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Abstract: This paper examines the steady state properties of the Threshold Vector Autoregressive
model. Assuming that the trigger variable is exogenous and the regime process follows a Bernoulli
distribution, necessary and sufficient conditions for the existence of stationary distribution are
derived. A situation related to so-called “locally explosive models”, where the stationary distribution
exists though the model is explosive in one regime, is analysed. Simulations show that locally
explosive models can generate some of the key properties of financial and economic data. They also
show that assessing the stationarity of threshold models based on simulations might well lead to
wrong conclusions.
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1. Introduction

Correct theoretical and empirical modelling of financial time series remains challenging. First of
all, the usual linear framework often falls short of properly describing the data, which, instead, exhibit
important nonlinear features. Secondly, economic theory regularly results in models with multiple
equilibria and asymmetries which the time series model should be able to accommodate. Finally,
data is often interconnected and hence simple univariate models generally fall short of appropriately
describing the complex nature of the data. The Global Financial Crisis in 2007-2008 demonstrated this
very clearly and reinforced the need to use a multivariate nonlinear framework in economic models,
in general, and in empirical finance, in particular.

Among the many possible candidate nonlinear models, threshold models are particularly
interesting and they have been extensively used in the existing empirical literature. These models
are straightforward generalizations of linear models. For example, the simple two regime Threshold
Autoregressive (TAR) model specifies a different autoregressive structure for each of the regimes and
a threshold variable that determines which regime is active. These models are therefore relatively
simple to estimate, and, since at time ¢ the regime state is known, they are more suitable for forecasting
than other nonlinear models, in particular hidden Markov models. Finally, TAR models allow for
reasonably simple tests of the linear structure against nonlinear alternatives and to test the number
of regimes. The multivariate generalization of the TAR model instead uses vector autoregressive
structures in the regimes and is therefore naturally referred to as the Threshold Vector AutoRegressive
(TVAR) model (Hubrich and Terdsvirta 2013; Tsay 1998).

Empirical studies have used threshold models to explore the asymmetry of shocks and nonlinear
relationship between variables in financial markets and data from the real and monetary economy.
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For instance, TVAR models are widely used to study the asymmetric effect of fiscal and monetary
policies in different credit, interest rate and inflationary regimes (Balke 2000; Fazzari et al. 2015; Shen
and Chiang 1999). Balke (2000), for example, studies the propagation of shocks to output growth,
the Federal Funds rate, inflation and measures of credit conditions during “tight” and “normal” credit
market conditions using a TVAR framework with two regimes. The results suggest that shocks
have a larger effect on output in “tight” credit regimes and that contractionary monetary shocks are
more effective than expansionary ones. A similar approach is followed by Calza and Souza (2006)
to study the transmission of monetary shocks across two credit regimes in the EU area and by
Li and St-Amant (2010) to evaluate the effect of financial stress conditions on monetary policy
effectiveness in Canada.

Another important application of threshold models has been to study the business cycle.
For example, Altissimo and Violante (2001) study the joint dynamics of US output and unemployment
using a bivariate TVAR model for recessions and expansions. Here, the lagged feedback variable,
which measures the depth of the recession, defines the regime. The resulting model is a VAR with
a fixed number of lags when the economy is in expansion and a time varying lag order when
the economy is in recession. The authors find that nonlinearities are statistically significant only
for unemployment, but it transmits to output through cross-correlation. Further evidence on the
usefulness of threshold models for analysing the business cycle can be found in Koop and Potter (1999),
Peel and Speight (1998), Koop et al. (1996), and Potter (1995), amongst others.

Threshold models are also popular in financial markets studies to explore the asymmetric relation
between variables. In particular, a common application of TAR models includes determining the
threshold effect in price movements related to transaction cost (Yadav et al. 1994). The threshold
autoregressive conditional heteroskedastic class of models has been applied to study the nonlinear
effect in volatility processes (Rabemananjara and Zakoian 1993). Finally, multivariate threshold
models have been extensively used in studying the dynamics in stock prices, returns, volatilities,
inflation and economic activity (Barnes 1999; Griffin et al. 2007; Huang et al. 2005; Li et al. 2015).
Griffin et al. (2007), for example, study the joint dynamics of stock market turnover, returns and
volatility in 46 countries using a TVAR model with two regimes that are separated by the sign of the
past return. The authors conclude that small negative return shocks, rather than large ones, are the
drivers for the decrease in turnover after a decrease in returns. Li et al. (2015) study the interaction
between Shanghai and Shenzhen stock markets in a bivariate three regime TVAR model where the
threshold variable is the average difference of the log returns between the two markets. Their results
suggest that the strength of interaction between markets is regime dependent. In particular, the
Shanghai market leads most of the time, except for the third regime, where both markets interact
simultaneously. A detailed review of the application of threshold models in empirical economics can
be found in Hansen (2011).

One challenge with nonlinear time series models, in general, and by extension therefore also with
threshold models, in particular, is to assess model stationarity. Establishing stationarity is important
as it is a fundamental assumption in most theoretical research. Indeed, the asymptotic properties of
estimators in threshold models are generally established under a set of standard regularity conditions,
which include the existence of finite higher order moments and the strict stationarity of the data
generating process (Tsay 1998). Moreover, existing inference approaches assume stationarity of the
data generating process (Hansen 1996, 2000; Tsay 1998) and violation of this assumption might lead
to spurious nonlinearity (Calza and Souza 2006) and could invalidate the use of, e.g., Hansen (1996)
simulated p-values for inference.

While significant progress has been made to establish conditions which ensure stationarity for
the univariate threshold case under realistic assumptions (Brockwell et al. 1992; Chan and Tong
1985; Chen et al. 2011; Knight and Satchell 2011; Petruccelli and Woolford 1984), to the best of our
knowledge, very little is known about the multivariate extension. See Chen et al. (2011) for an extensive
review about recent findings regarding the stationarity of TAR models. If one was to use the general
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approach from this literature to establish the stationarity of TVAR models, it would require proving
the convergence of an infinite sum of products of random matrices. This is clearly difficult and likely
explains the absence of theoretical results for the TVAR model.

In this paper, we fill this gap in the existing literature and analyse the properties of the TVAR model
in detail. To achieve this, we assume that the trigger variable is exogenous and that the regime process
follows a Bernoulli distribution. We first derive necessary and sufficient conditions for second order
stationarity, which are not present in the previous literature, when the variance—covariance matrices of
the random vector and the error process are assumed to have full rank. Next, we characterize the joint
conditional distribution of the data generating process when the error vector follows a multivariate
normal distribution. Finally, we derive the unconditional distribution for a special case of the TVAR
model, and we demonstrate that, in this case, the distribution of the threshold model is an infinite
mixture of normals. This shows that TVAR models are very general and can accommodate many of
the stylized features of financial data.

As a first interesting application of our results, we consider the special case where the elements
of the random vector are positively correlated and we describe a model that is explosive in one
regime, but still allows for the existence of steady state distribution. A similar idea was introduced
in Knight et al. (2014) in the univariate case as a so-called “locally explosive model”. In particular,
they study the univariate threshold autoregressive model with exogenous trigger and its application to
bubble formation. We expand the notion of locally explosive models to the bivariate TVAR model. The
derived conditions for the existence of the stationary distribution have simple economic intuition and
are easy to interpret. In particular, our results show that, in the stationary model, there is a trade-off
between autoregressive dependence in the regime and the probability of the regime.

Next, we conduct an empirical analysis of the locally explosive models. In the absence of explicit
theoretical conditions that guarantee stationarity of the model, the previous literature suggested to
establish stationarity indirectly by demonstrating, using a simulation study, that the estimated model
does not appear to contradict the stability assumption. To assess this procedure, we simulate the
bivariate locally explosive TVAR model for different distributions of the regimes. Our results show
that a simulation study aimed at verifying stability of a particular model might give inconclusive or
even wrong results. Specifically, we show that the simulation exercise may very well fail to reject
stability of non-stationary TVAR models when the probability of the explosive regime is low.

Finally, we empirically document that the locally explosive TVAR model can be associated
with bubble formation processes. In fact, our simulated locally explosive models appear to possess
explosive and unit root behaviour while overall remaining stationary. These properties are implied by
the definition of bubbles prevailing in the current literature and formally described by Evans (1991)
and Phillips and Yu (2011). Our results, therefore, should encourage further research into multivariate
threshold models and their use to study the formation of and existence of bubbles in financial data.

The structure of the paper is as follows: In Section 2, we derive the necessary and sufficient
conditions for second order stationarity and for the existence of a stationary distribution for the TVAR
model. This section also derives closed form solutions for the stationary distribution. In Section 3,
we consider the so-called locally explosive models, in which the TVAR model is explosive in one
regime, while overall remaining stationary. This section also presents some interesting special cases
and reports the results from a simulation study. Finally, Section 4 concludes the paper. All proofs can
be found in Appendix A and Appendix B contains additional figures.

2. The Threshold Vector Autoregressive Model

Throughout this paper, we consider the threshold vector autoregressive model given by

Y = ®U(Xi_1 € R))Yi_1 + P (X;_1 € Ry)Yy_1 + e, (1)
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where Y; is a (1 x 1) random vector, ®' and ®? are (n x n) parameter matrices, where 7 is the number
of time series, I() is the indicator function, X; is an iid random variable, which determines the regime,
and ¢; is a sequence of independent multivariate random vectors, such that E(e;) = 0 and Var(e;) = %,
Vt, where X is positive definite with full rank. We assume that E(e;|X;) = 0 for all s < t and that the
sequence (€, X¢), t > 1, is iid.

The regime process is defined as S; = I(X; € Ry), Vt, where Prob(X; € Ry) = m and
Prob(Xy € Ry) =1—m, with Ry UR; = Rand Ry N Ry = @. From this, it follows that S; is an
iid Bernoulli variable with S; = 0 with probability 1 — 7w and S; = 1 with probability 7r. Using S;,
Equation (1) can be rewritten as Y; = (& +5,_1®°)Y;_1 + €1, where & = &2 — ®!. If we further
denote by B; = S,V — 7dY, where E(Bt) = 0, Vt, the model in Equation (1) can be rewritten as a
Random Coefficient Model (RCM) (see Nicholls and Quinn (1982)) given by

Y = (®+ Bi_1)Yi—1 + e, ()

where ® = ®! + 7190 = (1 — )P + 72

In the following sections, we examine the TVAR model specified above in detail. First, we provide
the necessary and sufficient conditions under which the TVAR model is second order stationary. We
also derive expressions for the moments and the stationary solution to the model given in Equation (1).
Secondly, we derive the distribution associated with this data generating process. For simplicity, we
assume only two regimes in Equation (1). However, the theoretical results obtained here can easily be
generalized to multiple regimes.

2.1. Stationarity of the TVAR Model

Theorem 1 provides conditions under which the TVAR model above is second order stationary,
i.e., that E(Y}) is constant and Cov (Y}, Y;.j,) depends only on the lag h.

Theorem 1. The process Y;, t = 0,1,2, ... defined in Equation (1) is second order stationary with positive
definite covariance matrix V.= Var(Yy) if and only if:

1. u =0, where y is a mean of the initial vector, y = E(Yp),
2. the covariance matrix V solves V. — ®V®' — E(B;_1VB;_;) = %, and
3. | A|< 1, where A is the maximum eigenvalue of the matrix (1 — 7)®! @ ®! + 1®? @ 2.

Proof. See Appendix A. [

Condition 3 of Theorem 1 provides a simple and intuitive eigenvalue condition for establishing
second order stationarity of the TVAR model in Equation (1). We note that conditions similar to
what we present here have been derived previously, though this has been done using alternative and,
we believe, less realistic and empirically interesting assumptions (see, e.g., Nicholls and Quinn (1981),
Feigin and Tweedie (1985) and Saikkonen (2007)). In particular, Nicholls and Quinn (1981), Feigin
and Tweedie (1985) as well as Saikkonen (2007) assume independence of the error term, €;, and the
threshold variable, X;. We do not have this assumption and instead make a, we believe, far less
restrictive assumption of the exogeneity of the threshold variable, X;, i.e., E(e¢| X;), which does not
rule out, for example, the possibility that the threshold variable X; could be a part of the €; process.

Condition 2 of Theorem 1 provides an expression for calculating the covariance matrix of the
second order stationary process Y;. Notice that, after vectorization of this expression, we can obtain a
closed form formula for this. Remark 1 provides this formula.

Remark 1. From vectorization of the expression V. — ®V®' — E(B;_1VB]_;) = %, the equation for the
variance of Yt can be obtained from

vecV =(I—®PR® — (1 — 1) @ ®°) loecx. ®3)
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Theorem 2 provides an expression for the stationary solution to the model in Equation (1) and the
corresponding conditions for the existence of this solution. Theorem 2 also shows that this solution is
unique and strictly stationary.

Theorem 2. Assume that V is positive definite with full rank. Then, the TVAR model in Equation (1) has a
unique stationary solution given by

Yi=e+ ) <H D+ Btk> €t—n, (4)

n=1 \k=1

if and only if | A |< 1, where A is the maximum eigenvalue of the matrix (1 — )®! @ ®! 4+ 7d? @ 2.

Proof. See Appendix A. [

In Remark 2, we provide the restriction on the eigenvalues of the matrix ®, which is necessary
for the stationary model in Equation (1) and follows from Theorems 1 and 2. This condition is more
tractable, and it is used in Section 3 to simplify the analysis of the stationary TVAR model with one
explosive regime.

Remark 2. Let the process Yy, t = 0,1,2,... defined in Equation (1) be stationary with positive definite
covariance matrix V. Then, the maximum eigenvalue of the matrix ® is less than 1.

Proof. See Appendix A. [

The results of Theorems 1 and 2 can be extended to TVAR models with more than one lag.
Corollary 1 presents the conditions for the stationarity of the TVAR model, which contains more than
one lag.

Corollary 1. Consider the following two-regime TVAR model with p lags in each regime

4 . p .
Yi=1(X; 1 €R) Y PV, j+1(X, 1 €Ry) Y DY, j+ey ©)
j=1 j=1

where the properties of Xy and €; are those following Equation (1). This model has a unique stationary solution
given by
[ee] n
Zy =N+ Z (H A+ Dt—k) Ht—n, (6)
n=1 \k=1
where Z; and 1 are np X 1 vectors given by Z; = [Y], Ytlfl’Yt/*Z""Yt/—(p—l)] and 7 = [¢€},0,0,..,0],
respectively, and Dy = (S; — 1) A% + (7t — Sy) AL, with A', i = 1,2, defined as

ol P2 B . pilk-1) Pir
Iy 0 0 .. 0 0
; 0 I 0o .. 0 0
Al = " ,
0 0 L, .. 0 0
o 0 0 . I, 0

if | A |< 1, where A is the maximum eigenvalue of the matrix (1 — m)Al ® Al + mA? ® A?, and only if
| A1 |< 1, where Ay is the maximum eigenvalue of the matrix A = (1 — 1) Al + A2,

Proof. See Appendix A. O
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The distinctive feature of the TVAR model is that it is a linear Vector Autoregresive Model (VAR) in
each of the regimes and an interesting question therefore is how the stability of each regime contributes
to the stationarity of the whole TVAR model. Knight and Satchell (2011) investigate this question in
detail for the univariate TAR model and Niglio et al. (2012) provide evidence that, when the univariate
TAR model is stationary in both regimes, the whole TAR model cannot explode. The more interesting
situation, however, occurs when the model in Equation (1) is explosive in one of the regimes.

The results of Theorems 1 and 2 can be used to analyse this particular situation, one in which the
TVAR model in Equation (1) is explosive in one of the regimes. For example, the following example
shows that the TVAR model can still be stationary in that case provided the probability to be in the
explosive regime is not too large. See also Section 3 for further analysis.

0.70 0.21 0.20 0.32
E le. ider the model in Equation (1), where ®! = 2 =
xample. Consider the model in Equation (1), where (0‘31 0.80)' (0.10 025)

and m = Prob(X; € Rp) = 03. Since one of the eigenvalues of ®! is equal to 1.01, the
model is not stationary in regime one. On the other hand, (1 — 7)®' ® ®! + 71®? @ P? =
036 012 012 0.0
0.16 041 0.06 0.14
0.16 0.06 041 0.14

0.07 0.18 0.18 047
stationary.

, and its maximum eigenvalue A = 0.78. Thus, overall the model is

2.2. The Stationary Distribution

In this section, we describe the stationary distribution associated with the model in Equation (1).
Throughout this section, we assume that €; ~ N(0,X) are independent random vectors. Let Y; be
defined by Equation (4) and let S, (t) = [T}_;(® + B;_x), n > 1, with So(t) = 1. It then follows that

Y =€+ Z Su(t)et—n. ()
n=1
From this, we have that
YilSa() ~ N(OZ + Y Su(HES, (1)), ®)
n=1

and from the definition of S, (#) we notice that the stationary distribution of Y} is a complicated mixture
of Normal distribution. Since it is difficult to establish the distribution of Y; in general, we will derive
it under the assumption that ®! = 0. In this case, if Y; denotes returns, then prices follow a random
walk in regime 1.

From Equation (8), we see that the characteristic function of Y; conditioned on S, (t) is given by

Pt YilSu(1)) = exp (—1t2t Y Sz, (1) ) ©)
n=1
Notice that, when ®! = 0 and ®* = VY, then B; = (S — m)¥ and ® = nVY,

and hence S, (t) =TI}_; S;_x¥. Note also that [T}_; S; y¥ZIT{_; SixY = TT}_; S« ¥ZIT, ¥
The conditional characteristic function in Equation (9) therefore becomes

O(t, Y;|Su(t)) = exp (—t):t — ft i ]‘[st_kcbzzll[cbz/t’) . (10)
n=1k=1 k=1

Given the conditional characteristic function and the distribution of S, (t), we can obtain the
unconditional characteristic function and the marginal stationary distribution of Y;. The results are
presented in Theorem 3.
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Theorem 3. The stationary distribution of the TVAR process with ®' = 0 and ®> = Y has the following
characteristic function

) K
p(t,Y)=(1—-m) ) fexp (—1t ) ‘I’"Z‘I””t) . (11)
K=0 2 =0

Moreover, the probability distribution function is given by

= n=0

f(Yy)=(1-m) i kN (o, i ‘I’”Z‘I””) , (12)
K=0

where N (A, B) is the multivariate normal distribution function with mean A and covariance matrix B.

Proof. See Appendix A. [

Theorem 3 is a generalization of a result for the univariate threshold autoregressive process
developed in Knight and Satchell (2011) and shows that when ®! = 0 the distribution function of Y
given in Equation (12) is an infinite mixture of multivariate Normals. This type of distribution can
generate excess kurtosis. Such distributional characteristics are interesting when it comes to analysing
financial markets and economic problems, since it can accommodate the special features of this type of
data. For instance, the distributions of equity returns and typical measures of the realized volatility
are characterized by large kurtosis. Thus, the theorem shows that TVAR models can be used to study
these processes.

3. Locally Explosive TVAR Models

Threshold autoregressive models where one regime is non-stationary are related to the so-called
locally explosive models. Knight et al. (2014) defines the locally explosive model as a model in
which some regimes may be explosive, but the whole model has a stationary distribution. They study
univariate threshold models and apply the idea of locally explosive models to investigate the formation
of bubbles. In this section, we generalize the notion of locally explosive models to the bivariate setting.
In order to do so, we need to link the stationarity of the whole model in Equation (1) provided in
Theorems 1 and 2 to the stability of the model in each particular regime. Notice that the locally
explosive models considered in this paper are models, which are state explosive. When X; = t instead
the TVAR model is related to the models derived in Phillips and Yu (2009) and Phillips et al. (2011)
where the explosive behaviour is defined in the time series context.

The derived conditions for the existence of a stationary solution are conditions on the matrix
(1—m)®! @ ®! + 7d? ® P2, and it is not in general possible to relate the eigenvalues of this matrix to
the eigenvalues of the parameter matrices ®! and ®? without adding extra structure. In the following
section, we therefore consider a bivariate TVAR model, where the parameter matrices ®! and @2 have
either positive entries only or are upper triangular. We first obtain the conditions on the parameter
matrices under which the locally explosive TVAR model remains stationary. We next provide a
simulation study to examine the characteristics of this model and show that graphically it is very
difficult to assess model stationarity using simulated data.

3.1. Special Cases of the TVAR Model
We consider the special case where Y; in Equation (1) is bivariate and the parameter matrices
1 4l
have positive entries. We introduce the following additional notation for ®! = (ZF g%2> and
21 922
2 42
o2 — (‘Pll P12

¢ 0n)
individual ¢’s, under which the TVAR model is second order stationary. These conditions do not rule

The following corollary to Theorems 1 and 2 provides conditions in terms of the
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out the possibility of an explosive regime, and, if we assume that one regime is explosive, we derive
the conditions on the coefficient matrix of the stationary regime.

Corollary 2. Let the matrices ' and ®? have positive entries. If (1 — 1) ((])]11 + (])}2)2 + (¢ +¢3)* < 1,
Vi,j = 1,2, then the model in Equation (1) is stationary. Moreover, if the model in Equation (1) is explosive in
one of the regimes x € {1,2}, then (¢;* + ¢,*) <1, Vi = 1,2, where —x € {1,2} \ {x}.

Proof. See Appendix A. [

Corollary 2 shows that if the model in Equation (1) is explosive in one regime, the persistence of
the variables in this regime is restricted by the probability of the regime and the persistence, defined
as the column sum of the coefficients of ®! or ®? respectively, of the variables in the other regime.
In other words, Corollary 2 states that there is a trade-off between how persistent a given regime can
be and the probability of this particular regime. In addition, when the conditions of Corollary 2 hold
and one of the regimes is explosive, the sum of the coefficients of the other regime’s matrix is naturally
bounded by one.

Corollary 2 provides sufficient conditions for stationarity of the model, even when the underlying
relationship is explosive in one of the regimes. We believe that the above finding might be useful for a
number of financial and macroeconomic models. In fact, the assumption of positive entries only in
®! and &2 is not very restrictive for economic research and there are a variety of well documented
cases with positive relationships between variables and their lags. For example, it is documented to be
the case for asset returns and asset market illiquidity, consumption and GDDP, volatility and trading
volume and inflation and stock volatility, among many other pairs (Amihud and Mendelson 1986;
Engle and Rangel 2008; Jagannathan et al. 2000; Wang and Yau 2000).

When we add slightly more structure and assume that ®' and ®? are triangular matrices
with nonnegative diagonal entries, we can derive the necessary conditions directly in terms of the
eigenvalues of ®! and ®2. Corollary 3 summarizes these findings.

Corollary 3. Let the process Yi, t = 0,1,2,... defined in Equation (1) be stationary. Then, the following
conditions hold:

18 <l,

2 MM <y

3. MM <\ and
4 MM <\ e

where i and AL, are the eigenvalues of the matrix &, i = 1,2.

Proof. See Appendix A. [

Since the eigenvalues of a triangular matrix are its diagonal entries, Corollary 3 could equivalently
be stated as follows.

Corollary 4. Let the process Y;, t = 0,1,2,... defined in Equation (1) be stationary. Then, the following
conditions hold:

2 2
P11922

1
7-[/

<
1 1 1
PP = g

1
2
3. 1195 < \/ o and
4

(1-m)m”

P10 </ ﬁ
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Corollaries 3 and 4 illustrate explicitly that there is a trade-off between how persistent a regime
in the TVAR model can be and the probability of that regime while ensuring the overall stationarity
of the process. Again, it is noteworthy that the stationarity of the TVAR model does not rule out the
possibility of an explosive regime, but it restricts the value of the own autoregressive coefficients.

3.2. Simulation

Second order stationarity implies that means, variances and covariances are time-invariant
and finite. If stationarity is not satisfied, however, it could be that shocks to the data generating
process could lead to a time series that have unbounded moments. Previously, and in the absence of
explicit stationarity conditions such as the ones derived in this paper, the literature instead suggested
to verify that the estimated model does not contradict stability assumptions by use of simulation
studies (Hubrich and Terasvirta 2013). Specifically, the literature proposed to switch off the noise
and simulate the estimated model for different histories. If the generated series converge to the same
point, the natural conclusion would be that the simulated model is stationary. In contrast, finding
at least one starting point that leads to an explosive time series would be sufficient to invalidate the
stationarity assumption.

In this section, we perform a graphical analysis to “test” the stationarity of the TVAR model as
suggested in the existing literature for different locally explosive TVAR models. Our results show that
this “test” does not always allow us to draw the correct conclusion and the outcome of it is affected by
the distribution of the explosive regime and the persistence of this regime. To be specific, we simulate
the bivariate TVAR model in Equation (1) with different parameter values. We generate time series
from the model of length equal to n = 250, which is equivalent to one year of daily observations.
The number of simulations is equal to m = 200. The initial values of the time series, Yy, are equally
distributed over the interval given by [—0.15,0.24] for the first series and equally distributed over the
interval given by [—0.17,0.23] for the second series. In Appendix B, we report additional results when
n = 2000 to check the robustness of our result.

The parameter values used in the simulation study are shown in Table 1. As the table shows,
regime 2 is by construction always (locally) explosive and we vary the value of 7, the probability of
regime 2, such that the overall TVAR model can be stationary or non-stationary. This is indicated by
the maximum eigenvalue of the matrix (1 — 77)®! ® ®! + 7®? ® ®?, which is reported in column six
labelled A« In particular, we define three groups of models, such that models within each group
have the same coefficient matrices, but the probability to be in the explosive regime 2, 77, varies.

Models 1-6 are more strongly related to lags in the explosive regime 2 than in regime 1. We contrast
our models such that the persistence of the models in the second regime is stronger in group 2 than
group 1. When the second regime is mildly explosive, like the models from group 1, this regime has to
occur very frequently, in order to make the whole TVAR model non-stationary. In contrast, model 6
is unstable even when the probability to be in the explosive regime is as low as 30%. This confirms
numerically that, when one regime is not stable, the distribution of the regimes is crucial for the
stationarity of the whole TVAR model.

Figure 1 shows the simulated paths from models 1-3. When 7 is fairly low (Panel a), the time
series appear stationary. When 7t gets larger and A is closer to 1, the simulated model looks like a unit
root (Panel b). While models 1 and 2 generate spikes, the simulated series return to the initial level all
the time, a characteristic of stationary processes. When 77 = 0.7 (Panel c), the series is no longer stable
and this is also evident from the figure. This conclusion is also valid when n = 2000 (see Figure A1l in
Appendix B).

Figure 2 shows the simulated paths from models 4-6. These models are very persistent in regime 2
and they can generate huge spikes even when the probability of this regime is low (Panels a and b).
Both models 4 and 5 look like unit root models, which explode, though they return to the initial
level afterwards. Thus, the simulation exercise cannot reject stability of model 5, even though it is
non-stationary by construction. The simulation study though does reject stability of model 6, when the
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probability to be in the explosive regime increases to 50% (Panel c). Thus, the results of the simulation
might be misleading about non-stationary TVAR model with low probability of the explosive regime.
The result of the simulation of models 4-6 prevails when n = 2000 (see Figure A2 in Appendix B). It is
of course impossible to check all starting points in a simulation study and we might simply not be
lucky enough to have a starting point that allows rejecting stability of the model.

Table 1. Parameter values used in simulating the bivariate TVAR model.

Regime1, Regime?2, Probability of
Group Model ol 2 Regime 2, 77 Amax
02 03 03 08
! 03 04 05 08 0.3 0.72
1 5 02 03 03 08 05 0.95

03 04 05 08

02 03 03 08
3 03 04 05 08 07 118

02 03 11 12
4 03 04 12 1.05 0.1 084

2 02 03 11 12
> 03 04 12 1.05 0.3 18

02 03 11 12
6 03 04 12 1.05 05 28

09 005 03 08
7 07 03 02 08 01 095

3 09 005 03 08
8 07 03 02 08 0.3 0.99

09 005 03 08
? 07 03 02 08 05 103

Notes: This table shows the parameter values used in the simulated TVAR models. The distribution
of the regimes is Bernoulli with probability to be in regime 2 equal to 7r. Notice that regime 2 is not
stable in any of the models. In the right-hand column, we report the maximum eigenvalue of the matrix
(1-m)®! @ P! + 7P ® D2, Aprax.

— ‘ o~
> oos 4 -

(a) Model 1, 1 = 0.3

Figure 1. Cont.
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> >
t t
(b) Model 2, 7 = 0.5
> >

(c) Model 3, T = 0.7

Figure 1. Simulated paths represented by different colors from models 1-3 for different set of histories
over a n = 250 period using m = 200 simulated paths. The parameters are those from Table 1 and the
probability to be in the explosive regime 2 is equal to 7.

Models 7-9 describe a type of relationship, where a particular time series is more strongly related
with its own lag in regime 1 and with the other time series in regime 2. These models are quite
persistent in regime 1, but still remain stationary in this regime. Figure 3 shows the simulated paths
from these models. The explosive performance of model 9 is evident from Panel c. The conclusion,
however, is not clear about model 8. This model is quite persistent in both regimes, thus it can generate
growing series, like those shown in Panel b, and simulation of model 8 may in fact lead to rejecting
the stability of a stationary model. However, we cannot reject stability of the model when n = 2000
(Panel b of Figure A3 in Appendix B). In fact, when the length of the simulated time series is increased
to n = 2000, the series from model 8 grows first but then returns to the initial level later on. Thus,
the results from simulating model 8 show that the conclusion from this type of simulation study may
also be sensitive to the sample size used in the simulation.

Figure 4 shows the simulated Yi; from TVAR models 4 and 5 specified in Table 1. We end this
section by noting that the simulated series of Y; shown could be associated with data generating
processes of financial or economic bubbles. Evans (1991) defines periodically collapsing explosive
processes of bubbles such that the explosive behaviour of this process prevails through the whole
sample, with non zero probability to collapse when it faces some threshold level. Phillips and Yu (2011)
suggest a locally explosive process of bubbles, where asset prices transit from a unit root regime to
an explosive regime and claim that this approach is consistent with other propagation mechanisms
in financial markets like rational bubbles, exuberant responses to economic fundamentals and herd
behaviour. Our simulation exercise shows that a simple bivariate locally explosive yet globally
stationary TVAR model can generate unit root or explosive behaviour, which is consistent with these
existing definitions of bubbles. An open question in the literature relates to how one can test for



J. Risk Financial Manag. 2018, 11, 45 12 of 23

bubbles. In a recent paper, Ahmed and Satchell (2018) examine the performance of the Generalized
Sup Augmented Dickey Fuller test proposed by Phillips et al. (2015) for the detection of explosive
roots in univariate TAR models. They show that the power of the test drops considerably even though
locally explosive regimes continue to be present when the process has a stationary distribution. We
conjecture that this conclusion generalizes to the multivariate setting used in our paper.

(a) Model 4, T = 0.1

t t
(b) Model 5, 1 = 0.3
> >

I S

(c) Model 6, 1 = 0.5

Figure 2. Simulated paths represented by different colors from models 4-6 for different set of histories
over a n = 250 period using m = 200 simulated paths. The parameters are those from Table 1 and the
probability to be in the explosive regime 2 is equal to 7.
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(a) Model 7, 1 = 0.1

(b) Model 8, 1 = 0.3

(c) Model 9, T = 0.5

Figure 3. Simulated paths represented by different colors from models 7-9 for different set of histories
over a n = 250 period using m = 200 simulated paths. The parameters are those from Table 1 and the
probability to be in the explosive regime 2 is equal to 7.
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(a) Model 4, T = 0.1 (b) Model 5, 1 = 0.3

Figure 4. Simulated paths of Yj; of model in Equation (1) represented by different colors with
parameters from models 4 and 5 for over n = 250 period, where ¢; € N{0,1} The parameters
are those from Table 1 and the probability to be in the explosive regime 2 is equal to 7.

4. Conclusions

This paper derives the necessary and sufficient conditions for the existence of a stationary
distribution of the TVAR model with two regimes, when the regime process follows a Bernoulli
distribution. These results are, to the best of our knowledge, unavailable in the existing literature.
We further derive a closed form solution for the stationary distribution in the special case when there
is no autoregressive structure in one of the regimes.

When the variables of interest are positively related, we describe a bivariate TVAR model,
which is explosive in one regime, but allows for a stationary distribution along with finite moments.
These results are related to so-called locally explosive models and our results extend the notion of
locally explosive univariate processes to the bivariate case. We show that such models may remain
stationary and, to ensure this, there is a trade-off between the persistence in a given regime and the
probability of this regime.

In an empirical application, we simulate from various bivariate TVAR models, which are explosive
in one of the regimes. We show how these models can capture the unit root and explosive behaviour,
usually implied by the literature on bubble formation. We also demonstrate that a simulation study
may fail to reject the stability of non-stationary TVAR models, when the probability of the explosive
regime is low.
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Appendix A. Proofs

Proof of Theorem 1. We first prove necessity. Let Y; be second order stationary such that E(Y;) = .
Taking expectation of Equation (2), we have that 4 = (1 —®)~! %0 = 0. From Equation (2),
we have that

(Ve —=w)(Ys —p) = (Bioapp + (@ + By1) (Vi1 — ) +€)(Biopt + (P + By1) (Vi1 — ) +e). (Al)
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Taking expectations on both sides of Equation (A1) and noticing that the expectation of cross products
are zero, we have

Var(Y;) = Var(Bi_q1p) + Var((® + Bi—1) (Yi—1 — u)) + Var(e:), (A2)
which can be rewritten as
Var(Y;) =V = Var(B;_1p) + ®Var(Y;_1)® + E(B;_1Var(Y;_1)B,_;) + Var(et), (A3)

or
V =®V® +E(B,_1VB,_;) +X. (A4)

It then follows that,
V- ®Vd' —E(B;_1VB;_;) =X (A5)

By definition, X is a positive definite matrix of full rank. Conlisk (1974) and Conlisk (1976) show there
is a unique positive definite V if and only if the maximum of the moduli of ® ® ® + E(B;_1 ® B;_1)
is less than 1. Notice that E(B;_1 ® B;_1) = (1 - 1)@ ®’ and ® @ @ + (1 — 7)) @ 0 =
m®? @ ®2 4 (1 — )®! @ ®'. Thus, the conditions used in Conlisk (1974) and Conlisk (1976) transform
to| A |< 1, where A is the maximum eigenvalues of the matrix 7®? @ ®? + (1 — 7)d! @ d!.

We now show sulfficiency. Let conditions 1-3 hold. Taking expectation of Equation (2) at f = 1
shows that E(Y;) = E(Yp) = u. Iterating further, it is possible to show that E(Y;) = p, Vt. Similarly,
calculating the variance of Equation (2) at t = 1 shows that Var(Y;) = ®V®' + E(B;_1VB; ;) + X =
V = Var(Yp). Iterating further, it is possible to show that Var(Y;) = V, Vt. Since A < 1, it follows from
Conlisk (1974) and Conlisk (1976) that V is positive definite. Premultiplying Equation (2) by Y, and
taking expectations, we have

cov(Yy, Yyip) = (mP? @ &% + (1 — 1)@ @ ®V)cov(Yy, Yipp_1)- (A6)
Iterating further, we have
cov(Y;, Yyip) = (MP? @ D 4 (1 — 1)@ @ &) cov(Yy, Vi) = (P2 @ D2 + (1 — 1)@ @ 'V, (A7)
Thus, the process Y;, t = 0,1,2, ... is second-order stationary. O

Proof of Theorem 2. Let Y; be stationary and defined by Equation (4), i.e., the moments of Y; exist and
they are finite. Then, from Equation (7), it follows that

[e9)

E(Y;Y) = E ( sn(t)etne;ns;,a)) .

n=0

We may rewrite this in vec form as

vecE(Y;YY) vecE ( Sn(t)et_nei_ns;(t)>
n

=0

E (i Su(t) ® Snvec(et—nei_n)>
n=0

) n
= E (vec(eteg) + Y J[(@+Biy) @ (@+ Btn)vec(etnegn)> .
n=1k=1
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Since [T}_o Ax @ [Ti—o Bx = ITi—y Ak ® By for any matrices Ay and By whenever the matrix product
exists, the later can be rewritten as

()

vecE(YY]) = (®® P+ E(Bi—y @ Bi—p)) veck.
n=0

Then,

vecV = Y (m®* @ @* + (1 — m)®' @ ®')"vecX. (A8)
n=0
Furthermore, since (7®? @ ®2 + (1 — 71)®! @ ®')vecV = Y31 (md? @ &% + (1 — 1) D! @ ®!)"vect =
vecV — vecX, we have that

vecV — (m®* @ & + (1 — 1)@ @ ®')vecV = vecL,

or
vecV — (® @ ® + E(Bi—y; ® Bty ) )vecV = vecZ,

which is equivalent to
V —-®V® — E(B;—yVBi—y) = X. (A9)

Since V and X are both positive definite, the maximum eigenvalue of ® ® ® + E(B;—, ® B;_;,) is less
than 1 (Conlisk 1974, 1976). Thus, the the maximum eigenvalue of (1 — 7)®! ® Dl 4+ 1P2 @ P2, A, is
less than 1.

We now prove sufficiency. Let all the eigenvalues of the matrix (1 — 71)®! ® ®! + 7®? ® ®2 be
less than 1. Following Nicholls and Quinn (1982), we consider

_€t+ZHcD+Bfk€in—anl €t—n- (A10)
n=1k=

Given that the eigenvalues of the matrix (1 — 71)®! @ ®! + 7P? @ ®? are less than 1, the limit W(t) of
Wi (t) exists in mean square and thus in probability. Moreover, W(t) = e; + Yo" (ITf_; ® + B;_k)€t—n
satisfies Equation (2) and W(t) is stationary. Now, suppose U(t) is another stationary solution of
Equation (2) and define

X(t) =W(t) —U(t). (A11)
By definition, X(t) = (® + B;_1)X(t — 1), E(X(#)) = 0 and X(t) is stationary. Then E(X(t)X'(t)) =
PE(X(t—1)X'(t —1)®') + E(B;_1E(X(t —1)X'(t — 1))B;_1). Since X(t) is stationary, and ® ®
®+EBi1®Biq) = (1—-m)d! @ ®! + 1d? @ ®?, we have (I — ((1 — 1)P! @ & + 1P? ®
®2))vecE(X(t)X'(t)) = 0. However, since the eigenvalues of (1 — 7)®! @ ®! + 7d? © d? are less
then 1, E(X(#)X'(t))=0. Thus, W(t) = U(t), and W(t) is the unique solution of Equation (2). Since
W(t) is the same for all ¢, it is also the strictly stationary solution of Equation (2). O

Proof of Remark 2. Following Theorems 1 and 2, the maximum eigenvalue of ® ® ® + E(B;_, ® B;_y)
is less than 1. Consider S = X + E(B;—,VB;_,) and K = V. S and K are positive definite, since . and
V are positive definite. From Equation (20), we have that

K—®Kd =S.

From Barnett and Storey (1970), it follows that the maximum eigenvalue of ® is less than 1. O

Proof of Corollary 1. Given the definitions of Z;, #;, and Al i = 1,2, we can rewrite the model in
Equation (5) in its companion form

Zi = A'I(Xi1 € R)Zp1 + AP (X1 € Ro)Zy—1 + 11 (A12)
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Now, define A = (1 — 1) Al + A2, Then, the model in Equation (A12) can be rewritten as a Random
Coefficient Model (Nicholls and Quinn 1982) given by

Zy=(A+Di)Zi1+m, (A13)

where D; = (S; — ) A% + (7t — S;) Al, such that ED; = 0.

The proof of sufficient conditions are similar to the proof of Theorem 2 and it suffices to show
necessity. Define () = varZ; and assume it exists and that it is finite. Notice that #(t) = (1,0,0,.,0) ®
e(t)=l ® e(t). Define H = II'. Then, following the first part of the proof of Theorem 2, we have

o0
vecQ =Y (A®A+ED;_, ® Dy_y)"vec(H® L). (A14)
n=0

Following the same strategy as in the proof of Theorem 2, it is straightforward to show that
Q=AQA+ED,_,QD; ,+H®X. (A15)

Let 2’ = [z}, ....z;] be the left eigenvector of the matrix A with corresponding eigenvalue A and z; are
n x 1 vectors. Then,
(1—-A%)2'Qz = 2} ¥z, + ZED,_,QD; _yz.

Since () is positive semidefinite, ED;_,D;_,, is positive semidefinite. Since X is positive definite,
| A |< 1whenz; # 0. Now let z; = 0. Since 2z’ is the left eigenvector of A with eigenvalue A, we have
the following system of equations:

Zj @ + Zijq = Az, Vi=1,.,p-1,
and
2P = Az),.
Since A # 0, zp = 0. Thus, z; = 0, Vi = 1,..,p — 1. However, since z = 0, this contradicts that
Z1 = 0. O

Proof of Theorem 3. The characteristic function of Y; is

_ _1 /I 1 - !/ /
¢(t,Yi) = Eg, (1) (exp ( STt 2tn;Sn(t)zsn(t)t )) . (A16)
Thus, it is defined by the distribution of S,;(¢). Since Y_5” 1 S, (t) = Y5 [1i_1 St—x ¥, the probability
space of Y% 1 Su(t) is {0,XX_; ¥",K > 1}, and Y2, S,(t) has a Geometric distribution with
P(X2 1 Su(t) =0) = (1 —m)and P(X2; Su(t) = XX, ¥") = (1 — ) 7K. It follows that

1 1 [ee] n n
¢(t, Y1) = Es (exp (—tht’ — 5t Z Ust—k‘PZ(H St_k‘{’)’t’>>
n=1k=1 k=1
= (1—rex sy +(1—m) i wRexp =1t 3 bR Uy
$ 2 K=1 § 2 n=1

= 1 K
_ _ K - n myl
= (1 n)Znexp( ZtZ‘i’Z‘I’t).

K=0 n=0

Integrating the above expression, we have that the probability distribution function of Y; is a weighted
average of normal distributions
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f(t,Y) =(1-n) i KN <o, f T“Z‘I””) ,

K=0 n=0

where N (A, B) is the multivariate normal distribution with mean A and covariance matrix B. []

Proof of Corollary 2. The Perron-Frobenius theorem states that, for a matrix X with positive entries,
there is a unique maximum eigenvalue A such that min; Yixij < A < max;Y,x;. Let A? be the
maximum eigenvalue of matrix ®2. Then, 1 < A2 < max;¢ (1,2} (4)1-21 + 471-22). Let A be the maximum
eigenvalue of (1 — 71)®! ® ®! + 7P? ® ®2. Then,

A< max, FE((1-n)d! @ d! + 7d? @ d?), (A17)
ie{1,2

where F;() denotes the column sum for each row i. From the last equation, we have that A <
max;e 12y Fi((1—7m)®' @ ®! + 12 @ @?) < (1 — 1) max;e 1,03 (9f + P1p)* + Tmaxie (101 (¢ + ¢7)-
Since the condition of the corollary holds for any i,j = 1,2, we have that

(1= ) max (¢ +¢p)” + 7 max (¢ +¢) < 1. (A18)

ie{1,2} ie{1,2}
Thus, A < 1 and, from Theorems 1 and 2, the model in Equation (1) is stationary. Now, suppose the
model is explosive in regime 2 and let A% be the maximum eigenvalue of matrix ®2. Then, from the

Perron-Frobenius theorem,
1< A% < max (¢4 + ¢5). (A19)

ie{1,2}
Equations (A18) and (A19) show that 1 < (max;e (12} (¢4 + ¢%))* < % — (1;”) max;e (101 (h + )
and thus (¢}, + ¢5,) < 1foranyi=1,2. O

Proof of Corollary 3. From Remark 2, we know that, if the model is stationary, then the eigenvalues of
the matrix @ are less than 1. Let A and A, be the eigenvalues of matrix ® = (1 — 77)®! + 71®? where

1 1 2 2
ol = 11 4’%2 , P2 = P 4)%2 . Then it follows that,
0 ¢ 0 ¢%

MAy = det® = (1= 7"\ + 7AIN + (1= 7)pnugy + (1 = )ppfty. (A20)
Since ¢!, and ¢,,i = 1,2 are nonnegative,
MAy > (1= )2 MAL 4+ m2A2A3. (A21)

Now suppose A2A3 > 1 and © > Since ®! and ®? are upper triangular matrices with

1
ATA
nonnegative diagonal entries, we have that

MAy > mPAZA3 > 1. (A22)

Thus, there is an eigenvalue of ®, which is greater than 1. From Theorem 2, it follows that the process
Y;, t =0,1,2, ... is not stationary. Similarly, it can be shown that the process Y} is not stationary when
condition 2 of Corollary 3 does not hold. O
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Appendix B. Additional Figures
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Figure Al. Simulated paths represented by different colors from models 1-3 for a different set of
histories over an n = 2000 period using m = 200 simulated paths. The parameters are those from
Table 1 and the probability to be in the explosive regime 2 is equal to 7.
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Figure A2. Simulated paths represented by different colors from
histories over a n = 2000 period using m = 200 simulated paths. The parameters are those from Table 1

and the probability to be in the explosive regime 2 is equal to 7.

models 4-6 for a different set of
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Figure A3. Simulated paths represented by different colors from models 7-9 for a different set of
histories over a n = 2000 period using m = 200 simulated paths. The parameters are those from Table 1

and the probability to be in the explosive regime 2 is equal to 7.
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