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Abstract: For a financial portfolio, we suggest a realized measure of diversification benefits, which is
based on intraday high-frequency returns. Our measure quantifies volatility reduction, which could
be achieved by including an additional asset in the portfolio. In order to make our approach feasible
for investors, we also provide time series modeling of both the realized diversification measure and
realized portfolio weight. The performance of our approach is evaluated in-sample and out-of-sample.
We find out that our approach is helpful for the purpose of portfolio variance minimization.
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1. Introduction

The mean-variance portfolio selection procedure of Markowitz (1952) remains a theoretical
cornerstone of the modern portfolio theory. Empirically, one should not apply the mean-variance
portfolio optimization directly, primarily due to the effect of estimation risk in the mean returns;
see, e.g., Best and Grauer (1991); Chopra and Ziemba (1993). For this reason, variance minimization
approaches leading to the choice of the global minimum variance portfolio (GMVP) (cf. Ledoit and
Wolf 2003) or even naive equally-weighted portfolios (cf. DeMiguel et al 2009a, 2009b) often appear to
be preferable in practical portfolio selection. Further improvement of the GMVP performance could
be gained by imposing constraints on portfolio weights (Jagannathan and Ma 2003), using shrinkage
procedures (Golosnoy and Okhrin 2009; Frahm and Memmel 2010), or applying LASSO or other
regularization techniques (Callot et al. 2017).

The essential concept of portfolio diversification postulates that non-systematic risks could be
substantially reduced by including enough not perfectly-correlated risky assets into the portfolio.
Hence, when selecting a portfolio composition, one of the crucial questions is whether the portfolio
is already diversified enough or if including additional assets would lead to a further noticeable
risk reduction (cf. Evans and Archer 1968). There are various measures of portfolio diversification
proposed in the literature; see, e.g., Rudin and Morgan (2006), Bera and Park (2008), Choueifaty and
Coignard (2008), Goetzmann and Kumar (2008), or Meucci (2009).

Recently, the work in Frahm and Memmel (2010) suggested to measure diversification as a ratio of
the current portfolio variance and the GMVP variance. The work in Frahm and Wiechers (2013) analyzed
the properties of this measure and showed that it possesses a convenient economic interpretation.
The availability of intraday returns allows computing daily realized variances and covariances of
risky asset returns, which are consistent estimators of the daily covariance matrix (Barndorff-Nielsen
and Shephard 2004). By analogy, one could also calculate daily realized GMVP weights, which are
a function of the realized covariance matrix (cf. Golosnoy et al. 2019). In this paper, we propose a
daily realized portfolio diversification measure, which quantifies a portfolio volatility reduction due to
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inclusion of an additional asset. Our statistic could be seen as a realized extension of the diversification
measure of Frahm and Wiechers (2013). We provide its stochastic properties for a given realized
covariance matrix estimator.

As investors intend to make portfolio decisions for the next period, it is of interest to predict the
next period (day) diversification gains. Hence, we model realized diversification benefits ex-ante and
directly in order to obtain the corresponding forecasts. For this purpose, we consider several time
series models for our realized diversification measure. Forecasts provided by these models help an
investor to decide whether it is reasonable to include or not to include an additional risky asset into
the portfolio composition. We found out that the cascade HAR model of Corsi (2009) appears to be
mostly suitable in our empirical application both in-sample and out-of-sample, so that it is shown to
be reasonable to consider realized diversification statistics.

The rest of the paper is organized as follows: In Section 2, we introduce our realized diversification
measure and establish its asymptotic stochastic properties. In Section 3, we propose time series
models for diversification in order to make forecasting decisions whether to include additional assets
into the portfolio. Then, in Section 4, we provide the empirical study where we estimate the time
series models for diversification measures and evaluate the economic relevance of the corresponding
diversification forecasts. In Section 5, we conclude the paper, whereas some theoretical results are
placed in Appendix A.

2. Realized Measure of Diversification Benefits

2.1. Quantifying Diversification Benefits

Consider a portfolio of risky assets with log-price pp(τ) and an additional asset (not included in
this portfolio yet) with log-price pa(τ) where τ ∈ IR+ represents continuous time. Denote the bivariate
vector of their log-prices p(τ) = (pp(τ), pa(τ))′, and assume that p(τ) is a Brownian stochastic
semimartingale with a spot covariance matrix Θ(τ). The integrated covariance matrix at day t is
denoted by Σt with:

Σt =
∫ t

t−1
Θ(τ) dτ =

(
σ2

p,t σpa,t

σpa,t σ2
a,t

)
, (1)

where σ2
p,t and σ2

a,t are the daily variances of the initial portfolio and the additional asset returns,
respectively, and σpa,t denotes the corresponding covariance, so that vech(Σt) = (σ2

p,t, σpa,t, σ2
a,t)
′.

Further, we assume that the matrix Σt is positive definite for all t.
For day t, the log returns on the initial portfolio are xp,t = pp(t) − pp(t−1) and on the asset

xa,t = pa(t)− pa(t−1). Construct a new portfolio with log return xt, which is a linear combination of
returns on the initial portfolio xp,t and on the asset xa,t:

xt = vtxp,t + (1− vt)xa,t. (2)

The daily variance of the new portfolio return is denoted by σ2
t .

This problem can be reformulated as a task of constructing a two-asset (the original portfolio and
the additional asset) GMVP, where the corresponding GMVP weight is obtained as a solution of the
variance minimization task:

wt = arg min
vt

[
Var(xt) = Var(vt xp,t + (1− vt) xa,t)

]
. (3)

The solution of the task (3) is the weight of the original portfolio, which is given by:

wt =
σ2

a,t − σpa,t

σ2
a,t + σ2

p,t − 2σpa,t
. (4)
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The variance of the new GMVP obtained by combining the original portfolio with the additional
asset is given as:

σ2
t =

σ2
a,tσ

2
p,t − σ2

pa,t

σ2
a,t + σ2

p,t − 2σpa,t
. (5)

In line with Frahm and Wiechers (2013), we argue that a statistic that measures the
distance between σ2

t and σ2
p,t is of great interest: when σ2

p,t is substantially larger than σ2
t , then

there are diversification benefits to achieve by including this additional asset into the portfolio.
The diversification benefits could be quantified by the variance ratio Dt, which is defined as:

Dt =
σ2

p,t

σ2
t
− 1 =

σ2
a,t + σ2

p,t − 2σpa,t

σ2
a,t − σ2

a,tρ
2
pa,t

− 1 =
σ2

a,tρ
2
pa,t + σ2

p,t − 2σpa,t

σ2
a,t(1− ρ2

pa,t)
=

(σ2
p,t − σpa,t)2

σ2
a,tσ

2
p,t − σ2

pa,t
, (6)

with ρpa,t = σpa,t/(σp,tσa,t). As it holds that σ2
a,tσ

2
p,t − σ2

pa,t > 0 due to the positive definiteness of the
matrix Σt, the case σ2

p,t = σpa,t is excluded as well. Hence, Dt ∈ (0,+∞), and the value of Dt close to
zero indicates no reasonable diversification effect from including this asset in the existing portfolio.

However, for our purposes, it is more convenient to consider the log measure:

Lt = ln Dt = ln

(
σ2

p,t

σ2
t
− 1

)
= ln

(σ2
p,t − σpa,t)2

σ2
a,tσ

2
p,t − σ2

pa,t
. (7)

As the log measure Lt ∈ (−∞, ∞), it appears to be advantageous from the perspective of time
series modeling.

2.2. Realized Measures for Diversification

The availability of intraday high-frequency returns provides the possibility to construct precise
realized volatility measures. Using them, we introduce the realized diversification measure D̂t and
analyze its asymptotic stochastic properties.

Assume that we observe m intraday log-prices for day t at uniformly-spaced time intervals. Then,
the jth intraday return vector is given by:

xt,j = p
(
(t− 1) + j/m

)
− p

(
(t− 1) + (j− 1)/m

)
, j = 1, . . . , m. (8)

These high-frequency intraday returns appear to be useful for the construction of the realized
covariance measures, which are precise nonparametric ex-post estimates of Σt. The most simple
realized covariance matrix estimator is given as:

Σ̂t =
m

∑
j=1

xt,jx′t,j. (9)

Accordingly, for the entries of matrix Σt, we get the realized estimators σ̂2
a,t = ∑m

j=1 x2
a,t,j, σ̂2

p,t =

∑m
j=1 x2

p,t,j, and σ̂pa,t = ∑m
j=1 xp,t,jxa,t,j. More advanced estimators, such as the realized kernel or

composite realized kernel (cf. Lunde et al. 2016), are proposed in order to provide more elaborated
realized volatility estimators.

Given the realized covariance matrix Σ̂t, the realized diversification measure D̂t is defined as:

D̂t =
(σ̂2

p,t − σ̂pa,t)2

σ̂2
a,tσ̂

2
p,t − σ̂2

pa,t
.
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For time series modeling purposes, it appears to be more convenient to consider the measure
L̂t = ln D̂t, as its distribution is not as skewed as those of D̂t. We formulate the stochastic properties of
both D̂t and L̂t in the following proposition, which is proven in Appendix A.

Proposition 1. Consider a realized covariance matrix measure Σ̂t in (9), which is a consistent estimator of
the positive definite covariance matrix Σt for the number of intraperiod returns m → ∞. Then, the realized
diversification measure D̂t = (σ̂p,t − ρ̂pa,tσ̂a,t)2/(σ̂2

a,tσ̂
2
p,t − σ̂2

pa,t) is a consistent estimator of the diversification

benefit Dt. Moreover, given that m1/2(vech(Σ̂t)− vech(Σt))
L−→ N (0, Πt) for m→ ∞ with L−→ indicating

convergence in the distribution (law), the estimator D̂t is asymptotically normally distributed with:

m1/2(D̂t − Dt)
L−→ N (0, (∇Dt)

′Πt∇Dt).

The expression for Πt was provided by Barndorff-Nielsen and Shephard (2004); its realized estimator Π̂t is
given in (A1) in Appendix A, whereas the gradient is given by:

∇Dt =
σ2

p,t − σpa,t

(σ2
a,tσ

2
p,t − σ2

pa,t)
2
·
(

σ2
a,t(σ

2
p,t + σpa,t)− 2σ2

pa,t, 2σ2
p,t(σpa,t − σ2

a,t), −σ2
p,t(σ

2
p,t − σpa,t)

)′
.

Next, the estimator L̂t of Lt is also consistent and asymptotically normally distributed for m→ ∞ with:

m1/2(L̂t − Lt)
L−→ N (0, (∇Lt)

′Πt∇Lt), (10)

with the gradient given as:

∇Lt =

(
2

σ2
p,t − σpa,t

−
σ2

a,t

σ2
a,tσ

2
p,t − σ2

pa,t
,

2σpa,t

σ2
a,tσ

2
p,t − σ2

pa,t
− 2

σ2
p,t − σpa,t

,
−σ2

p,t

σ2
a,tσ

2
p,t − σ2

pa,t

)′
.

A similar asymptotic distribution for the optimal realized weight ŵt could be obtained as a special
case of the Theorem 1 result in Golosnoy et al. (2019). We provide the asymptotic variance of ŵt in
Appendix A, together with the asymptotic covariances ACov(ŵt, D̂t) and ACov(ŵt, L̂t) for m→ ∞.

The distributional result in Equation (10) in Proposition 1 would be of particular importance
for making tests for the usefulness of the additional asset in the portfolio composition. For example,
the null hypotheses H0 : Dt = D0 can be tested by means of the statistic:

TD,t =
√

m
D̂t − D0√

(∇̂Dt)′Π̂t∇̂Dt

H0∼ N (0, 1). (11)

If this statistic TD,t is smaller than the α-quantile of the N (0, 1) distribution, no significant
diversification benefits can be achieved by including the additional asset into the portfolio. The test for
H0 : Lt = L0 could be conducted by analogy with the test statistic:

TL,t =
√

m
L̂t − L0√

(∇̂Lt)′Π̂t∇̂Lt

H0∼ N (0, 1). (12)

To illustrate the results in Proposition 1, we conducted a Monte Carlo simulation study, which
was designed as follows. For T = 104 days, we drew m intraday returns xt = (xt,p, xt,a)′ from a
bivariate normal distribution with xt ∼ N

(
0, m−1Σ

)
and vech(Σ) = (1, σpa,t, 1)′. We performed this

simulation study for m = 78 corresponding to 5-min intraday sampling and for m = 390 corresponding
to 1-min intraday sampling. We selected the correlation σpa,t ∈ [0, 0.3, 0.5]. Relying on the results
from Proposition 1, we computed (11) and (12) for each t = 1, ..., T and then calculated the sample
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moments—mean, variance, skewness, kurtosis—as well as applied the Kolmogorov–Smirnov (KS)
and Jarque–Bera (JB) test to check whether (11) and (12) followed a standard normal distribution.
The values D0 and L0 were set to the true value for the given matrix Σ.

From the results reported in Table 1, we could observe that the sample moments were much
better matched by TL compared to TD. The p-values of the KS and JB tests indicated that at intraday
sampling frequency m = 78, the assumption of normality could be rejected in some cases. However,
for m = 390, both Dt- and Lt-based test statistics appeared to be quite close to the null hypothesis of
the standard normal distribution.

Table 1. Sample moments and p-values of Kolmogorov–Smirnov and Jarque–Bera tests for normality.

Block A: Monte Carlo Simulation Results for TD
m σpa,t Mean Variance Skewness Kurtosis pKS pJB

78
0 −0.064 1.188 −0.979 5.374 0.051 0

0.3 −0.072 1.133 −0.855 4.421 0.183 0
0.5 −0.098 1.203 −0.999 5.067 0.098 0

390
0 −0.056 1.054 −0.198 3.113 0.576 0.029

0.3 −0.033 1.001 −0.383 3.290 0.458 0
0.5 −0.039 1.004 −0.419 3.359 0.341 0

Block B: Monte Carlo Simulation Results for TL
m σpa,t Mean Variance Skewness Kurtosis pKS pJB

78
0 0.105 1.049 0.210 3.234 0.048 0.008

0.3 0.122 0.998 0.403 3.288 0.070 0
0.5 0.138 0.997 0.557 3.462 0.019 0

390
0 0.018 1.046 0.239 3.088 0.732 0.007

0.3 0.051 0.971 0.141 3.066 0.357 0.175
0.5 0.060 0.963 0.195 3.018 0.378 0.042

Note: computed by generating T = 104 days with m = 78 or m = 390 intraday returns.

3. Time Series Model for Diversification Measures

The realized diversification measures D̂t and L̂t are observable at the end of period (day) t.
However, the investor should decide whether to include or not the additional asset into the portfolio
already at t−1. Hence, it is necessary to forecast the diversification measures based on the information
set Ft−1 in order to facilitate the investment decisions. Since the measure Dt is a function of σ2

p,t, σ2
a,t

and σpa,t, we expect that both time series of D̂t and L̂t would exhibit similar properties, such as slowly
decaying autocorrelation functions, which is also supported by the empirical evidence in Section 4.
Next, we concentrate on time series modeling of the observable realized measures L̂t.

To capture the persistency of Dt, we utilized the Heterogeneous Autoregressive (HAR) model
proposed by Corsi (2009), which is a natural choice for modeling log realized volatility series. The HAR
models have several advantages for our purposes. First, they can be estimated by a simple application
of the Ordinary Least Squares (OLS) methodology. Second, the model is sparsely parameterized so that
only a few parameters need to be estimated. Third, the model is able to accommodate easily various
shocks due to its cascade nature, which makes the HAR approach rather robust. The HAR model for
D̂t is defined as:

D̂t = c + βdD̂t−1 + βwD̂(w)
t + βmD̂(m)

t + εt, εt ∼ i.i.d.(0, σ2
ε ), (13)

with D̂(w)
t = (1/5) ·∑5

i=1 D̂t−i and D̂(m)
t = (1/22) ·∑22

i=1 D̂t−i. Hence, the HAR model postulates that
the current Dt depends on the previous day Dt−1, as well as on averages over the last week and over
last month. By analogy, we specify the model for L̂t:

L̂t = c + βd L̂t−1 + βw L̂(w)
t + βm L̂(m)

t + εt, (14)
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with L̂(w)
t = ln

[
(1/5) ·∑5

i=1 D̂t−i

]
, etc.

For making investment decisions at t− 1, it is also of importance to forecast the GMVP weight wt

based on the information set Ft−1. As the time series properties of realized ŵt are rather similar to
those of the realized volatilities, we applied for ŵt the HAR model as well with:

ŵt = c + βdŵt−1 + βwŵ(w)
t + βmŵ(m)

t + εt, (15)

with ŵ(w)
t = (1/5) ·∑5

i=1 ŵt−i, etc. The corresponding one-step-ahead forecasts are denoted as D̃t, L̃t,
and w̃t. The HAR-type models in (13)–(15) are estimated by the OLS methodology in Section 4.

4. Empirical Application

We structure our empirical study in the following way. First, we describe the data and construction
of the portfolios in Section 4.1. Second, we estimate the time series models and provide the corresponding
diagnostics in Section 4.2, where we compare the HAR approaches with simple AR(1) and AR(5)
alternatives. Finally, in Section 4.3, we evaluate the performance of our approach by investigating
whether our measures are suitable for reducing the portfolio variance from the investors’ perspective.

4.1. Data and Construction of Portfolios

Our sample consisted of 10 stocks listed in Table 1 ranging from 1 February 2001–31 December 2009
with T = 2242 observations in total. This sample was investigated by Noureldin et al. (2012) and is
available through Heber et al. (2009). We used the period until 28 February 2005 with 1022 observations
as the in-sample to estimate our models. Table 2 displays the average in-sample and out-of-sample
daily realized variances of all assets.

Table 2. Average realized daily variances of assets and portfolios.

Company In-Sample Out-of-Sample % Change from In- to Out-of-Sample Portfolio
Bank of America 1.68 8.63 414.64  Phigh
Alcoa 3.32 6.30 89.76
American Express 3.16 5.47 73.23
J.P. Morgan 3.93 6.00 52.69
Exxon 1.73 2.36 36.15

General Electric 2.69 3.62 34.20  Plow
DuPont 2.25 2.76 22.93
IBM 2.05 1.84 −10.49
Microsoft 2.91 2.07 −28.82
Coca Cola 1.68 1.19 −29.18
Pew 1.10 1.92 75.13
Plow 1.21 1.27 5.01
Phigh 1.31 3.28 150.29

Note: in-sample: 1 February 2001–28 February 2005, 1022 obs.; out-of-sample: 1 March 2005–31 December 2009, 1220 obs.

For our purposes, we constructed three portfolios, namely the equally-weighted portfolio with
10 assets denoted as Pew, as well as two equally weighted portfolios from five stocks each with the
highest and lowest average in-sample daily realized variances, denoted as Phigh and Plow, respectively.
In the out-of-sample period, which was manifested by the subprime mortgage crisis 2007–2009, the
average portfolio variance increased compared to the in-sample period by 150.29% for Phigh, by 75.13%
for Pew, and only by 5.01% for Plow.

We consider now the following setting: the investor holds the portfolio Plow and considers the
possibility to reduce the portfolio risk by including the portfolio Phigh as an additional asset. For this
approach, we computed the realized diversification measures L̂t and the realized GMVP weights ŵt,
which correspond to the proportion of Plow in the new portfolio.
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In Figures 1 and 2, we provide the autocorrelation function for L̂t and ŵt for both the in-sample
and out-of-sample. Both measures appeared to be rather persistent, which is also taken into account
by time series modeling in Section 4.2.
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Figure 1. In-sample: autocorrelation functions of L̂t (left) and ŵt (right).
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Figure 2. Out-of-sample: autocorrelation functions of L̂t (left) and ŵt (right).

4.2. Time Series Modeling

For time series modeling of L̂t and ŵt, we applied the HAR models as in (14) and (15). Moreover,
we considered both the AR(1) and AR(5) models as simple benchmarks for both processes with, e.g.,
AR(5) for the realized L̂t, parameterized as:

L̂t = c + φ1 L̂t−1 + φ2 L̂t−2 + φ3 L̂t−3 + φ4 L̂t−4 + φ5 L̂t−5 + εt.

All three models were estimated by OLS with the results reported in Table 3.

Table 3. Time series model estimates, L̂t.

Parameter In-Sample Full Sample

HAR AR(5) AR(1) HAR AR(5) AR(1)

c −0.4029
(0.1443)

*** −(0.1067)0.8895 *** −1.5080
(0.0797)

*** −0.4756
(0.1215)

*** −1.0520
(0.0893)

*** −1.8687
(0.0674)

***

φ1 or βd 0.1039
(0.0347)

*** 0.1877
(0.0314)

*** 0.2941
(0.0299)

*** 0.1174
(0.0234)

*** 0.1958
(0.0211)

*** 0.3112
(0.0201)

***

φ2 0.1356
(0.0316)

*** 0.1376
(0.0214)

***

φ3 0.0708
(0.0318)

** 0.0845
(0.0215)

***

φ4 0.1461
(0.0317)

*** 0.1005
(0.0214)

***

φ5 0.0466
(0.0314)

0.0957
(0.0211)

***

βw 0.3743
(0.0981)

*** 0.4651
(0.0675)

***

βm 0.5586
(0.1234)

*** 0.4962
(0.0852)

***

AIC 3598.5 3677.5 3762.0 8896.7 9002.7 9189.6
BIC 3623.0 3711.9 3776.7 8925.2 9042.7 9206.8

adjusted R̄2 0.160 0.147 0.086 0.176 0.163 0.096

Standard errors are reported in parentheses; p-values: * <10%, ** <5%, *** <1%.
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Almost all model coefficients proved to be significantly different from zero. Considering the R̄2,
the HAR model gave the best fit, followed by the AR(5). Moreover, the AR(5) and HAR both had lower
values for AIC and BIC than the AR(1) model. Next, we analyzed the in-sample regression residuals to
further check the models’ adequacy. In Figures 3–5, we show the Autocorrelation Functions (ACF) of
the models’ residuals and their squares.
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Figure 3. L̂t, in-sample autocorrelations of HAR residuals (left) and their squares (right).
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Figure 4. L̂t, in-sample autocorrelations of AR(5) residuals (left) and their squares (right).
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Figure 5. L̂t, in-sample autocorrelations of AR(1) residuals (left) and their squares (right).

Based on the ACF plots, we conclude that our HAR and AR(5) modeling removed residual
autocorrelation, whereas some autocorrelation remained for the AR(1) approach. Furthermore, there
appeared to be no autocorrelation in the squared residuals for all models. Additionally, in Table 4, we
provide the results of residual tests, namely the Ljung–Box (LB) test for autocorrelation, the ARCH-LM
test for heteroskedasticity, and Shapiro–Wilk (SW) test for the normality assumption.

Supporting the evidence from the ACF plots, the tests failed to reject the null hypotheses of
no serial correlation and no ARCH effects for the HAR and AR(5) models. On the other hand,
the Ljung–Box test rejected the null “no autocorrelation” for AR(1), indicating that this model does
not reflect the underlying dynamics well enough. The normality assumption was clearly rejected for
all models.
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Table 4. L̂t, in-sample residual diagnostic test statistics. LB, Ljung–Box; SW, Shapiro–Wilk.

HAR AR(5) AR(1)

LB(5) 7.299 (0.199) 3.255 (0.661) 70.890 (6.7 ×10−14)
ARCH-LM 1.686 (0.891) 3.866 (0.569) 1.408 (0.923)

SW 0.843 (<2.2 ×10−16) 0.844 (<2.2 ×10−16) 0.850 (<2.2 ×10−16)

The corresponding p-values are reported in parentheses.

Next, we estimated the HAR, AR(5), and AR(1) models for the process of realized weights ŵt,
with, e.g., the AR(5) model given as:

ŵt = c + φ1ŵt−1 + φ2ŵt−2 + φ3ŵt−3 + φ4ŵt−4 + φ5ŵt−5 + εt.

Similar to Table 3, in Table 5, we show the estimation results, whereas the model diagnostics are
presented in Table 6. As for the case of L̂t, the model coefficient for ŵt were mostly highly significant.
At first glance, AR(5) appeared to be preferred by AIC compared to AR(1) and HAR; however, judging
by the adjusted R̄2, the HAR still seemed to be the best specification among the considered models.

Table 5. Time series model estimates of ŵt.

Parameter
In-Sample Full Sample

HAR AR(5) AR(1) HAR AR(5) AR(1)

c 0.1283
(0.0304)

*** 0.2012
(0.0227)

*** 0.3278
(0.0162)

*** 0.0104
(0.0062)

* 0.0256
(0.0061)

*** 0.0759
(0.0066)

***

φ1 or βd 0.1377
(0.0374)

*** 0.2202
(0.0315)

*** 0.3179
(0.0297)

*** 0.1468
(0.0253)

*** 0.2886
(0.0210)

*** 0.7014
(0.0151)

***

φ2 0.1492
(0.0320)

*** 0.1961
(0.0216)

***

φ3 0.0598
(0.0323)

* 0.1306
(0.0219)

***

φ4 0.1297
(0.0320)

*** 0.1467
(0.0216)

***

φ5 0.0212
(0.0315)

0.1353
(0.0210)

***

βw 0.2794
(0.0732)

*** 0.3692
(0.0481)

***

βm 0.3131
(0.0854)

*** 0.4376
(0.0432)

***

AIC −23.614 −24.731 33.051 −441.542 −352.927 207.223
BIC 0.924 9.741 47.837 −413.018 −312.940 224.366

adjusted R̄2 0.157 0.155 0.100 0.620 0.605 0.492
Standard errors are reported in parentheses; p-values: * <10%, ** <5%, *** <1%.

In Figures 6–8, we show the in-sample residual ACFs. As for L̂t, in the case of ŵt, the ACFs
for the HAR and AR(5) residuals showed no remaining autocorrelation, whereas for AR(1), there
was still some autocorrelation left. The in-sample diagnostic test results are shown in Table 6.
The HAR and AR(5) models for ŵt seemed to pass all the tests, whereas AR(1) residuals showed some
residual autocorrelation.
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Figure 6. ŵt, in-sample autocorrelations of HAR residuals (left) and their squares (right).
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Figure 7. ŵt, in-sample autocorrelations of AR(5) residuals (left) and their squares (right).
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Figure 8. ŵt, in-sample autocorrelations of AR(1) residuals (left) and their squares (right).

Table 6. ŵt, in-sample residual diagnostic test statistics.

HAR AR(5) AR(1)

LB(5) 11.929 (0.036) 2.886 (0.718) 64.117 (1.7 ×10−12)
ARCH-LM 8.353 (0.138) 7.347 (0.196) 10.760 (0.056)

SW 0.997 (0.119) 0.997 (0.088) 0.998 (0.163)

The corresponding p-values are reported in parentheses.

Summarizing our time series modeling, we could conclude that both HAR and AR(5) models
seemed to be appropriate for modeling realized diversification benefits L̂t and realized portfolio
weights ŵt. Next, we conduct out-of-sample analysis in Section 4.3 in order to investigate whether this
modeling would be helpful to achieve lower portfolio variances.

4.3. Economic Evaluation

Now we provide the out-of-sample analysis within the following framework. Consider the
investor holding the portfolio Plow and willing to know whether he/she should diversify it further by
including the portfolio Phigh as a potential additional asset. Based on the in-sample data, we estimated
the time series models both for ŵt and L̂t and denote the corresponding one-step-ahead out-of-sample
forecasts by w̃t and L̃t, respectively.

Next, consider that the investor is eager to diversify only if volatility could be reduced at least by
a certain amount, for example because of the transaction costs argument. In practice, investors often
make decisions by relying not on statistical significance, but on some (naive) empirical criteria; see, e.g.,
Brandt et al. (2009). In order to resemble this setting, we assumed that the investor seeks to diversify
away at least 5% of portfolio risk, so that the ratio σ2

low,t/σ2
t must not exceed 0.95. This can be translated

into a threshold ` for the log diversification measure Lt with the value ` = ln(1/0.95− 1) = −1.28.
Thus, the corresponding decision rule would be to diversify if the forecast L̃t ≥ ` and to stay by the
initial portfolio if L̃t < `. Then, given the realized measures L̂t, one could learn in the next period
whether this decision was correct or not. The resulting frequencies are visualized using 2× 2 decision
matrices in Table 7.
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Table 7. Number of decisions for ` = −1.28, 1220 out-of-sample observations.

HAR L̂t < ` L̂t ≥ `

L̃t < ` 323 213
L̃t ≥ ` 198 486

66.31% correct predictions

AR(5) L̂t < ` L̂t ≥ `

L̃t < ` 260 182
L̃t ≥ ` 261 517

63.69% correct predictions

AR(1) L̂t < ` L̂t ≥ `

L̃t < ` 117 91
L̃t ≥ ` 404 608

59.43% correct predictions

Judging only from the percentage of correct predictions, (L̃t < ` ∩ L̂t < `) and (L̃t ≥ ` ∩ L̂t ≥ `),
the HAR model appeared to perform better than both AR(5) and AR(1). Note that the HAR approach
is a rather conservative one, as it leads to frequent recommendations not to diversify compared, e.g.,
with AR(5). To sum up, the HAR produced the most correct predictions and, moreover, resulted in the
fewest wrong and costly diversification signals.

As a next step, we incorporated into the decision procedure the forecasted portfolio weight w̃t

in order to quantify the amount of a possible portfolio variance reduction. The strategy would be
as follows: select the diversified portfolio with the forecasted weight w̃t in the case of L̃t > `, which
would lead to the variance σ2

t (w̃t), or remain by the initial portfolio Plow in the case of L̃t < ` with the
variance σ2

low,t. We denote the resulting portfolio variance from this diversification rule as σ2
t (w̃t, L̃t), as

we considered its ratio to the variances from three benchmark approaches: σ2
t (ŵt) corresponding to the

ex-post GMVP, σ2
low,t, and σ2

ew,t for the portfolio with 50% in Phigh and 50% in Plow. The comparison
of different models is provided in Table 8.

Table 8. Ratios of σ2
t (w̃t, L̃t) to different benchmark variances.

Benchmark Mean Ratio Std. Deviation of Ratio % with >1 % with <1 % with =1

HAR to get L̃t and w̃t

σ2
t (ŵt) 1.068 0.1029 1 0 -
σ2

low,t 0.9576 0.0958 0.1230 0.4377 0.4393
σ2

ew,t 0.817 0.2102 0.1779 0.8221 -

AR(5) to get L̃t and w̃t

σ2
t (ŵt) 1.0884 0.1303 1 0 -
σ2

low,t 0.9751 0.1083 0.2992 0.3385 0.3623
σ2

ew,t 0.8258 0.1963 0.1705 0.8295 -

AR(1) to get L̃t and w̃t

σ2
t (ŵt) 1.1833 0.264 1 0 -
σ2

low,t 1.0588 0.2094 0.5025 0.3270 0.1705
σ2

ew,t 0.8714 0.1454 0.1434 0.8566 -

Note: “% with >1” is % of days where the diversification rule delivers larger portfolio variance than the benchmark.

The realized GMVP benchmark σ2
t (ŵt) provided the lower boundary, so it was reported primarily

for comparison purposes. Concerning the portfolio Plow, the HAR model provided the possibility
to reduce its variance by diversifying in more than 43% of days, leading to wrong decisions only in
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12.3% of days. Similar evidence was found for the equally-weighted portfolio Pew. The results became
worse the for AR(5) models and appeared to be really unsatisfactory for the AR(1) approaches, where
holding Plow led to a lower portfolio variance in more than 50% of days.

For a further illustration of our our results, we visualize the time series of portfolio variance
ratios with respect to the benchmarks of Plow and Pew. In particular, for the HAR, AR(5), and
AR(1) approaches, we report the time series of σ2

t (w̃t, L̃t)/σ2
low,t and σ2

t (w̃t, L̃t)/σ2
ew,t in Figures 9

and 10, respectively.
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Year
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5

1.
5

2005 2006 2007 2008 2009

Figure 9. Ratios σ2
t (w̃t, L̃t)/σ2

low,t for the HAR, AR(5), and AR(1) models, from above to below.
Note: the red lines correspond to a ratio of one, indicating equal variances.

In Figure 9 for the benchmark Plow, we observe that the HAR-based approach suggested to
diversify only at a comparatively small number of days, whereas most of the time, the ratio was equal
to one, i.e., no diversification was recommended. It provided the major correct recommendation before
the start of the crisis. The AR(5) suggested very often diversification decisions; however, they appeared
to be mostly disadvantageous from the start of the subprime mortgage crisis in the middle of 2007.
The AR(1) model provided mostly wrong diversification decisions, especially during the crisis year
2008. Note that the reasons for these false recommendations could be attributed to either Lt or wt

forecasting models. Hence, it is apparent that AR(1) is not really suitable for our purposes here.
Different from the case above, in Figure 10, for the benchmark Pew, we observe that the HAR

model provided reasonable diversification recommendations especially since the crisis began in 2007;
however, it was not really useful before the crisis start. Surprisingly, the other two approaches—AR(5)
and AR(1)—also performed similarly to the HAR for this equally-weighted portfolio benchmark.
We interpreted these findings as evidence that not only the choice of the time series model, but also the
choice of the benchmark could determine the success of a portfolio diversification strategy.
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Figure 10. Ratios σ2
t (w̃t, L̃t)/σ2

ew,t for the HAR, AR(5), and AR(1) models, from above to below.
Note: the red lines correspond to a ratio of one, indicating equal variances.

5. Conclusions

The availability of intraday returns allows constructing precise realized volatility measures, which
should be used for the improvement of risk management procedures. In this paper, we introduced
the novel realized measure for portfolio diversification benefits. Our procedure would help to decide
whether to include or not to include an additional security into the risky asset portfolio in order to
reduce its variance.

After providing the asymptotic properties of our realized diversification measures, we considered
several time series models for them such that we formulated a diversification decision rule.
The performance of these models was evaluated in the empirical study based on a dataset of 10 risky
assets. We found that the HAR time series approach was mostly suitable for out-of-sample prediction
of realized diversification measures, as well as in order to forecast the optimal proportion of wealth to
invest into the additional asset.
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Appendix A

Appendix A.1. Proof of Proposition 1

To derive the limit distribution of D̂t, we utilized the Delta method and the results of
Barndorff-Nielsen and Shephard (2004), namely:

m1/2(vech(Σ̂t)− vech(Σt))
L−→ N (0, Πt).

Note that this type of result would also hold for many other realized covariance matrix estimators;
see, e.g., Lunde et al. (2016).

To write down the estimator of Πt, define yt,j = vech(xt,jx′t,j), with vech(A) being the column
stacking operator for the lower triangular matrix of the symmetric matrix A; see Lütkepohl (2005).
The estimator Π̂t is then given by:

Π̂t = m ·
[

m

∑
j=1

yt,jy′t,j − 0.5
m−1

∑
j=1

(yt,jy′t,j+1 + yt,j+1y′t,j)

]
. (A1)

Consequently, D̂t is a function of normally-distributed random variables and, thus, asymptotically
normally distributed:

m1/2(D̂t − Dt)
L−→ N (0, (∇Dt)

′Πt∇Dt).

The gradient ∇Dt contains the partial derivatives of Dt with respect to Σ:

∇Dt =

(
∂Dt

∂σ2
p,t

,
∂Dt

∂σpa,t
,

∂Dt

∂σ2
a,t

)′
.

More precisely, it is given by

∇Dt =
σ2

p,t − σpa,t

(σ2
a,tσ

2
p,t − σ2

pa,t)
2
·
(

σ2
a,t(σ

2
p,t + σpa,t)− 2σ2

pa,t , 2σ2
p,t(σpa,t − σ2

a,t) , −σ2
p,t(σ

2
p,t − σpa,t)

)′
.

The Delta method is also applied to derive the asymptotic distribution of L̂t = ln D̂t:

L̂t = ln D̂t = ln
(

σ̂p,t

σ̂t
− 1
)
= 2 ln(σ̂2

p,t − σ̂pa,t)− ln(σ̂2
a,tσ̂

2
p,t − σ̂2

pa,t).

The realized estimator L̂t is also asymptotically normally distributed:

m1/2(L̂t − Lt)
L−→ N

(
0, (∇Lt)

′Πt∇Lt
)

, with

∇Lt =

(
2

σ2
p,t − σpa,t

−
σ2

a,t

σ2
a,tσ

2
p,t − σ2

pa,t
,

2σpa,t

σ2
a,tσ

2
p,t − σ2

pa,t
− 2

σ2
p,t − σpa,t

,
−σ2

p,t

σ2
a,tσ

2
p,t − σ2

pa,t

)′
.

Appendix A.2. Further Asymptotic Results

A further application of the Delta method yields the asymptotic distribution of ŵt, which is a
special case of the results in Golosnoy et al. (2019), as well as the asymptotic covariances between ŵt

and D̂t, ŵt and L̂t.
The realized weight of the original portfolio in the GMVP is given as:

ŵt =
σ̂2

a,t − σ̂pa,t

σ̂2
a,t + σ̂2

p,t − 2σ̂pa,t
.
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It is also a consistent estimator of the true unknown optimal weight wt.
As ŵt is a function of Σ̂t, its asymptotic distribution is also normal. The gradient ∇wt is given by:

∇wt = (σ2
a,t + σ2

p,t − 2σpa,t)
−2 ·

(
σpa,t − σ2

a,t , σ2
a,t − σ2

p,t , σ2
p,t − σpa,t

)′
.

Therefore, the asymptotic distribution of ŵt for m→ ∞ is:

m1/2(ŵt − wt)
L−→ N

(
0, (∇wt)

′Πt∇wt
)

,

whereas the asymptotic covariances are given by ACov(D̂t, ŵt) = (∇Dt)′Πt∇wt and ACov(L̂t, ŵt) =

(∇Lt)′Πt∇wt, respectively.
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