bitcoin and Ripple follow the dynamics of a GARCH model more than the benchmark. However, the
SV model also outperforms the GARCH model since the values of the SV model are in many cases
lower. In the model, confidence set is now also the GARCH for Bitcoin included.

Table 5. Ratio of CRPS against benchmark.

Cryptocurrency Bitcoin Ethereum Ripple Litecoin

BVAR 2.4707 3.1043 3.9479 3.453

BVAR-SV vs. BVAR 0.95108 ** 0.99346 0.90827 ** 0.9735 *
BVAR-GARCH vs. BVAR 0.96574 ** 1.0443 0.99732 1.0226
BVARX vs. BVAR 1.0125 1.012 1.007 1.0131
BVARX-SV vs. BVAR 1.066 1.0298 0.93993 ** 0.99681
BVARX-GARCH vs. BVAR 0.97812 * 1.042 0.97615 * 1.0216
BVAR-SVt vs. BVAR 0.95964 ** 0.98594 0.88674 ** 0.96403 **
BVARX-SVt vs. BVAR 0.96002 ** 0.98764 0.88773 ** 0.96525 **

Notes: (1) The “X” indicates models with the cryptopredictor variables included, the “t” indicates that
the student-t distribution is used. (2) For BVAR, the benchmark model, the table reports the CRPS, for
other models it reports the ratio between the CRPS of the current model and the benchmark. Entries less
than 1 indicate that forecasts from current model are more accurate than forecasts from the benchmark
model. (3) ** and * indicate CRPS ratios are significantly different from 1 at 5% and 10%, according to the
Diebold–Mariano test. (4) Gray cells indicate models that belong to the Superior Set of Models delivered by
the Model Confidence Set procedure at confidence level 10%.

The conclusion drawn from the first measure of density forecast (CRPS) is that for Ethereum
the case is now the same as the case for Bitcoin by using the RMSE; there is no model significantly
better than the benchmark. The reason could be that the density of the forecasts of Ethereum are not
following the movement captured by the used models, such that the predictability of Ethereum is low
caused by its uncertainty being higher than those of the other cryptocurrencies.

Regarding the density forecast for CRPS, the main conclusion is that including stochastic volatility
in the model formulation lead to better results with respect to the benchmark (VAR model) and to
GARCH specification. In particular, the inclusion of student-t specification of the errors in the SV
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models leads to better results and to great improvements for every cryptocurrency. If one includes
the cryptopredictors in the analysis, there are not so great improvements except when the errors are
student-t specified for stochastic volatility.

Table 6. Differences of PL against benchmark.

Cryptocurrency Bitcoin Ethereum Ripple Litecoin

BVAR −3.2676 −3.1777 −3.7552 −3.8476

BVAR-SV vs. BVAR 0.28254 −1.6413 ** −0.030439 −0.17147
BVAR-GARCH vs. BVAR −0.081207 −0.76657 * 0.27199 0.27338
BVARX vs. BVAR −0.023045 −0.0085887 * −0.025829 −0.027074
BVARX-SV vs. BVAR 0.28375 −0.85084 ** 0.25762 0.39481
BVARX-GARCH vs. BVAR 0.239 −0.27849 0.3654 0.40684
BVAR-SVt vs. BVAR 0.38974 0.067936 0.59546 0.63765
BVARX-SVt vs. BVAR 0.43121 0.064834 0.55927 0.4663

Notes: (1) The “X” indicates models with the cryptopredictor variables included, the “t” indicates that the
student-t distribution is used. (2) For BVAR, the benchmark model, the table reports the PL, for other models it
reports the difference between the PL of the current model and the benchmark. Entries greater than 0 indicate
that forecasts from current model are more accurate than forecasts from the benchmark model. (3) ** and *
indicate PL differences are significantly different from 0 at 5% and 10%, according to the Diebold–Mariano test.
(4) Gray cells indicate models that belong to the Superior Set of Models delivered by the Model Confidence
Set procedure at confidence level 10%.

The predictive likelihood (PL, or log predictive score (LS)) has some different results compared to
the previous measures. At first, the predictive likelihood is very close to each other if one compares
the cryptocurrencies, which indicates that the models perform the same for the cryptocurrencies.
Only for Ethereum there are models significantly better performing than the VAR. The SV models are
in that case the most significant and the GARCH and VAR including the cryptopredictor variables are
less significant.

Overall, the model confidence set is as before containing the SV models. However, this time the
SV-t models are not in this set, only for Litecoin including the cryptopredictor variables. Litecoin has
however almost a full set, only the SV-t model is not in it, thus Litecoin is not following a single model,
but can be explained by multiple models. The GARCH models are now in the model confidence set as
well, which illustrates that the log score of the forecasts are describable as GARCH movements.

Regarding the density forecast for PL, the main conclusion is that including stochastic volatility in
the model formulation leads for Ethereum to better results with respect to the benchmark (VAR model)
and to GARCH specification. Contrarily, the CRPS inclusion of the student-t specification of the errors
in the SV model lead to no significant better results. If one includes cryptopredictors in the analysis,
there are only for Ethereum improvements if there is no student-t specification.

Robustness Check

In this section, we perform the forecasting exercises by including different univariate models.
We report the results for different possible benchmark models. We consider the following two
univariate models: an autoregressive model with one lag (AR(1)) and an autoregressive model with
the first three lags (AR(3)) based on the BIC criterion.

Table 7 reports the point and density forecasting for the AR(1) and AR(3) versus the benchmark
model considered in Section 5. All models are run by using the usual Bayesian priors for 5000
iterations. Furthermore, we perform the root mean square error (RMSE) and the CRPS for the four
main cryptocurrencies. As stated in Table 7, the results for the point and density forecasting are
qualitatively similar to multivariate benchmark case, VAR(3).
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Table 7. Point (RMSE) and Density forecasting (CRPS) for Bayesian AR(1), AR(3) and VAR(3).

Models Bitcoin Ethereum Ripple Litecoin

RMSE
BAR(1) 4.6033 5.6470 7.5795 6.5794
BAR(3) 4.6069 5.6517 7.5984 6.6076
BVAR(3) 4.6091 5.6996 7.6627 6.7055

CRPS
BAR(1) 2.4717 3.0790 3.8395 3.4161
BAR(3) 2.4730 3.0809 3.8816 3.4245
BVAR(3) 2.4707 3.1043 3.9479 3.453

6. Conclusions

Recently, cryptocurrencies have attracted attention from researchers and financial institutions
due to their importance. In this paper, a comparison of the performance of several models has
been investigated to predict four of the most capitalised cryptocurrencies: Bitcoin, Ethereum,
Ripple and Litecoin. A set of cryptopredictors is applied and eight model combinations are proposed
for combining these predictors. The results show statistically significant improvements in point
forecasting for all the cryptocurrencies when using a combination of stochastic volatility and a
student-t distribution. In density forecasting for all cryptocurrencies, the stochastic volatility model
gives the best predictability. One recommendation for future research is to allow different weights
across time and time-varying parameters to improve the point and density forecasting. Moreover,
other cryptopredictors based on the dynamics of the cryptomarket might be interesting for modelling.
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Appendix A. Results

Figure A1. Credible interval for Bitcoin.

Figure A2. Credible interval for Ethereum.
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Figure A3. Credible interval for Litecoin.

Figure A4. Credible interval for Ripple.
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