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Abstract: We study the dependence structure of share price returns among the Beijing Bank, Ningbo
Bank, and Nanjing Bank using copula models. We use the normal, Student’s t, rotated Gumbel,
and symmetrized Joe-Clayton (SJC) copula models to estimate the underlying dependence structure in
two periods: one covering the global financial crisis and the other covering the domestic share market
crash in China. We show that Beijing Bank is less dependent on the other two city banks than Nanjing
Bank, which is dependent on the other two in share price extreme returns. We also observe a major
decrease of dependency from 2007 to 2018 in three one-to-one dependence structures. Interestingly,
contrary to recent literatures, Ningbo Bank and Nanjing Bank tend to be more dependent on each
other in positive returns than in negative returns during the past decade. We also show the dynamic
dependence structures among three city banks using time-varying copula.

Keywords: city banks; dependence structure; copula

1. Introduction

Research on the co-movement among financial asset returns has tended to focus more on tail
dependence rather than linear correlation, as the former can capture the dependence structure in
a period with extreme events (boom or crash). The dependence structure has been studied using
many financial time series data, such as international share market indices, exchange rates, and bond
yields; other non-financial data, such as oil and gold prices, have also been proven to be highly related
to the tail dependence of financial markets. Furthermore, research on tail dependence has shown
that for most financial asset returns, there is more dependence during a crash than during boom
periods (see, for example, (Ang and Chen 2002)). Potential asymmetric characteristics exist in the
tail dependence structure. For instance, as shown first by Patton (2006), some exchange rate returns
exhibit asymmetric tail dependence. These results relating to tail dependence aroused our interest in
the asymmetry in tail dependence.

In financial asset returns, tail dependence may change over time. As shown by Patton (2006),
the tail dependence of DM (Deutsche mark)–USD (US dollar) and YEN (Japanese yen)–USD potentially
changes over time, especially before and after the introduction of the Euro. Similarly, the exchange rate
returns reflect not only the financial market, but the consideration and behavior of the three central
banks (such as motivating exports), especially before and after the introduction of the Euro. In this
study, we considered time-varying copula models to further capture the change of tail dependence
over time.

Little attention has been paid to the dependence structure among the share prices of city banks in
China. Share price returns are based on the prediction of not only macroeconomic variables, but also
profitability and risks, which are highly dependent on banking industry policies, bank strategies, local
investment opportunities and risks, inter-bank lending, and inter-bank bond markets. The risks can be
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passed from one bank to another, as indicated by tail dependence. The other banks, which include
the big four state-owned commercial banks, have large branches all over the country; these banks
tend to have a more stable dependence structure and similar share price movements than city banks.
Each city bank only has branches in the major cities and its own city where business first started.
The dependence structure of city banks changes more obviously than that of the major banks. Beijing
Bank, Ningbo Bank, and Nanjing Bank were the earliest listed city banks in the Chinese share market
and have the largest data sample.

To investigate the underlying changes in dependence structure among the three city banks,
we considered separating the sample and comparing the dependence strength in two distinct periods,
as well as introducing time-varying copula models. The first step was to decide the proper separation
of timing. In the past decade, the Chinese share market (Main Board) has experienced two large
declines, one in the 2008 global financial crisis, and the other in the second half of 2015. The shares
of the three banks saw a large decline of more than 75% after being listed in the summer of 2007.
All share prices reached close to the initial public offering (IPO) prices in the subsequent eight years.
However, the prices shrank again to half in only two months during the domestic stock market crash.
We separated the total sample at the start of the domestic stock market crash in June 2015.

This study makes two contributions. First, unlike most previous studies, we used copula models
on the city banks’ share price returns. Many scholars have used copula functions to capture the
dependence structure and extend the models to asymmetric and time-varying ones, mostly on
aggregate variables. Dependence structures have been widely discussed in terms of exchange rates
(Patton 2006), carbon dioxide commission prices in international energy markets (Marimoutou and
Soury 2015), oil prices and stock market indices (Sukcharoen et al. 2014), precious metal prices
(Reboredo and Ugolini 2015), and international stock markets (Luo et al. 2011). Most of the studies
using copula models were based on aggregate variables. Our study sheds new light on the dependence
structures among minor city banks based on various types of copula models. The second contribution
is that we examined the changes in dependence structure of the daily share price returns between
the Beijing Bank, Ningbo Bank, and Nanjing Bank. Furthermore, the total sample was separated
into two parts: (1) From 19 September 2007 to 4 June 2015, which covered the global financial crisis,
and (2) from 12 June 2015 to 21 May 2018, which covered the domestic share market crash. Constant
copula models were used on the total sample and two distinct periods to compare the change in
overall correlation and tail dependence. Moreover, time-varying copula models were used to verify
the changes in dependence structure, mainly in tail dependence.

We present our conclusions in four parts. First, the share price returns of the Ningbo Bank and
Nanjing Bank had a higher dependency than the group of Ningbo Bank and Beijing Bank and the
group of Nanjing Bank and Ningbo Bank. Second, a major decrease of dependence was found among
the three city banks. However, the dependency of Ningbo Bank on Nanjing Bank seemed to be more
consistent from 2008 to 2015 than the other two groups. Third, and most importantly, the joint increase
of the share prices of Ningbo Bank and Nanjing Bank happened more frequently than the joint decrease,
which will shed new light on the research about financial assets price co-movement. Fourth, to better
demonstrate the potential changes over time, the coefficients and figures of innovation were given in
the rotated Gumbel and Student’s t copula model (both in generalized autoregressive score [GAS]).
The outcome of using the time-varying model suggested similar results in the constant copula models.
Tail dependence rose rapidly in the beginning of period 1 and dropped in period 2.

The structure of the remaining paper is as follows: In Section 2, we introduce the basic
methodology applied in this study, including the marginal distribution models, the fundamental
copula theory, and several copula functions. In Section 3, we first introduce the data sample and the
descriptive statistics, followed by the empirical results in constant and time-varying copula models.
We discuss the dependence structure between Beijing Bank, Ningbo Bank, and Nanjing Bank in the
total sample and in two distinct periods. In Section 4, we summarize our conclusions.
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2. Empirical Methodology

This section begins with a discussion about the specific models for estimating the marginal
distribution, including the flexible skewed t and empirical distribution function (EDF). We then discuss
the copula theory and some constant and time-varying copula models.

2.1. Models for Marginal Distributions

To model the dependence structure among the three city banks, we first had to model the
conditional marginal distributions. Before modeling the marginal distributions, we documented the
log-difference of the share prices of the three city banks as daily returns. We modeled the time series
data with possible time-dependent conditional mean and variance. Orders of the ARMA model and
standard GARCH (1,1) model developed by Bollerslev (1987) were selected according to the Bayesian
Information Criterion (BIC). The mean and variance models can be written in the forms given below.
We denoted a given variable of daily returns as Yt and the returns shocks as εt. The standardized
residual, ηt had a constant conditional distribution, where the mean was zero and variance was one.
µ̂i represents the estimated mean part of series i.

Yt = cy + ∑p
i=1 φi,yYt−i + ∑q

j=1 θj,yεt−j + εt, εt =
√

htηt, ηt ∼ iid(0, 1) (1)

ht = ω + βht−1 + αε2
t−1, η̂i,t = (Yi,t − µ̂i)/

√
ĥi,t, i = 1, 2, 3 (2)

It is a well-known fact that most financial time series data have fat tails and do not follow normal
distribution (Fama 1965). To better capture the possible fat tails feature, a Student’s t distribution is
recommended (Bollerslev 1987). We assumed that the term ηt followed a Student’s t distribution rather
than a normal distribution. After estimating the marginal mean and variance models, we needed to
model the distribution of estimated standardized residuals. We denoted the distribution function as
Fi. Following Patton (2013), we considered parametric and non-parametric models in modeling the
distribution of the standardized residuals in each financial data series. In the non-parametric model,
we estimated Fi in EDF:

F̂i(η) ≡
1

T + 1 ∑T
t=1 1{η̂i,t ≤ η}, i = 1, 2, 3 (3)

In the parametric model, we followed the simple and flexible skewed t distribution developed
by Hansen (1994). There are two parameters in this model: the first one is the skewness parameter,
λ ∈ (−1, 1), and the second is the degrees of freedom parameter, ν ∈ (2, ∞); the two parameters control
the degree of asymmetry and the fat tail feature. This model has many features. The distribution is a
skewed normal distribution when ν −→ ∞ , a standardized Student’s t distribution when λ = 0, and a
N(0, 1) when λ = 0, ν −→ ∞ . In empirical study, the condition ν −→ ∞ occurs when ν is larger than
some level. After estimating the parametric model using the simple and flexible skewed t distribution,
we carried out the goodness of fit (GoF) test on this result.

2.2. Constant Copula Models

We first describe the copula theory before analyzing the dependence structure. A key concept
was presented by Sklar (1959), who indicated that joint distribution (F) in n dimensions could be
decomposed into the corresponding n univariate marginal distributions (Fi) and copula function
(C : [0, 1]n −→ [0, 1] ) with n dimensions. Based on this foundation, another copula interpretation,
the probability integral transformation (i.e., Ui ≡ Fi(Xi)) indicated by Casella and Berger (1990),
has become popular in copula theory. After the transformation, variable Ui has a uniform f(0, 1)
distribution that is unrelated to the original distribution Fi when Fi is continuous. After a vector of
probability integral transformation U ≡ [U1, U2, · · · , Un] is obtained, C becomes a joint distribution
function with uniform f(0, 1) distribution. Various copula models have been used to capture the
dependence structure between time series data. However, the normal copula model cannot capture the
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tail dependence because the tail dependence is assumed to be zero. Other forms of copula such as the
Gumbel and Clayton functions, can obtain tail dependence coefficients. Although the Gumbel (Clayton)
copula can only obtain a non-zero (zero) upper tail dependence coefficient and a zero (non-zero) lower
tail dependence coefficient, it can be further developed to the rotated-Gumbel (rotated-Clayton) to
obtain the reverse tail dependence coefficient. We started with the selection of (constant) copula
functions based on the rank of log-likelihood values. Normal, rotated-Gumbel, Student’s t, and SJC
copula functions were selected, and all were used in a bivariate case. We assumed that u1 and u2 were
in the uniform distribution [0, 1]. Each copula model is briefly introduced below:

The normal copula function can be written as Equation (4), where θ is a linear correlation
parameter and φ is a univariate standard normal distribution:

C(u1, u2) =
∫ φ−1(u1)

−∞

∫ φ−1(u2)

−∞

1

2π
√

1− θ2
exp(− s2 − 2θst + t2

2(1− θ2)
)dsdt (4)

The Student’s t copula function can be defined as Equation (5), with v representing the degrees of
freedom and t−1

v (·) being the inverse of a standard Student’s t distribution:

C(u1, u2) =
∫ t−1

v (u1)

−∞

∫ t−1
v (u2)

−∞

1

2π
√

1− θ2
(1 +

s2 − 2θst + t2

v(1− θ2)
)
− v+2

v

dsdt (5)

The Gumbel copula (Gumbel 1960), concentrates on the upper tail dependence with zero lower
tail dependence. It can be written in Equation (6) with parameter γ. In fact, there is abundant evidence
indicating that financial asset returns tend to have joint negative extremes (dramatic falls) more often
than joint positive extremes (sharp increases) (Patton 2006). Therefore, the rotated Gumbel function
might be more practical than the Gumbel copula, where parameter γ is often calculated by denoting a
new series as u′1 = 1− u1 and u′2 = 1− u2, and the lower tail dependence will be 2− 21/γ.

C(u1, u2) = exp{−
[
(−lnu1)

γ + (−lnu2)
γ]1/γ}, γ ∈ (1,+∞) (6)

We considered the modified Clayton copula developed by Joe (1997), rather than the Clayton
copula. We refer to the transformed copula as the Joe–Clayton copula (Patton 2006). The Joe–Clayton
copula can be written in Equation (7), with τU ∈ (0, 1) and τL ∈ (0, 1) representing the upper and
lower tail dependence, respectively. The parameters are κ = 1/log2(2− τU) and γ = −1/log2(τ

L).

CJC(u1, u2|τU , τL) = 1− (1− {
[
1− (1− u1)

κ]−γ
+
[
1− (1− u2)

κ]−γ − 1}
−1/γ

)
1/κ

(7)

As indicated by Patton (2006), asymmetry may still exist when the upper and lower tail
dependence strengths are equal in the Joe–Clayton copula. Owing to this major problem, we followed
the modification proposed by Patton (2006), which is denoted as the SJC copula:

CSJC(u1, u2|τU , τL) = 0.5(CJC(u1, u2|τU , τL) + CJC(1− u1, 1− u2|τL, τU) + u1 + u2 − 1) (8)

2.3. Time-Varying Copula Models

For analyzing the time-varying dependence strength, we considered using the rotated Gumbel
and Student’s t copula models with the generalized autoregressive score (GAS) model introduced
by Creal et al. (2013). In this model, a parameter δt is denoted as the time-varying copula parameter.
The score of the likelihood in the copula is written as I−1/2

t st. Specifically, in the rotated Gumbel
copula model, the parameter δt = h−1( ft) can be defined as δt = 1 + exp ( ft) because the parameter
should be larger than one. In the Student’s t copula model, the parameter can be defined as
δt = (1− exp{− ft})/(1 + exp{− ft}) to obtain the dependence parameter between −1 and 1.
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ft = h(δt)↔ δt = h−1( ft) (9)

where, ft+1 = ω + β ft + αI−1/2
t st

st ≡
∂

∂δ
logc(U1t, U2t; δt), It ≡ Et−1

[
sts′t
]
= I(δt)

3. Data and Empirical Results

3.1. Summary Statistics and Marginal Distributions

Our data contained the share price returns (based on adjusted prices) of three city banks in China:
Beijing Bank, Ningbo Bank, and Nanjing Bank. The share prices and returns of these three city banks
are shown in Figures 1 and 2. We chose these banks not only because they are among the top five city
banks in China, but also because they have stronger market liquidity in the Main Board share market,
compared to that of other city banks. The share price data collected from IPOs in 2007 provided
abundant data samples that covered the global financial crisis in 2008, as well as the China share
market crash in late 2015. We observed large declines in share prices and high variances in returns
during the global financial crisis in 2008 and the domestic stock market crash in 2015. To explore the
dependence structure among these three banks, we formed three combinations: Beijing Bank and
Ningbo Bank were Group 1, Beijing Bank and Nanjing Bank were Group 2, and Ningbo Bank and
Nanjing Bank were Group 3.

We computed the return rates of interest using the log-difference method with the n.a. values and
outliers deleted. We reported all relevant analyses in the total sample, first period sample, and second
period sample. The total sample ranged from 19 September 2007 to 21 May 2018. The first period
from 19 September 2007 to 4 June 2015 covered the 2008 global financial crisis. The second period
from 15 June 2015 to 21 May 2018 covered the domestic stock market crash from 12 June 2015 to
19 February 2016. Descriptive statistics and the marginal distribution coefficients are given in Tables 1
and 2, respectively.

J. Risk Financial Manag. 2018, 6, x FOR PEER REVIEW  5 of 19 

 

࢚࢙ ≡ డడఋ ݃݋݈ )ࢉ ଵܷ௧, ܷଶ௧; ௧ܫ ,(௧ߜ ≡ [௧ᇱݏ௧ݏ]௧ିଵܧ =   (௧ߜ)ܫ

3. Data and Empirical Results 

3.1. Summary Statistics and Marginal Distributions 

Our data contained the share price returns (based on adjusted prices) of three city banks in 
China: Beijing Bank, Ningbo Bank, and Nanjing Bank. The share prices and returns of these three city 
banks are shown in Figures 1 and 2. We chose these banks not only because they are among the top 
five city banks in China, but also because they have stronger market liquidity in the Main Board share 
market, compared to that of other city banks. The share price data collected from IPOs in 2007 
provided abundant data samples that covered the global financial crisis in 2008, as well as the China 
share market crash in late 2015. We observed large declines in share prices and high variances in 
returns during the global financial crisis in 2008 and the domestic stock market crash in 2015. To 
explore the dependence structure among these three banks, we formed three combinations: Beijing 
Bank and Ningbo Bank were Group 1, Beijing Bank and Nanjing Bank were Group 2, and Ningbo 
Bank and Nanjing Bank were Group 3. 

We computed the return rates of interest using the log-difference method with the n.a. values 
and outliers deleted. We reported all relevant analyses in the total sample, first period sample, and 
second period sample. The total sample ranged from 19 September 2007 to 21 May 2018. The first 
period from 19 September 2007 to 4 June 2015 covered the 2008 global financial crisis. The second 
period from 15 June 2015 to 21 May 2018 covered the domestic stock market crash from 12 June 2015 
to 19 February 2016. Descriptive statistics and the marginal distribution coefficients are given in 
Tables 1 and 2, respectively. 

 
Figure 1. Daily share prices of the Beijing Bank, Ningbo Bank, and Nanjing Bank from 19 September 
2007 to 21 May 2018. 

Figure 1. Daily share prices of the Beijing Bank, Ningbo Bank, and Nanjing Bank from 19 September
2007 to 21 May 2018.



J. Risk Financial Manag. 2018, 11, 57 6 of 18

J. Risk Financial Manag. 2018, 6, x FOR PEER REVIEW  6 of 19 

 

 
Figure 2. Daily returns of the Beijing Bank, Ningbo Bank, and Nanjing Bank from 19 September 2007 
to 21 May 2018. 

Table 1. Descriptive statistics of share price returns. 

 Mean S.E. Min Max Skewness Kurtosis Jarque−Bera 
Beijing Bank 

Total 0.0001 0.0273 −0.1679 0.1584 −0.0347 11.4668 3075.041 
Period 1 0.0003 0.0301 −0.1679 0.1584 −0.0380 10.1996 1320.999 
Period 2 −0.0004 0.0180 −0.1119 0.1022 −0.1274 18.1298 4121.534 

Ningbo Bank 
Total 0.0002 0.0309 −0.1773 0.1586 −0.0743 10.2697 1877.701 

Period 1 0.0003 0.0331 −0.1773 0.1586 −0.0274 9.7959 1079.081 
Period 2 −0.0001 0.0242 −0.1144 0.1037 −0.4137 10.6811 632.7394 

Nanjing Bank 
Total 0.0004 0.0274 −0.1387 0.1335 0.0340 10.0755 1709.185 

Period 1 0.0006 0.0289 −0.1387 0.1335 0.1903 9.3543 853.2647 
Period 2 −0.0002 0.0231 −0.1158 0.1054 −0.8319 13.0402 1465.303 

Notes: Period 1 ranges from 19 September 2007 to 4 June 2015 and period 2 ranges from 15 June 2015 
to 21 May 2018. Observations of the total sample, first period, and second period were 2469, 1797, and 
672, respectively. The table displays the basic summary statistics of the total sample, first period 
sample, and second period sample. As usual, financial asset returns show skewness around zero and 
kurtosis larger than three, indicating a non-normal distribution. The Jarque–Bera test statistics are 
reported, all of which stayed significant at 1%, indicating a non-normal distribution. 

Table 2. Marginal distribution parameters estimation result. 

 Total Period 1 Period 2 
Beijing Bank 
Mean Model ߮଴ −6 × 10ିହ (0.0003) −0.0001 (0.0005) −0.0002 (0.0003) ߮ଵ −0.0584 *** (0.0192) −0.0667 *** (0.0227) −1.5568 *** (0.0168) 

Figure 2. Daily returns of the Beijing Bank, Ningbo Bank, and Nanjing Bank from 19 September 2007
to 21 May 2018.

Table 1. Descriptive statistics of share price returns.

Mean S.E. Min Max Skewness Kurtosis Jarque−Bera

Beijing Bank

Total 0.0001 0.0273 −0.1679 0.1584 −0.0347 11.4668 3075.041
Period 1 0.0003 0.0301 −0.1679 0.1584 −0.0380 10.1996 1320.999
Period 2 −0.0004 0.0180 −0.1119 0.1022 −0.1274 18.1298 4121.534

Ningbo Bank

Total 0.0002 0.0309 −0.1773 0.1586 −0.0743 10.2697 1877.701
Period 1 0.0003 0.0331 −0.1773 0.1586 −0.0274 9.7959 1079.081
Period 2 −0.0001 0.0242 −0.1144 0.1037 −0.4137 10.6811 632.7394

Nanjing Bank

Total 0.0004 0.0274 −0.1387 0.1335 0.0340 10.0755 1709.185
Period 1 0.0006 0.0289 −0.1387 0.1335 0.1903 9.3543 853.2647
Period 2 −0.0002 0.0231 −0.1158 0.1054 −0.8319 13.0402 1465.303

Notes: Period 1 ranges from 19 September 2007 to 4 June 2015 and period 2 ranges from 15 June 2015 to 21 May
2018. Observations of the total sample, first period, and second period were 2469, 1797, and 672, respectively.
The table displays the basic summary statistics of the total sample, first period sample, and second period sample.
As usual, financial asset returns show skewness around zero and kurtosis larger than three, indicating a non-normal
distribution. The Jarque–Bera test statistics are reported, all of which stayed significant at 1%, indicating a
non-normal distribution.

Table 2. Marginal distribution parameters estimation result.

Total Period 1 Period 2

Beijing Bank
Mean Model

ϕ0 −6× 10−5 (0.0003) −0.0001 (0.0005) −0.0002 (0.0003)
ϕ1 −0.0584 *** (0.0192) −0.0667 *** (0.0227) −1.5568 *** (0.0168)
ϕ2

— — — —

−1.2535 *** (0.0154)
ϕ3 −0.6816 *** (0.0239)
ϕ4 −0.0164 (0.0206)
θ1 1.5119 *** (0.0001)
θ2 1.0736 *** (0.0002)
θ3 0.5416 *** (0.0007)
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Table 2. Cont.

Total Period 1 Period 2

Beijing Bank
Variance model

ω 0.0000 — 0.0000 — 0.0000 —
α 0.0669 *** (0.0200) 0.0607 *** (0.0139) 0.1553 *** (0.0451)

0.9321 *** (0.0196) 0.9376 *** (0.0139) 0.8435 *** (0.0368)
ν 4.6502 *** (0.4315) 4.7860 *** (0.5694) 3.1771 *** (0.3759)

Skewed t density

λ 0.0272 0.0208 −0.0005
ν 4.5413 4.5336 3.2202

Ljung–Box test

Q(20) 6.8882 (0.9970) 4.7600 (0.9998) 28.4805 (0.0985)
Q2(20) 23.6720 (0.2570) 16.5393 (0.6827) 19.6328 (0.4811)

GoF tests on skewed t distribution model (p value)

KS 0.96 0.99 0.99
CvM 0.95 0.99 0.99

Ningbo Bank
Mean model

ϕ0 0.0003 (0.0004) 0.0003 (0.0005) 0.0005 (0.0005)
ϕ1

— — — —

1.4112 *** (0.0300)
ϕ2 −1.6308 *** (0.0293)
ϕ3 1.3830 *** (0.0307)
ϕ4 −0.6112 *** (0.0165)
θ1 −1.4267 *** (0.0120)
θ2 1.5598 *** (0.0326)
θ3 −1.3749 *** (0.0162)
θ4 0.5695 *** (0.0044)

Variance model

ω 0.0000 — 0.0000 — 0.0000 —
α 0.0564 *** (0.0187) 0.0462 *** (0.0074) 0.1148 *** (0.0397)

0.9426 *** (0.0191) 0.9528 *** (0.0071) 0.8366 *** (0.0508)
ν 4.3642 *** (0.4138) 4.4861 *** (0.5291) 4.1153 *** (0.6908)

Skewed t density

λ 0.0241 0.0061 0.0161
ν 4.2382 4.3157 4.3207

Ljung–Box test

Q(20) 22.2234 (0.3285) 13.2727 (0.8654) 20.1693 (0.4474)
Q2(20) 24.9517 (0.2033) 19.9116 (0.4635) 22.6349 (0.3071)

GoF tests on skewed t distribution model (p value)

KS 0.89 0.88 0.44
CvM 0.97 0.94 0.22

Nanjing Bank
Mean model

ϕ0 0.0002 (0.0004) 0.0001 (0.0004) 0.0001 (0.0001)
ϕ1

— —

0.3352 (0.3948) −0.0700 *** (3× 10−5)
ϕ2

— —
−0.0381 *** (1× 10−5)

ϕ3 −0.0996 *** (3× 10−5)
ϕ4 0.9056 *** (0.0002)
θ1 −0.4203 (0.3801) 0.0627 *** (3× 10−5)
θ2

— —
−0.0162 *** (3× 10−5)

θ3 0.0386 *** (2× 10−5)
θ4 −0.9260 *** (0.0002)

Variance model

ω 0.0000 — 0.0000 — 0.0000 —
α 0.0682 *** (0.024) 0.0504 ** (0.0205) 0.1769 *** (0.0627)
β 0.9308 *** (0.0257) 0.9486 *** (0.0226) 0.8068 *** (0.0517)
ν 4.2478 *** (0.3742) 4.2761 *** (0.4511) 3.3927 *** (0.5039)
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Table 2. Cont.

Total Period 1 Period 2

Nanjing Bank
Skewed t density

λ 0.0327 0.0346 0.0077
ν 4.1747 4.1871 3.4216

Ljung–Box test

Q(20) 8.7088 (0.9860) 11.3141 (0.9377) 26.2620 (0.1573)
Q2(20) 22.0430 (0.3382) 18.9296 (0.5264) 20.0537 (0.4546)

GoF tests on skewed t distribution model (p value)

KS 0.66 0.79 0.37
CvM 0.87 0.84 0.31

Notes: The table summarizes the coefficients of the ARMA model for each bank’s share returns, and standard
GARCH (1,1) for all three share price return residuals. Period 1 ranges from 19 September 2007 to 4 June 2015 and
period 2 ranges from 15 June 2015 to 21 May 2018. For each parameter, standard errors are reported in parentheses
with *** and ** representing the significance levels of 1% and 5%, respectively. In all GARCH models, ω was
estimated to be zero and thus standard residuals are not reported. We estimated the skewness parameter λ and a
degrees of freedom parameter ν in the skewed t model. Q(20) statistics and p-values were given under the null
hypothesis of the Ljung–Box test, so that no autocorrelation existed in standardized residuals up to lags 20, with
Q2(20) representing the test on squared standardized residuals up to lags 20. All results from the Ljung–Box test
showed that the squared standardized residuals in each estimation model of the three bank shares in the total sample
and two distinct samples had no significant evidence of autocorrelation up to lags 20. All insignificant p-values in
the KS and CvM test (goodness of fit test, GOF) indicated that we failed to reject the null hypothesis, which states
that the skewed t model can well specify the distribution of standardized residuals in all share price returns.

3.2. Constant Copula Results

We used four copula models in the constant parameter case. The normal copula model, although
unable to detect the tail dependence, can obtain the correlation coefficient to compare the strength
of correlation in each period. The rotated Gumbel copula model, providing a higher likelihood than
the normal copula, can obtain information about the lower tail dependence. Owing to this feature,
we selected the rotated Gumbel copula model to capture the dependence structure changes in the
joint decreases of share prices. The Student’s t copula model has the highest likelihood value and
can capture tail dependence, although the lower and upper dependences are set to be equal. The SJC
copula model combines the merits of the Student’s t copula and rotated Gumbel copula because it can
detect potentially different dependence in both tails. In parametric distribution, the SJC copula has the
least standard errors among all models.

There were several findings among the three groups based on results in Tables 3–5. First, Group 3
(Ningbo Bank and Nanjing Bank) and Group 1 (Beijing Bank and Ningbo Bank) showed the highest
and lowest dependence coefficients among the three groups. This rank of dependency suggested that
Beijing Bank was less dependent on the other two banks than Nanjing Bank, which was dependent
on the other two banks, and that Ningbo Bank was more dependent on Nanjing Bank than on
Beijing Bank. Second, Group 1 and Group 2 (Beijing Bank and Ningbo Bank) similarly showed much
higher dependence in period 1 than period 2. For instance, in the rotated Student’s t copula model,
the dependence coefficient (gT(ρ̂, ν̂)) in Groups 1 and 2 dropped 66% and 42% from period 1 to period 2,
respectively. However, the dependence coefficient in Group 3 dropped only 21%. Third, the lower
tail dependence was evidently higher than the upper tail dependence in the SJC copula model for
Groups 1 and 2, but not for Group 3. It has been documented that the Beijing Bank share price tends to
fall more frequently than rising together with the Ningbo Bank and Nanjing Bank. The probability of
share prices going up was slightly higher than that of falling down together for the Ningbo Bank and
Nanjing Bank group. In all groups, the Student’s t copula model had the highest value of log-likelihood,
followed by the SJC copula model and the rotated Gumbel copula model.
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Table 3. Constant copula models in Group 1, consisting of the Beijing Bank and Ningbo Bank.

Total Period 1 Period 2

Parametric Semi Parametric Semi Parametric Semi

Normal copula

ρ̂ 0.7669 0.7662 0.8237 0.8228 0.5817 0.5795
S.E. (0.0135) (0.0104) (0.011) (0.0108) (0.0369) (0.0266)

logL 1094.03 1091.71 1019.28 1015.47 139.17 137.49

Rotated Gumbel copula

γ̂ 2.1976 2.2310 2.5492 2.5686 1.6066 1.6043
S.E. (0.0819) (0.0393) (0.0875) (0.0582) (0.0891) (0.0530)
τ̂L 0.6292 0.6356 0.6875 0.6902 0.4605 0.4596

logL 1107.79 1111.69 1031.20 1029.37 135.62 134.72

Student’s t copula

ρ̂ 0.7684 0.7731 0.8268 0.8281 0.5759 0.5800
S.E. (0.0145) (0.008) (0.011) (0.0085) (0.0368) (0.0255)
ν̂−1 0.2793 0.2970 0.2807 0.2897 0.1458 0.1496
S.E. (0.0286) (0.028) (0.0401) (0.0331) (0.0560) (0.0405)

gT(ρ̂, ν̂) 0.4766 0.4930 0.5424 0.5495 0.1847 0.1923
logL 1192.44 1192.73 1100.10 1097.01 144.47 142.93

SJC copula

τ̂L 0.5964 0.6090 0.6697 0.6748 0.3998 0.4039
S.E. (9× 10−16) (0.0143) (1× 10−15) (0.0136) (5× 10−17) (0.0373)
τ̂U 0.5815 0.5937 0.6567 0.6633 0.3623 0.3736
S.E. (9× 10−16) (0.0167) (1× 10−15) (0.0173) (1× 10−16) (0.0451)

logL 1156.34 1161.0939 1073.60 1074.64 145.01 143.32

Notes: In this table, we report the maximum likelihood estimation and standard errors in parentheses. “Parametric”
and “Semi” represent the parametric and semi-parametric models, respectively. Period 1 ranges from 19 September
2007 to 4 June 2015 and period 2 ranges from 15 June 2015 to 21 May 2018. Lower tail dependence of the rotated
Gumbel copula was calculated by τ̂L = 2− 21/γ̂. Both tail dependences in the Student’s t copula were calculated in

gT(ρ̂, ν̂) = 2× Fstudent(−
√
(ν̂ + 1) ρ̂−1

ρ̂+1 , ν̂ + 1).

Table 4. Constant copula models in Group 2, consisting of the Beijing Bank and Nanjing Bank.

Total Period 1 Period 2

Parametric Semi Parametric Semi Parametric Semi

Normal copula

ρ̂ 0.8119 0.8115 0.8564 0.8556 0.6487 0.6422
S.E. (0.0128) (0.0083) (0.0105) (0.0084) (0.0271) (0.0311)

logL 1328.56 1326.63 1187.93 1183.38 183.89 178.64

Rotated Gumbel copula

γ̂ 2.4486 2.4967 2.8528 2.8799 1.8240 1.8076
S.E. (0.0926) (0.0482) (0.1002) (0.0638) (0.0822) (0.0673)
τ̂L 0.6728 0.6800 0.7250 0.7279 0.5377 0.5326

logL 1347.26 1351.38 1209.54 1207.97 196.85 190.97

Student’s t copula

ρ̂ 0.8126 0.8176 0.8601 0.8613 0.6551 0.6563
S.E. (0.0129) (0.0066) (0.0099) (0.0065) (0.0264) (0.0264)
ν̂−1 0.2616 0.2838 0.2841 0.2945 0.2370 0.2393
S.E. (0.0329) (0.0267) (0.0334) (0.0325) (0.0592) (0.0500)

gT(ρ̂, ν̂) 0.5127 0.5334 0.5877 0.5951 0.3429 0.3459
logL 1424.53 1427.29 1269.65 1266.36 207.44 202.25

SJC copula

τ̂L 0.6559 0.6687 0.7204 0.7266 0.5184 0.5109
S.E. (1× 10−15) (0.0147) (8× 10−16) (0.0129) (5× 10−16) (0.0305)
τ̂U 0.6147 0.6322 0.6786 0.6846 0.4114 0.4228
S.E. (4× 10−16) (0.0154) (8× 10−16) (0.027) (4× 10−16) (0.0488)

logL 1378.74 1389.56 1229.00 1230.85 201.73 195.47

Notes: In this table, we report the maximum likelihood estimation and standard errors in parentheses. “Parametric”
and “Semi” represent the parametric and semi-parametric models, respectively. Period 1 ranges from 19 September
2007 to 4 June 2015 and period 2 ranges from 15 June 2015 to 21 May 2018. Lower tail dependence of the rotated
Gumbel copula was calculated as τ̂L = 2− 21/γ̂. Both tail dependences in the Student’s t copula were calculated in

gT(ρ̂, ν̂) = 2× Fstudent(−
√
(ν̂ + 1) ρ̂−1

ρ̂+1 , ν̂ + 1).
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Table 5. Constant copula models in Group 3, consisting of the Ningbo Bank and Nanjing Bank.

Total Period 1 Period 2

Parametric Semi Parametric Semi Parametric Semi

Normal copula

ρ̂ 0.8461 0.8451 0.8714 0.8705 0.7376 0.7347
S.E. (0.0090) (0.0072) (0.0081) (0.0068) (0.0253) (0.0214)

logL 1552.99 1546.23 1279.92 1274.06 264.24 260.76

Rotated Gumbel copula

γ̂ 2.7077 2.7167 2.9071 2.9372 2.1190 2.0990
S.E. (0.0876) (0.0530) (0.1260) (0.0605) (0.1431) (0.0872)
τ̂L 0.7083 0.7094 0.7307 0.7338 0.6130 0.6087

logL 1539.47 1534.07 1251.24 1247.42 269.94 264.34

Student’s t copula

ρ̂ 0.8483 0.8492 0.8701 0.8719 0.7480 0.7479
S.E. (0.0091) (0.0059) (0.0128) (0.0055) (0.0251) (0.0182)
ν̂−1 0.2620 0.2702 0.2283 0.2407 0.2769 0.2648
S.E. (0.0310) (0.0280) (0.0404) (0.0333) (0.0594) (0.0441)

gT(ρ̂, ν̂) 0.5582 0.5646 0.5659 0.5776 0.4549 0.4460
logL 1650.47 1643.97 1332.23 1328.24 292.83 285.36

SJC copula

τ̂L 0.6806 0.6839 0.7102 0.7160 0.5611 0.5570
S.E. (1× 10−14) (0.0130) (1× 10−16) (0.0123) (1× 10−15) (0.0390)
τ̂U 0.6912 0.6993 0.7183 0.7281 0.5739 0.5769

S.E. (9× 10−15) (0.0120) (5× 10−16) (0.0108) (9× 10−16) (0.0287)
logL 1604.25 1605.73 1304.74 1309.07 282.73 275.45

Notes: In this table, we report the maximum likelihood estimation and standard errors in parentheses. “Parametric”
and “Semi” represent the parametric and semi-parametric models, respectively. Period 1 ranges from 19 September
2007 to 4 June 2015 and period 2 ranges from 15 June 2015 to 21 May 2018. Lower tail dependence of the rotated
Gumbel copula was calculated in τ̂L = 2− 21/γ̂. Both tail dependences in the Student’s t copula were calculated in

gT(ρ̂, ν̂) = 2× Fstudent(−
√
(ν̂ + 1) ρ̂−1

ρ̂+1 , ν̂ + 1).

3.3. Time-Varying Copula Results

The difference in dependence strengths between period 1 and period 2 suggested that there may
be changes in tail dependence. To illustrate possible time-varying tail dependence, we constructed
the rotated Gumbel copula (in GAS) and the Student’s t copula (in GAS) in a time-dependent
model. The estimated parameters of the three groups are reported in Tables 6–8, respectively.
The six innovation graphs of tail dependence provide visually understandable results (Figures 3–8).
The innovation in the semi-parametric models are reported.

Table 6. Time-varying copula models in Group 1 (Beijing Bank and Ningbo Bank).

Total Period 1 Period 2

Parametric Semi Parametric Semi Parametric Semi

Rotated Gumbel copula (GAS)

ω̂ 0.0019 0.0021 0.0259 0.0302 –0.0837 –0.0833
S.E. (0.0155) (0.0001) (0.0072) (0.0043) (0.0004) (0.0543)

α̂ 0.0650 0.0593 0.0832 0.0905 0.0630 0.0675
S.E. (0.0622) (0.0018) (0.0199) (0.0176) (0.0012) (0.0569)

β̂ 0.9892 0.9906 0.9447 0.9369 0.8355 0.8397
S.E. (0.0014) (0.0005) (0.0143) (0.0061) (0.0327) (0.1143)
logL 1185.62 1187.58 1053.58 1050.44 136.41 135.64

Student’s t copula (GAS)

ω̂ 0.0218 0.0213 0.1012 0.1004 0.0192 0.0300
S.E. (0.0018) (0.0018) (2× 10−9) (0.0036) (0.0296) (0.0038)

α̂ 0.0634 0.0632 0.0740 0.0724 0.0261 0.0516
S.E. (0.0052) (0.0102) (4× 10−8) (0.0109) (0.0139) (0.0202)

β̂ 0.9897 0.9896 0.9584 0.9585 0.9843 0.9764

S.E. (5× 10−6)
(6×

10−7) (4× 10−7)
(1×

10−7) (0.0228) (0.0123)

ν̂−1 0.2174 0.2185 0.2413 0.2447 0.1590 0.1687
S.E. (0.0219) (0.0285) (0.0314) (0.0338) (0.0479) (0.0442)
logL 1273.17 1271.04 1117.50 1114.18 146.96 145.95

Notes: In this table, we report the maximum likelihood estimation and standard errors in parentheses. “Parametric”
and “Semi” represent the parametric and semi-parametric models, respectively. Period 1 ranges from 19 September
2007 to 4 June 2015 and period 2 ranges from 15 June 2015 to 21 May 2018.
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Table 7. Time-varying copula models in Group 2 (Beijing Bank and Nanjing Bank).

Total Period 1 Period 2

Parametric Semi Parametric Semi Parametric Semi

Rotated Gumbel copula (GAS)

ω̂ 0.0180 0.0177 0.1313 0.1390 −0.0282 −0.0230
S.E. (0.0022) (0.0026) (0.0018) (0.6113) (0.0478) (0.1966)

α̂ 0.1271 0.1234 0.2225 0.2159 0.1131 0.1018
S.E. (0.0169) (0.0220) (0.0214) (0.2863) (0.1006) (0.0790)

β̂ 0.9556 0.9556 0.7855 0.7816 0.7877 0.8301
S.E. (2× 10−5) (2× 10−5) (0.0036) (0.8849) (0.2617) (0.8756)
logL 1426.91 1425.74 1247.19 1243.53 219.16 214.94

Student’s t copula (GAS)

ω̂ 0.1015 0.1001 0.5077 0.2921 0.1339 0.1192
S.E. (0.0584) (0.0043) (4× 10−8) (0.0089) (0.1118) (0.0084)

α̂ 0.1364 0.1316 0.2103 0.1620 0.1105 0.0849
S.E. (0.0627) (0.0190) (0.0298) (0.0290) (0.0374) (0.0203)

β̂ 0.9568 0.9580 0.8080 0.8898 0.9201 0.9287
S.E. (0.0258) (5× 10−6) (7× 10−6) (4× 10−6) (0.0649) (8× 10−6)
ν̂−1 0.1986 0.2175 0.2266 0.2246 0.2060 0.2034
S.E. (0.0367) (0.0212) (0.0334) (0.0336) (0.0396) (0.0444)
logL 1513.26 1513.64 1309.93 1306.48 229.49 224.16

Notes: In this table, we report the maximum likelihood estimation and standard errors in parentheses. “Parametric”
and “Semi” represent the parametric and semi-parametric models, respectively. Period 1 ranges from 19 September
2007 to 4 June 2015 and period 2 ranges from 15 June 2015 to 21 May 2018.

Table 8. Time-varying copula models in Group 3 (Ningbo Bank and Nanjing Bank).

Total Period 1 Period 2

Parametric Semi Parametric Semi Parametric Semi

Rotated Gumbel copula (GAS)

ω̂ 0.0163 0.0157 0.0398 0.0478 0.0102 0.0074
S.E. (0.0007) (0.0021) (0.0005) (0.0017) (0.0043) (0.0024)

α̂ 0.0848 0.0804 0.0857 0.0855 0.1216 0.1228
S.E. (0.0138) (0.0278) (0.0210) (0.0257) (0.0747) (0.0269)

β̂ 0.9712 0.9727 0.9388 0.9291 0.9526 0.9461
S.E. (0.0014) (0.0012) (0.0008) (0.0014) (0.0560) (0.0030)
logL 1595.39 1586.46 1270.49 1264.77 287.67 280.34

Student’s t copula (GAS)

ω̂ 0.0748 0.0746 0.1383 0.1446 0.0364 0.0477
S.E. (0.0031) (0.0034) (0.0050) (0.0003) (0.0142) (0.0057)

α̂ 0.0991 0.0993 0.0923 0.0929 0.1047 0.1016
S.E. (0.0205) (0.0253) (0.0430) (0.0223) (0.0205) (0.0344)

β̂ 0.9706 0.9707 0.9490 0.9472 0.9815 0.9762
S.E. (4× 10−6) (1× 10−5) (3× 10−5) (0.0017) (0.0073) (8× 10−7)
ν̂−1 0.2252 0.2252 0.2255 0.2278 0.2460 0.1939
S.E. (0.0239) (0.0392) (0.0391) (0.0343) (0.0382) (0.0437)
logL 1713.66 1704.27 1356.18 1350.24 309.03 301.51

Notes: In this table, we report the maximum likelihood estimation and standard errors in parentheses. “Parametric”
and “Semi” represent the parametric and semi-parametric models, respectively. Period 1 ranges from 19 September
2007 to 4 June 2015 and period 2 ranges from 15 June 2015 to 21 May 2018.
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In the group of Beijing Bank and Ningbo Bank, lower tail dependence indicated by the rotated
Gumbel copula (GAS) model reached the highest level of 0.75 in less than six months. Until the end of
period 1, the lower tail dependence maintained a level at around 0.69, which was the tail dependence
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captured by the constant rotated Gumbel copula model. In period 2, the lower tail dependence
fluctuated at around the level of 0.46, which was much lower than the one in period 1. In the case
of the Student’s t copula (GAS) model, the innovation was similar to the one in the rotated Gumbel
copula (GAS) model. The tail dependence in period 2 was less than half of the one in period 1.

In the group consisting of Beijing Bank and Nanjing Bank, the lower tail dependence indicated
by the rotated Gumbel copula (GAS) model appeared rather random after the global financial crisis,
but stayed around the 0.72 level, followed by a decrease in period 2. In the Student’s t copula model,
we obtained the tail dependence in period 1 in the range of around 0.59. In period 2, the dependence
strength decreased to 0.34.

In the group of Ningbo Bank and Nanjing Bank, lower tail dependence indicated by the rotated
Gumbel copula (GAS) model appeared rather stable after the global financial crisis and stayed around the
0.71 level, followed by a slight decrease in period 2. In the Student’s t copula model, we obtained a tail
dependence in period 1 that ranged around 0.56. In period 2, the dependence strength decreased to 0.45.

3.4. Goodness-of-Fit Tests

The Kolomogorov–Smirnov (KS) and Cramer–von Mises (CvM) methods are frequently used
in goodness-of-fit tests in copula models. In Tables 9 and 10, we present the p-value results in
the goodness-of-fit test for each constant copula model in the parametric and semi-parametric cases.
The normal copula, rotated Gumbel copula, and the student’s t copula passed the tests in the parametric
case; in the semi-parametric case, the normal copula and rotated Gumbel copula models did not pass
the tests in the majority of the groups and periods, and the student’s t copula model was rejected in
one test at the 5% level and in five tests at the 10% level. The SJC copula model passed the KS and
CvM tests in all periods and groups, in both the parametric and semi-parametric cases. In the KS and
CvM tests for time-varying copula models, the process requires the Rosenblatt transform. The two
time-varying copula models passed the goodness-of-fit test in all cases (Tables 11 and 12).

Table 9. Goodness-of-fit test in the constant copula (parametric case).

Total Period 1 Period 2

KSC CvMC KSC CvMC KSC CvMC

Normal copula

Group 1 0.92 0.97 0.96 0.98 0.99 0.94
Group 2 0.80 0.95 0.93 0.96 0.99 0.98
Group 3 0.82 0.96 0.93 0.94 0.38 0.33

Rotated Gumbel copula

Group 1 0.95 0.93 0.97 0.95 0.98 0.94
Group 2 0.91 0.95 0.95 0.91 0.99 0.97
Group 3 0.87 0.92 0.92 0.93 0.26 0.21

Student’s t copula

Group 1 0.96 0.98 0.97 0.99 0.99 0.97
Group 2 0.80 0.96 0.92 0.96 0.99 0.98
Group3 0.88 0.97 0.94 0.96 0.34 0.30

SJC copula

Group1 0.94 0.95 0.95 0.96 0.99 0.99
Group2 0.81 0.91 0.80 0.88 0.99 0.99
Group3 0.86 0.95 0.89 0.89 0.49 0.43

Notes: In this table, we report the p-values of the Kolomogorov–Smirnov (KSC) and Cramer–von Mises (CvMC)
goodness-of-fit tests for the constant copula models in the parametric case, based on 500 simulations. The subscript
C indicates that the test was carried out on the empirical copula of the standardized residuals. Group 1 refers to the
group of Beijing Bank and Ningbo Bank. Group 2 refers to the group of Beijing Bank and Nanjing Bank. Group 3
refers to the group of Ningbo Bank and Nanjing Bank. Period 1 ranges from 19 September 2007 to 4 June 2015 and
period 2 ranges from 15 June 2015 to 21 May 2018. p-values less than 0.05 are shown in bold.



J. Risk Financial Manag. 2018, 11, 57 16 of 18

Table 10. Goodness-of-fit test in constant copula (semi-parametric case).

Total Period 1 Period 2

KSC CvMC KSC CvMC KSC CvMC

Normal copula

Group1 0.17 0.01 0.14 0.00 0.91 0.61
Group2 0.09 0.01 0.02 0.00 0.22 0.24
Group3 0.07 0.01 0.09 0.04 0.15 0.02

Rotated Gumbel copula

Group1 0.00 0.00 0.00 0.00 0.12 0.00
Group2 0.00 0.00 0.00 0.00 0.13 0.00
Group3 0.00 0.00 0.00 0.00 0.00 0.00

Student’s t copula

Group1 0.62 0.54 0.04 0.10 0.88 0.70
Group2 0.48 0.50 0.05 0.07 0.58 0.63
Group3 0.17 0.29 0.44 0.23 0.50 0.10

SJC copula

Group1 0.99 0.99 0.99 0.99 0.99 0.99
Group2 0.99 0.99 0.99 0.99 0.99 0.99
Group3 0.99 0.99 0.99 0.99 0.99 0.99

Notes: In this table, we report the p-values of the Kolomogorov–Smirnov (KSC) and Cramer–von Mises (CvMC)
goodness-of-fit tests for the constant copula models in the semi-parametric case, based on 500 simulations.
The subscript C indicates that the test was carried out on the empirical copula of the standardized residuals.
Group 1 refers to the group of Beijing Bank and Ningbo Bank. Group 2 refers to the group of Beijing Bank and
Nanjing Bank. Group 3 refers to the group of Ningbo Bank and Nanjing Bank. Period 1 ranges from 19 September
2007 to 4 June 2015 and period 2 ranges from 15 June 2015 to 21 May 2018. p-values less than 0.05 are shown in bold.

Table 11. Goodness-of-fit test in time-varying copula (parametric case).

Total Period 1 Period 2

KSR CvMR KSR CvMR KSR CvMR

Rotated Gumbel copula (GAS)

Group 1 0.99 0.99 0.99 0.99 0.97 0.96
Group 2 0.99 0.99 0.99 0.88 0.99 0.99
Group 3 0.99 0.99 0.97 0.97 0.80 0.69

Student’s t copula (GAS)

Group 1 0.99 0.99 0.99 0.99 0.99 0.99
Group 2 0.99 0.99 0.98 0.99 0.99 0.99
Group 3 0.99 0.99 0.96 0.97 0.92 0.81

Notes: In this table, we report the p-values of the Kolomogorov–Smirnov (KSR) and Cramer–von Mises (CvMR)
goodness-of-fit tests for the time-varying copula models in the parametric case, based on 100 simulations.
The subscript R indicates that the test was carried out on the empirical copula of the Rosenblatt transform of
the residuals. Group 1 refers to the group of Beijing Bank and Ningbo Bank. Group 2 refers to the group of Beijing
Bank and Nanjing Bank. Group 3 refers to the group of Ningbo Bank and Nanjing Bank. Period 1 ranges from 19
September 2007 to 4 June 2015 and period 2 ranges from 15 June 2015 to 21 May 2018.

Table 12. Goodness-of-fit test in time-varying copula (semi-parametric case).

Total Period 1 Period 2

KSR CvMR KSR CvMR KSR CvMR

Rotated Gumbel copula (GAS)
Group 1 0.81 0.99 0.24 0.97 0.09 0.33
Group 2 0.83 0.99 0.98 0.99 0.47 0.44
Group 3 0.85 0.99 0.93 0.99 0.93 0.88

Student’s t copula (GAS)

Group 1 0.63 0.59 0.39 0.40 0.66 0.57
Group 2 0.99 0.89 0.66 0.67 0.96 0.96
Group 3 0.58 0.80 0.50 0.60 0.61 0.62

Notes: In this table, we report the p-values of the Kolomogorov–Smirnov (KSR) and Cramer–von Mises (CvMR)
goodness-of-fit tests for the time-varying copula models in the semi-parametric case, based on 100 simulations.
The subscript R indicates that the test was carried out on the empirical copula of the Rosenblatt transform of the
residuals. Group 1 refers to the group of Beijing Bank and Ningbo Bank. Group 2 refers to the group of Beijing
Bank and Nanjing Bank. Group 3 refers to the group of Ningbo Bank and Nanjing Bank. Period 1 ranges from 19
September 2007 to 4 June 2015 and period 2 ranges from 15 June 2015 to 21 May 2018.
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4. Conclusions

In this study on the share price returns of three city banks, we investigated the potential
dependence structure. We used copula models rather than the usual linear correlation to capture the
detailed tail dependence. We used various copula models to estimate the underlying dependence
in extreme periods. The Student’s t, SJC, and rotated Gumbel copula models could specify the tail
dependence with higher log-likelihood values better than the other copula models. Furthermore,
by extending the Student’s t and rotated Gumbel copula models to the GAS and time-varying models,
we could obtain more information about the innovation of changes in tail dependence.

Unlike most of the literature using copula models, we focused on the tail dependence of the
share price returns of city banks rather than aggregate variables, such as share markets indices and
exchange rates. The tail dependence may be dependent on profitability, own risks, inter-bank business,
and outside influence. Although city banks fall in the same sector in share markets, they may have
diverse returns due to different strategies or business behaviors. During and after a stock market
crash, the city banks may have diverse reactions, which supports our assumption that there may be a
different level of dependence between two banks during two periods.

We found diverse dependence structures among the three groups of city banks. First, the tail
dependence was higher between the share price returns of Ningbo Bank and Nanjing Bank, than that of
the other two combinations. Beijing Bank was less dependent on the other two city banks, and Nanjing
Bank was dependent on the other two. Ningbo Bank was more dependent on Nanjing Bank, than on
Beijing Bank. Second, we observed a major break in the three dependence structures. Beijing Bank
became much less dependent on the other two banks during the 2015 domestic share market crash,
than during the 2008 financial crisis. However, the dependency of Nanjing Bank on Ningbo Bank did
not change as much as that of the other two combinations from 2008 to 2015. Third, the share prices of
Ningbo Bank and Nanjing Bank had a slightly higher possibility of increasing than decreasing together.
This was different from recent studies on financial asset price co-movement, which often suggest that
financial assets tend to have more dependence in price crashes than in booms.

The share price returns of Ningbo Bank were found to be more similar to that of Nanjing Bank,
compared to that of Beijing Bank. This observation of the share price extreme returns of three city
banks reconfirmed our research results in the copula models. Risk-avoiding behavior is a possible
cause of the decrease in tail dependence. It is recommended that for city commercial banks, strategies
such as obtaining superior assets and involving less risky inter-bank business be adopted, and that for
the central bank, reasonable capital liquidity and supervision should be ensured to create a healthier
inter-bank market. Nowadays, the majority of local Chinese companies are experiencing low profit
margins. The central and local governments should help boost the domestic economy, under both
fiscal and monetary policies, and avoid the crisis from happening in the real economy, which may
transmit to banking systems.

Author Contributions: S.H. conceived and designed the experiments; G.L. performed the experiments, analyzed
the data, and contributed reagents/materials/analysis tools; G.L., X.-J.C., and S.H. wrote the paper.

Funding: This research was funded by JSPS KAKENHI Grant Number 17K18564 and (A) 17H00983.

Acknowledgments: We are grateful to three anonymous referees for their helpful comments and suggestions.
We are also grateful to the participants of The SIBR 2018 Hong Kong Conference on Interdisciplinary Business &
Economics Research for helpful comments.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision
to publish the results.

References

Ang, Andrew, and Joseph Chen. 2002. Asymmetric correlations of equity portfolios. Journal of Financial Economics
63: 443–94. [CrossRef]

http://dx.doi.org/10.1016/S0304-405X(02)00068-5


J. Risk Financial Manag. 2018, 11, 57 18 of 18

Bollerslev, Tim. 1987. A conditionally heteroskedastic time series model for speculative prices and rates of return.
The Review of Economics and Statistics 69: 542–47. [CrossRef]

Casella, G., and Roger L. Berger. 1990. Statistical Inference. Belmont: Duxbury Press.
Creal, D., Siem Jan Koopman, and André Lucas. 2013. Generalized autoregressive score models with applications.

Journal of Applied Econometrics 28: 777–95. [CrossRef]
Fama, Eugene F. 1965. The behavior of stock-market prices. The Journal of Business 38: 34–105. [CrossRef]
Gumbel, Emil J. 1960. Bivariate exponential distributions. Journal of the American Statistical Association 55: 698–707.

[CrossRef]
Hansen, Bruce E. 1994. Autoregressive conditional density estimation. International Economic Review, 705–30.

[CrossRef]
Joe, Harry. 1997. Multivariate Models and Multivariate Dependence Concepts. Boca Raton: CRC Press.
Luo, W., Robert D. Brooks, and Param Silvapulle. 2011. Effects of the open policy on the dependence between the

Chinese ‘A’ stock market and other equity markets: An industry sector perspective. Journal of International
Financial Markets, Institutions and Money 21: 49–74. [CrossRef]

Marimoutou, Vêlayoudom, and Manel Soury. 2015. Energy markets and CO2 emissions: Analysis by stochastic
copula autoregressive model. Energy 88: 417–29. [CrossRef]

Patton, Andrew J. 2006. Modelling asymmetric exchange rate dependence. International Economic Review 47:
527–56. [CrossRef]

Patton, Andrew J. 2013. Copula methods for forecasting multivariate time series. In Handbook of Economic
Forecasting. New York: Elsevier, vol. 2, pp. 899–960. [CrossRef]

Reboredo, Juan C., and Andrea Ugolini. 2015. Downside/upside price spillovers between precious metals: A vine
copula approach. The North American Journal of Economics and Finance 34: 84–102. [CrossRef]

Sklar, Abe. 1959. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de
l’Université de Paris 8: 229–31.

Sukcharoen, Kunlapath, Tatevik Zohrabyan, David Leatham, and Ximing Wu. 2014. Interdependence of oil prices
and stock market indices: A copula approach. Energy Economics 44: 331–39. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/1925546
http://dx.doi.org/10.1002/jae.1279
http://dx.doi.org/10.1086/294743
http://dx.doi.org/10.1080/01621459.1960.10483368
http://dx.doi.org/10.2307/2527081
http://dx.doi.org/10.1016/j.intfin.2010.08.003
http://dx.doi.org/10.1016/j.energy.2015.05.060
http://dx.doi.org/10.1111/j.1468-2354.2006.00387.x
http://dx.doi.org/10.1016/B978-0-444-62731-5.00016-6
http://dx.doi.org/10.1016/j.najef.2015.08.001
http://dx.doi.org/10.1016/j.eneco.2014.04.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Empirical Methodology 
	Models for Marginal Distributions 
	Constant Copula Models 
	Time-Varying Copula Models 

	Data and Empirical Results 
	Summary Statistics and Marginal Distributions 
	Constant Copula Results 
	Time-Varying Copula Results 
	Goodness-of-Fit Tests 

	Conclusions 
	References

