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Abstract: Different forecasting behaviors affect investors’ trading decisions and lead to qualitatively
different asset price trajectories. It has been shown in the literature that the weights that investors
place on observed asset price changes when forecasting future price changes, and the nature of their
confidence when price changes are forecast, determine whether price bubbles, price crashes, and
unpredictable price cycles occur. In this paper, we report the results of behavioral experiments involving
multiple investors who participated in a market for a virtual asset. Our goal is to study investors’
forecast formation. We conducted three experimental sessions with different participants in each
session. We fit different models of forecast formation to the observed data. There is strong evidence
that the investors forecast future prices by extrapolating past price changes, even when they know
the fundamental value of the asset exactly and the extrapolated forecasts differ significantly from
the fundamental value. The rational expectations hypothesis seems inconsistent with the observed
forecasts. The forecasting models of all participants that best fit the observed forecasting data were
of the type that cause price bubbles and cycles in dynamical systems models, and price bubbles and
cycles ended up occurring in all three sessions.

Keywords: behavioral OR; forecasting; finance

1. Introduction

Data and forecasting form the foundations of both long-term planning and operational control.
In spite of the widespread use of computers and algorithms to assist with data processing and forecasting,
human decision makers continue to affect forecasts in important ways, including the introduction of
cognitive biases, strategic biases, and overconfidence into forecasts. For surveys of the impact of human
decision makers on forecasts, see for example Armstrong (1985) and Ramnath et al. (2008). In this paper
we focus on human forecasting behavior in a setting in which forecasters know the rational expectations
value of the variable to be forecasted, and they also observe data of the variable to be forecasted, where
the individual data values are allowed to deviate from the rational expectations value. We conducted
experiments in which the participants were asked to forecast future prices, in which the actual prices
were endogenous to the experiment through the trading decisions of the participants, and in which the
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rational expectations value of future prices (fundamental value of the traded asset) was clear and known
to all the participants. One question is whether such participants place more emphasis on the rational
expectations value or on the observed data to make their forecasts.

If investors’ forecasts were consistent with the rational expectations hypothesis, then the volatility in
forecasts and prices would be caused by “external” surprises and not by the “internal” forecasting
behavior itself, and the forecasts and resulting prices would be less volatile than the earnings
produced by the assets. However, Shiller (1981a, 1981b); LeRoy and Porter (1981); and later
Campbell and Shiller (1987, 1988); Shiller (1986); West (1988a, 1988b); and LeRoy (1989), presented
empirical evidence that stock prices are typically much more volatile than the earnings produced
by the stocks. Thus empirical evidence indicates that the rational expectations hypothesis does not
provide an accurate model of investor forecasts and asset prices. Hence we are interested in studying
alternative models of forecasting behavior.

Models of boundedly rational forecasting behavior have shown that small changes in investors’
forecasting behavior can qualitatively change price trajectories. For example, Cheriyan and Kleywegt (2016)
showed that a small change in the weight that investors’ forecasts place on recent data relative to
older data can change price trajectories from convergent trajectories to cyclical trajectories consisting
of repeated bubbles and crashes, and the instability is affected by investors’ overconfidence in the
information contained in observed price data. Also, it was shown that if investors’ forecasts exhibit
behavior called panic, then the price cycles can become unpredictable. Thus, an understanding of
forecasting behavior contributes to an understanding of the qualitative behavior of price trajectories.

Therefore, our interest in investor forecasting behavior lead us to the following questions: Are there
simple models that can describe investors’ forecasts accurately? How accurately does the rational
expectations hypothesis describe investors’ forecasts? What does observed forecasting behavior imply
regarding the resulting behavior of price trajectories, that is, whether price trajectories converge, or
predictable price cycles occur, or trajectories are unpredictable? Questions such as these have been asked
by both researchers as well as policy makers who are interested in studying, and sometimes containing
or controlling, asset price dynamics.

In this paper, we report experiments conducted to study investor forecasting behavior. We designed
a market for a virtual asset in which the experimental investors report their price forecasts to the
experimenter, and enter their buy and sell orders in the market, repeatedly over time. The market
clearing prices are determined by the investors’ buy and sell orders, and are therefore endogenous, and
the market clearing prices are reported to the investors in real time. Before each experimental session,
the investors were reminded of the theory of the fundamental value of an asset, and they were told how
the earnings of the asset would be determined and what the resulting fundamental value of the asset
was. Nevertheless, the resulting price trajectories exhibited cycles. We calibrated and compared various
models of investor forecast formation. The experimental results indicate that:

1. The rational expectations hypothesis does not provide an accurate model of investor forecasting
behavior, even when the earnings rate and fundamental value of the asset are known with certainty
by investors.

2. A simple one-parameter exponential smoothing model of investor forecasting behavior is
remarkably accurate. Models with a larger number of parameters provide only a slightly better fit.
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3. There is strong evidence of investor overconfidence in the information content of observed price
data. In the experiment, the fundamental value of the asset was known to the investors and therefore
the observed prices contained no additional information regarding the fundamental value of the
asset. Nevertheless, investor forecasts relied mostly on observed price data.

4. Except for a few experimental investors, the price forecasts were increasing in the extrapolated
prices. That is, most experimental investors did not exhibit evidence of panic, as defined in
Cheriyan and Kleywegt (2016), in their forecasts.

Definition of Key Terms

A typical experimental setting consists of a number of participants buying and selling units of a
virtual asset with virtual currency in a market. Usually, the participants can buy and sell assets. In some
experiments, the participants can also be forecasters who only generate forecasts and do not trade.

A virtual asset market implements a specified trading mechanism for trading units of a virtual
asset and virtual currency. All virtual asset markets have a finite duration. The fundamental value of
the asset may be specified exogenously or it can be computed from the dividend payoffs. The asset
may provide either periodic dividends, or only a terminal dividend. Also, it may or may not have a
salvage value.

An experiment consists of one or more sessions. A session involves a group of participants
participating in the asset market. Each session consists of one or more trading runs. Two or more
trading runs with common participants are called repeated markets by some authors. At the beginning
of each trading run, the investors are given an initial endowment of virtual currency and units of the
virtual asset. The investors use the trading mechanism to participate in trades. At the end of the trading
run, the participants are rewarded, typically as a function of their final portfolio of virtual currency
earned and virtual asset in possession. In some experiments, there is also a reward associated with
forecast accuracy.

The trading mechanism can be a continuous-time trading mechanism such as a double-auction, or a
discrete-time trading mechanism such as a call market mechanism. For a market with a discrete-time
trading mechanism, the trading run is divided into multiple (trading) periods. During a period, traders
enter buy and sell orders. At the end of the trading period, the price of the asset is determined by
market clearing and the trades are executed based on the market clearing price. For a market with a
continuous-time trading mechanism, the trading run consists of only one trading period. For example,
in a double auction market, the traders may post buy and sell offers, or accept existing open offers
resulting in trade; in this case the instantaneous price varies throughout the trading period.

Note that in our experiments, the object of interest is investor price forecast formation when both
knowledge of the fundamental value of the asset as well as price data are available to the investor.
As a result, each participant’s forecast in each trading period in each session constitutes an observation.
Thus, over the three experimental sessions that we conducted we collected 2760 observations.

2. Models of Price Forecast Formation and Literature Review

In this section, we briefly review some models of asset price forecasts and the resulting market
clearing prices. We also review the related literature.
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Time is indexed by t = 1, 2, . . .. Each unit of asset pays a dividend dt at time t. Let pt denote the
price of the asset at time t before the dividend dt is paid. Let p̂t+1 denote the modeled investor forecast
at time t of the price at time t + 1. Suppose that the investors in the market are indifferent between
investing and not investing in the asset if they expect a rate of return of r̃, that does not depend on time.
In each time period, investors can rebalance their portfolios without transaction cost, and they forecast
only one period into the future. Then the indifference price at time t is

pt = E[dt] +
1

1 + r̃
[ p̂t+1] (1)

For extensions of this model and an estimation procedure for the expected rate of return r̃ see
Wong and Chan (2004).

In the experimental sessions that we conducted, the dividend process was revealed to everyone,
enabling the participants to compute E[dt] explicitly. Note that, given E[dt], it holds that each specification
of a model to compute forecasts p̂t+1, and appropriate initial conditions, defines a unique discrete time
dynamical system of the asset price process through Equation (1). This way, a model of forecast behavior
has direct implications regarding the resulting asset price dynamics. Cheriyan and Kleywegt (2016)
studied models of asset price dynamical systems, and showed how the qualitative behavior (convergence,
cycling, or unpredictable “chaotic” behavior of price trajectories) of these systems depend on the
properties of the price forecast process. In this paper we report the properties of the price forecast
processes observed in our experiments, and in Section 5 we comment on the implications of the
forecasting behavior observed in the experiments for the asset price dynamics.

Next we review some models of asset price forecasts. For the fundamentalist investor, the price
forecast p̂t+1 is simply the fundamental value p̄t+1

p̄t+1 :=
∞

∑
i=0

E[dt+1+i]

(1 + r̃)i

assuming that the infinite sum is convergent. (That is, the expected growth rate of the forecasted
dividends is less than r̃.) In our experiments, E[dt+1+i], p̄t and p̄t+1 can be computed explicitly from the
given dividend process and the salvage value of the stock. These computations are given in Appendix A.

Price forecasts may also be influenced by observed historical price data, especially recent price data.
Different assumptions about how past price data affect price forecasts give rise to different models for
forecast formation.

2.1. Extrapolation-Correction Models of Forecast Formation

It is convenient to consider the prices and forecasts scaled by the fundamental value, as follows:

πt :=
pt

p̄t

π̂t+1 :=
p̂t+1

p̄t
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Let yt denote the growth rate of scaled prices in period t, that is,

yt :=
πt

πt−1

2.1.1. Extrapolated Price

The extrapolation forecast ŷt of the price growth rate is given by

ŷt = (1− α)ŷt−1 + αyt−1

where ŷ2 is an appropriate initial value. Thus, the extrapolation forecast is an exponential smoothing
forecast. Note that α corresponds to the weight that the investor gives to the most recent price ratio.
If the forecaster used only the extrapolation forecast, then the corresponding scaled forecast for the price
at time t + 1 would be

π̂t+1 = πt−1ŷ2
t (2)

Note that at time t, (p1, . . . , pt−1) are known to the investor, but the price pt has not yet
been observed.

2.1.2. Price Forecast

We also consider price forecasts that are functions H of the extrapolation forecast and the
fundamental value. Although the price forecast depends on both the extrapolation forecast and the
fundamental value, it is convenient to use notation that shows only the scaled extrapolation forecast as
an argument of H. Thus, the scaled price forecast π̂t+1 is given by

π̂t+1 = H(πt−1ŷ2
t )

where H : R+ 7→ R+ is a function that captures some forecast behavioral characteristics of the investor.
A fairly general class of functions H are included. The only property that we require is that

H(1) = 1

That is, if the extrapolation forecast is equal to the fundamental value, then the price forecast should
also be equal to the fundamental value. As an example, H(θ) ≡ 1 corresponds to rational expectations,
while H(θ) ≡ θ corresponds to extrapolation-only price forecast.

One may expect H to be nondecreasing in a neighborhood of θ = 1, that is, the price forecast
increases with the extrapolation forecast if the extrapolation forecast is close to the fundamental value.
For larger values of θ, H may increase, perhaps at a decreasing rate. Alternatively, H may increase and
then decrease, in which case we say that the investor exhibits panicking behavior. This corresponds to
the investor losing confidence in the extrapolation forecast and adjusting the price forecast closer to the
fundamental value. Such functions H will be called non-mononotic.
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2.2. Linear Model of Forecast Formation

As a benchmark to compare our results, we also consider a simple linear model of forecast formation.
According to this model, the price forecast for next period, p̂t+1, is given by

p̂t+1 = p̄t+1 + b0 + b1(pt−1 − p̄t−1) (3)

where p̄t is the fundamental value at time t, and b0 and b1 are parameters. Thus, the forecasts are linear
functions of the deviations of the past price from the fundamental value. This model was first introduced
in Brock and Hommes (1997) where the resulting price dynamics are studied.

2.3. Literature Review

The literature specifically on investors’ price forecast behavior is very small. At the same time,
several researchers such as Smith et al. (1988) have conducted experiments to study behaviors that may
result in asset price bubbles, and the subsequent literature on such topics is relatively large. Therefore,
here we review experimental work that study not only price forecast behavior, but also the related asset
price formation. We classify the experiments in this area based on the following properties: purpose
of the experimental work, endogeneity of supply and demand, finiteness of the time horizon, market
mechanism, and reward mechanism.

2.3.1. Purpose of the Experiments

The primary purpose of our experiments was to learn about investors’ price forecasting behavior
when asset prices are observed in each period, and the fundamental value of the asset is known. For that
reason we collected investors’ price forecasts during the experiments, so that various models of investor
forecast formation could be calibrated and compared. The secondary purpose of our experiments was to
determine which of the qualitative regimes of asset price trajectories identified in dynamical systems
models (convergence of asset prices, cycling of asset prices, or unpredictable asset price trajectories)
the observed forecasting behavior corresponds to. We conducted these experiments in an experimental
market setting, so that we also observed the price trajectories that resulted from the participants’ forecasts
and trading decisions.

Similar to this paper, some of the experimental studies addressed belief or expectation formation
among participants. For example, Nickerson et al. (2007) explicitly captured participants’ price
expectations for future periods and concluded that participants’ beliefs converged to the fundamental
value only after observed prices converged. Hirota and Sunder (2007) studied the effect of first and
higher-order beliefs by designing experiments with a publicly announced range of dividends that was
wider than the privately communicated actual range of dividends.

Many of the experimental studies focused on convergence of asset prices to the theoretical
fundamental value. For example, Ball and Holt (1998) compared the prices resulting from trading
with the fundamental value. Some researchers such as Nickerson et al. (2007) studied price bubbles in
repeated markets with the same set of participants.

There were also other specialized objectives to some of these studies. Hirota and Sunder (2007)
studied the effect of investors’ decision horizons on the presence of bubbles and they found
that shorter decision horizons (compared with the maturity of the asset) can lead to larger
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bubbles. Lugovskyy et al. (2009) studied the effect of the tâtonnement trading institution on price bubbles
and concluded that the participants were able to learn about supply and demand during the tâtonnement
process, thereby reducing price bubbles.

2.3.2. Exogenous and Endogenous Supply and Demand

The supply and demand of the asset are exogenously specified in experiments that study the
effectiveness of market mechanisms in facilitating the convergence of prices to the equilibrium price.
In such a setup, in each trading period some of the participants are given the role of buyers and the rest
are given the role of sellers. Each buyer and seller is given an initial endowment of currency or the asset,
respectively. Moreover, the value of the asset for each buyer and seller is specified privately to the buyer
and seller. Thus, there are a priori supply and demand curves and a market clearing price in each trading
run. Different market mechanisms, such as the double auction mechanism, are used to generate a price
trajectory for the asset and this price trajectory is compared with the market clearing price. For example,
Ball and Holt (1998); Smith et al. (1988) conducted such studies.

Most of the experiments related to our work use endogenous supply and demand
(Camerer and Weigelt 1993; Hirota and Sunder 2007; Lugovskyy et al. 2009; Nickerson et al. 2007). In this
setup, at the beginning of a trading run, every participant is given an initial endowment. Thereafter, in
each period, each participant can enter buy and sell orders. Presumably, they make these decisions by
taking into account the market clearing prices, their own forecasts of the future prices, as well as the
revenue stream associated with owning the asset. Thus, in each period the supply and demand of the
asset are endogenous to the experimental market. Our experimental setup also follows this endogenous
supply and demand approach.

2.3.3. Finite Time Horizon and Learning

Many of the experiments reported in the literature have a pre-announced number of periods in each
trading run. For example, both Nickerson et al. (2007) and Lugovskyy et al. (2009) used trading runs
consisting of 15 periods each.

In many experiments the asset is worthless at the end of the trading run. For example,
Nickerson et al. (2007) and Lugovskyy et al. (2009) considered an asset that paid a fixed expected
dividend d at the end of each period t = 1, . . . , 15 and that had no salvage value. Assuming no
discounting, the fundamental value of the asset at the beginning of period t was p̄t = (16− t)d. Thus,
the fundamental value decreased linearly throughout the trading run and the participants knew ex ante
that the asset would be worthless at the end of the trading run. Consequently, prices fell towards the
end of the trading run. Since the dividend process was pre-announced, the participants could anticipate
this price trajectory. In repeated markets as in Nickerson et al. (2007), one reasonable estimator of
when the price process peaks was the peak time period in the previous trading run. Consequently,
in each successive trading run the peak occurred earlier than in the previous trading run, and as a
result the size of the bubble decreased because the fundamental value was also larger in earlier periods.
This observation lead to the conclusion that learning caused the bubbles to disappear.

One question that arises naturally is what happens when investors do not have the opportunity
to form expectations using backward induction—e.g., reasoning such as “if it is certain that the price
is 0 at the end of period 15, it may not be very high at the end of period 14”. Hirota and Sunder (2007)
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considered a setup which made such backward induction difficult. In their setup, the asset paid a known
terminal dividend only at maturity (at the end of 15 or 30 trading periods). In some trading runs, it was
known in advance that the duration would be 15 periods and that the asset would mature at the end of
15 periods; in this setting, backward induction was possible. In other trading runs, the asset matured at
the end of 30 periods; however the participants were told that the experiment would end at an unknown
time most probably much earlier than the life of the asset. If the trading run lasted for 30 periods,
then they would receive the known dividend, otherwise they would receive a payout of the average
price forecast for the asset when the trading run ends. In this setting, the apparently random end of the
trading run removed the anchor that the terminal dividend provided for backward induction. Their
results suggest that the latter setup is more conducive to formation of asset price bubbles.

Another approach to eliminate backward induction is to make the number of periods in the
trading run random. In this kind of probabilistic stopping, in each period the trading run ends with a
pre-specified probability. It can be shown that for an asset paying constant dividends, the fundamental
value under probabilistic stopping with probability p is equal to the fundamental value under an
infinitely-long trading run with discount factor of 1− p (see Lemma 1). Camerer and Weigelt (1993) used
trading runs with probabilistic stopping to study convergence of prices to fundamental value and to test
if prices are rational forecasts of the fundamental value. Ball and Holt (1998) used a variation of this in
which each individual asset can expire with a pre-specified probability. However, in their experiment
the total length of the trading run was pre-announced (10 periods), thus the probabilistic stopping only
created an effective discounting but did not eliminate the end of horizon effect.

In the current work, we use probabilistic stopping; in each period the trading run can end with
a pre-announced stopping probability similar to Camerer and Weigelt (1993). Thus the participants
cannot use backward induction to value the assets. Moreover, we pre-announced the total duration
of the experimental sessions to be about three and a half hours, which is atypical in this literature.
Our reasoning was that even with probabilistic stopping, towards the end of the time allowed for the
session, the participants might reason that even if the trading run did not end, the session would end
soon; in such a setting they might want to apply thinking analogous to backward-induction and offer to
sell their assets for decreasing prices. A pre-announced long duration for the experimental sessions helps
to reduce the effect of such thinking if the trading runs end well before the time that the participants
thought that the session might end.

2.3.4. Market Mechanism

Depending on the objectives of their studies, different researchers use different market mechanisms.
For example, Ball and Holt (1998); Camerer and Weigelt (1993); Hirota and Sunder (2007) used a
continuous double auction mechanism. In this mechanism, participants announced their bids and asks;
at any time any participant could accept a bid or an ask, and the price associated was recorded as the
current transaction price. In these studies, the average of the transaction prices was used as a proxy for
the market clearing price for that period. On the other hand, researchers such as Nickerson et al. (2007)
used a call market mechanism. In this mechanism, in each trading period, each participant entered buy
and/or sell orders. At the end of the period, all orders were aggregated into market supply and demand
curves. An equilibrium price was determined that cleared the market. All feasible trades (bids above the
equilibrium price, asks below the equilibrium price) were executed. Bids and asks at the equilibrium
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price might be only partially executed (in which case, some tie breaking or apportioning mechanism was
used). Other authors have used other market mechanisms. For example, Lugovskyy et al. (2009) used the
tâtonnement mechanism. In this mechanism, in each period the market maker announced a suggested
price and the participants placed their tentative buy and sell orders at that price. If the aggregate supply
equaled the aggregate demand then the suggested price became the market clearing price and all trades
were executed; otherwise, the market maker announced an updated suggested price and the participants
again placed their buy and sell orders at the new suggested price. The process repeated until the market
cleared or a particular exit criterion was met (e.g., if the number of iterations reached a maximum).

In our setup, we use a slight modification of the call market mechanism. In each period, each
participant can place multiple buy and sell orders, effectively specifying their individual supply and
demand curves. These are aggregated into market supply and demand curves. Their intersection
determines the market clearing price. Trades are executed at the market clearing price—all buy orders
above the market clearing price and all sell orders below the market clearing price are fully executed.
Orders at the market clearing price are filled completely if the aggregate supply and demand match
exactly; in general, the maximum number of orders at the market clearing price are filled, and they are
filled in the temporal sequence in which the orders were entered (i.e., on a first-come first-served basis).
Some orders can be partially filled.

We chose to use this market clearing mechanism primarily to make sure that each period results in
a unique equilibrium price. The prices in prior periods are common knowledge to all participants, and
we hypothesize that the participants use this information to form price forecasts.

2.3.5. Reward Mechanism

The reward mechanisms found in the literature are quite varied. Most experiments pay a
combination of a fixed participation fee and a reward proportional to the participant’s performance in
the experiment. The participant’s performance is evaluated based on factors such as the total virtual
wealth at the end of the experiment and the forecast accuracy (if the experiment collected forecast data).
For example, in Hirota and Sunder (2007) participants who were price predictors were paid based on the
accuracy of their predicted prices; in Nickerson et al. (2007) the participants also received payments for
accurate predictions. Some researchers used a fixed exchange rate (i.e., a pre-announced virtual currency
to real currency exchange rate), a pre-announced payment schedule (e.g., for accuracy of predictions), or
they divided a pot of money in proportion to the total virtual wealth at the end of the experiment, as in
Hirota and Sunder (2007) for the participants who were investors. Ball and Holt (1998) argued against
rewarding only the participant with the highest earnings as it may induce indifference or extreme risk
seeking in people who are relatively behind in terms of their earnings.

In our experiment, rather than provide a fixed participation fee to each participant, three prizes
were awarded at the end of each experimental session. Two of these were a function of their total wealth
at the end of the experiment and one was for the best forecast accuracy. The details and rationale for
these prizes are given in Section 3.4.

3. Design of the Behavioral Experiment

Our experiment consisted of three sessions of a virtual asset market with a discrete-time trading
mechanism, as given in Process Flow 1.
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Process Flow 1 Process flow for an asset market with a discrete-time trading mechanism.

1. t← 0
2. t← t + 1 (New trading period begins)
3. Investors generate forecasts
4. Investors enter buy and sell orders
5. Market clears according to the specified market clearing algorithm. Price pt is determined
6. Trades are executed based on the market clearing price pt
7. Dividend dt is paid for each unit of asset held
8. Check termination of trading run. If not ended, go to step 2; otherwise compute

rewards and debrief.

3.1. Approaches to Reduce End of Horizon Effect

In most market experiments the asset becomes worthless at the end of the last period. Therefore,
if the total number of periods in the trading run is known in advance, the asset price decreases to zero
towards the end of the trading run. If there are repeated trading runs in an experimental session, the
decreasing trend of prices during a trading run eventually reduces the occurrence of price bubbles in the
later trading runs.

To alleviate this effect caused by a known time horizon, we used probabilistic stopping. At the end
of each period the trading run can end with a stopping probability p = 0.02. Thus, the total number
of periods in each trading run is a geometric random variable. This was explained to all participants,
including the value of the stopping probability, in advance of each trading run.

Unlike traditional classroom experiments that last 1 or 2 h, we set up our sessions to last for three
and a half to four hours. Thus, at least during the initial part of the session, the participants did not
consider the end of the session when making their trading decisions.

We also instituted a salvage value of 100 Experimental Currency Units (ECUs) for each unit of asset
held when the trading run ended. Theoretically, this just adds a constant to the fundamental value of the
asset. We decided to add the salvage value after an initial trial run of the experiment (the data from the
trial run were not used) to reduce the fixation of some participants on the possibility that the asset may
become worthless at any time.

3.2. Dividend Structure

In each period, a dividend was paid for each unit of asset held. The dividend was added to the
cash-on-hand of each participant.

For the first two sessions, the dividend was fixed to 10 ECUs per unit of asset in each period. For the
third session, the dividends were the same for all participants but were random for each period. In each
period the market was in a state Xt ∈ {low, high}. The state transition followed a discrete time Markov
chain with the transition matrix

P =

(
3/4 1/4
1/4 3/4

)
The initial state, X1, was chosen at random with equal probability. The dividend Dt for each period

had a distribution depending on Xt as given in Table 1.
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Table 1. Conditional probability mass function for the dividends.

Market State P(Dt = 5|Xt) P(Dt = 10|Xt) P(Dt = 15|Xt) E[Dt|Xt]

Xt = low 0.6 0.3 0.1 7.5
Xt = high 0.1 0.3 0.6 12.5

3.3. Experimental Sessions

The experiment consisted of three sessions, each with a new group of participants. Each session
lasted for about four hours in total and consisted of an overview, training trading run, actual trading
runs, and post-session debriefing.

The overview included an explanation of the Process Flow 1, probabilistic stopping of trading runs
including the memoryless property of the geometric distribution, the dividend process, the concept
of fundamental value and its calculation, the process for placing buy and sell orders, and the market
clearing process to determine the market clearing price and market clearing trades. (All participants were
masters students in the Quantitative and Computational Finance program or Ph.D. students, and the
explanation of fundamental value was a review of a concept already familiar to them.) The stopping
probability for all trading runs was 1/50 and this was announced to the participants.

The training trading run lasted four periods. The purpose of the training trading run was to
familiarize the participants with the market simulation software, by entering forecasts, placing buy and
sell orders, and answering questions that tested their understanding of the experiment. It was made
clear that the number of periods was fixed only for the training trading run. The earnings in the training
trading run were not taken into account for the determination of the eventual compensation.

After the training trading run, it was announced that a real trading run was about to start and that
the total number of periods would be random as explained. The experiment started with a number of
questions for each participant to test participants’ understanding of the experiment. Each participant
was endowed with an initial portfolio of 5000 Experimental Currency Units (ECUs) and 50 units of the
virtual asset.

Thereafter, period 1 started. In each period each participant was shown a screen displaying the
participant’s current cash and asset balance, a chart of the previous prices and a table of previous prices,
the dividend history, and previously executed buy and sell orders for the participant, input boxes to
answer questions described below, an input box to enter the participant’s price forecast, and input boxes
to enter buy and sell orders. For the third session with Markov dividends, additional information was
displayed as described in the next section.

In each period each participant had to enter answers to the following questions:

• The expected number of time periods remaining in the trading run.
• The expected total dividends paid by one unit of asset from the current period until the end of the

trading run.
• The total of the expected dividend from the current period until the end of the trading run and the

salvage value for one unit of asset held until the end of the trading run.
• The participant’s forecast of the price per unit of asset.
• The current state of the market (only session 3—Markov dividend case).
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After they entered the feedback and forecast information, the order entry portion of the screen
was enabled and they could enter multiple buy or sell orders. Participants could also not trade in a
period, however, the software design enforced that there would be at least one order entered among
all participants in every period. This was required to ensure that there is an equilibrium price in
every period.

Once a participant made her entries, a wait screen was displayed. After all participants made their
entries, the market was cleared based on the orders and the new equilibrium price was determined.

Subsequent periods followed the same pattern until the computer determined that the trading run
was over.

At the end of the trading run, the participants’ portfolios were converted into virtual currency. Then,
the winners were determined and were announced.

Finally, there was a short debrief session where we gathered feedback from the participants about
the session.

The specific details of the experimental sessions are given in Table 2.

Table 2. Parameters for the Experimental Sessions.

Session Participants Periods Dividend Type Mean Dividend (ECUs) Salvage Value (ECUs)

1 16 37 Constant 10 100
2 17 64 Constant 10 100
3 15 72 Markovian 10 100

3.4. Incentive Mechanism

Rather than provide a fixed participation fee to each participant, three prizes were awarded at the
end of each experimental session.

1. Two randomly selected players split $300 in proportion to the value of their final amount of virtual
currency, after payment of the salvage value.

2. The participant with the largest final amount of virtual currency received a prize of $100.
3. The participant with the smallest mean square forecast error received a prize of $100.

The motivation for this incentive scheme is as follows. Other behavioral experiments have shown
that people are more willing to perform a task when either it has no remuneration (i.e., it is considered to
be a help) or when the remuneration is significantly large. In our case, $18.75 (= $300/16) would not have
been a lucrative enough participation fee for four hours’ time. On the other hand, splitting the $300 among
two randomly selected participants makes the incentive more lucrative. This is supported by the framing
effect and pseudocertainty effect reported by Kahneman and Tversky (Tversky and Kahneman (1974))
wherein when evaluating such conditional situations, people evaluate the options assuming that the
selection process has already happened. Thus, in our case, the participants would be looking at an
amount of the order of $150, which is lucrative. Also, random selection of two participants helped avoid
participants dropping out of the experiment if they are doing poorly.

The prize for the largest portfolio incentivized playing the game strategically and thoughtfully and
the prize for the smallest forecast error incentivized careful forecasting and reporting of forecasts.

Our incentive structure is somewhat unconventional. Our incentive structure is such that the risk
faced by a participant who invests in the virtual “risky” asset is not the same as the risk that an investor
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would have faced if the market were real and the investor invested in an asset with the same dividends.
Of course, the risk faced by a participant who invests in the virtual risky asset affects the price that the
participant is willing to virtually pay for the asset during an experiment. Also, rewarding the participant
with the largest virtual wealth at the end of a session disproportionately creates tournament incentives
that may also affect the price that the participant is willing to virtually pay for the asset during an
experiment. When making these observations, it is important to keep in mind that the purpose of the
study was to model investor forecast formation and not price formation in a market.

3.5. Participant Demographics

The participants were students belonging to the Ph.D. (ISyE, Math) and Masters (Quantitative
and Computational Finance—QCF) programs. We chose to include only Masters or Ph.D. students to
ensure that they had sufficient background knowledge of basic probability. Basics of asset valuation,
discounted cash flow, and the memoryless property of the geometric distribution were explained to all
the participants during the overview session.

All subjects gave their informed consent for inclusion before they participated in the study. The study
was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by Georgia
Tech’s Institutional Review Board (Protocol H11292, Approved on 07 October 2011).

4. Results

This section provides the descriptive summary of the sessions and the computational results.

4.1. Summary of Observations

Though the first session had two trading runs, the second trading run did not complete within the
time allotted for that session. So we used only the completed trading run for data fitting. There was
only one trading run per session for the remaining two sessions. Therefore, from here on we will use the
terms session and trading run interchangeably.

4.1.1. Equilibrium Price

Since in each period, the trading run could end with a stopping probability of 1/50, the number of
time periods T was Geometric with parameter p = 1/50. The expected total returns for one unit of stock
can be computed as

p̄t = E
[

T

∑
t=1

dt

]
+ s = E[T]E[dt] + s

where dt is the dividend at period t. For sessions 1 and 2, the fundamental value was constant throughout
and equaled 600 ECUs. For session 3, the computation of fundamental value is given in Appendix A.
For session 3, the fundamental value at the beginning of the trading run was also 600 ECUs.

Figure 1 shows the realized equilibrium prices for the three sessions. Sessions 1 and 2 had prominent
price cycles whereas session 3 had milder price cycles.
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(a) Session 1

(b) Session 2

(c) Session 3

Figure 1. Equilibrium Prices from Sessions 1–3 (Sub-figures (a)–(c) respectively).
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In all three sessions, the prices started from well below the fundamental value and started increasing
thereafter. This phenomenon was observed in many other market experiments, see for example (Camerer
and Weigelt (1993); Nickerson et al. (2007)).

In the third experimental session, there was a sudden downward spike in period 56. It was revealed
to have been caused by one participant who panicked for some unknown reason and wanted to get rid
of all his assets. So he offered to sell them for 0.01 ECU each. The market rebounded the very next period.
(The data from this spike onwards were excluded from the calculations that follow.)

From the graphs of the price process, it appears that the participants had a perceived value that was
lower than the fundamental value of 600 ECUs. In other words, they seemed to have made most buy-sell
decisions as if the fundamental value was somehow smaller than the true fundamental value.

4.1.2. Price Forecasts

In each period, each participant was required to enter a price forecast for that period. Recall that
the market clearing price in a period was determined only after the buy and sell orders were processed.
Figure 2 shows a plot of the price forecasts for each session by each participant along with the market
clearing price (solid line). It can be seen that the price forecasts usually followed the market clearing price.

The forecasts in the initial few periods are interesting. It seems that some of the participants started
with a near-rational forecast and adjusted them down as the trading run progressed. On the other
hand, some “skeptics” started with a very low forecast and adjusted them upwards as the trading
run progressed.

(a) Session 1

Figure 2. Cont.
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(b) Session 2

(c) Session 3

Figure 2. Price forecasts for each period from Sessions 1–3 (Sub-figures (a)–(c) respectively).

4.1.3. Earning Forecasts

As part of the initial survey, each participant was asked the following question:

Given the compensation rules and the number of participants, how much money do you
think you will earn in this experiment?

Table 3 summarizes the responses. In every session, the average of the participants’ expected
earnings was at least twice the average prize money per participant for that session. Though there
were some participants who expected to earn less than this average, a majority of them reported
a higher than average earnings. Perhaps, this suggests an individual belief that they are better
than the rest. This observation is reminiscent of the investor overconfidence mentioned in literature
(e.g., Chuang and Lee (2006); Scheinkman and Xiong (2003)).
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Table 3. Expected earnings for the three sessions.

Session Participants Number of Valid Responses Average Expected Win Average of Prize Money Per Participant

1 16 14 90.43 31.25
2 17 15 66.07 29.41
3 15 13 68.91 33.33

4.2. Comparison of Models Fitted with Data

4.2.1. Data Used

The data used for model calibration are the equilibrium prices and the participants’ forecasts from
the three sessions.

First, we cleaned the data by fixing obvious typographical errors. Typically, the error was omission
of the decimal point.

In the initial few periods of each of the three sessions, the equilibrium price increased from a value
much lower than the fundamental value. A possible explanation is that the participants were trying to
learn how the rest of the participants would behave. However, the models that we wanted to fit with the
data were not intended to capture such initial learning or adaptation. Consequently, we used a subset of
the data when the initial effect had passed. Moreover, we wanted to choose a subset of the data in a way
that is endogenous to the data itself and not dependent on the model that we fit. To achieve this, we
used the following approach: In the equilibrium price chart, let p0 be the price in the first price trough.
We discarded the data from the initial periods during which the price was smaller than p0. According to
this approach, the number of dropped periods for the three sessions was between 7 and 11. Finally, to
use the same number for all three sessions, we simply discarded the data from the first 10 periods in
each session.

We also checked this approach using the calibrated models with the quadratic H function given in
Section 4.2.8. We calibrated a sequence of models by successively dropping more initial periods from
the data set. We observed that the fitted parameter values stabilized by the time we dropped the first
10 periods’ data.

In addition, for session 3, we dropped the data from period 56 onwards. This was done to avoid the
effects of the spike that occurred in period 56.

4.2.2. Parameter Estimation Method

Parameter estimation was done by least squares fitting. We use the following notation.

σ = 1, 2, 3 session index

nσ = number of periods in session σ

Nσ = number of participants in session σ

Xσ,j = equilibrium price in period j

Yσ,j,u = price forecast reported by participant u in session σ in period j

(n3 = 55, as discussed above.)
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Consider a family of models ψj of forecast formation represented as

Yσ,j,u = ψj(Xσ,1, Xσ,2, . . . , Xσ,j−1; γ) + ε j

where γ denotes the vector of parameters of the model and ε j are i.i.d. N(0, σ2) random variables.
The parameter fit for participant u in session σ is given by

γ̂(σ, u) := arg min
γ

nσ

∑
j=11

(Yσ,u,j − ψj(Xσ,1, Xσ,2, . . . , Xσ,j−1; γ))2

The parameter fit using all data in all sessions is given by

γ̂ := arg min
γ

3

∑
σ=1

Nσ

∑
u=1

nσ

∑
j=11

(Yσ,j,u − ψj(Xσ,1, Xσ,2, . . . , Xσ,j−1; γ))2

To compare the different models that were fitted, we use the Leave-One-Out-Cross-Validation
(LOOCV) approach. According to this approach, the observations in the data set are partitioned into
subsets. The model is fitted using all but one subset, and then the fitted model is used to calculate
forecasts for the omitted subset. The forecast error is recorded. This step is repeated with each subset
of the data set left out in turn. Then the root mean square error (RMSE) of all the recorded forecast
errors is calculated. The LOOCV RMSE of different models are compared. We perform the LOOCV
validation with two types of subsets: (1) leave-one-period-out LOOCV, in which each period’s data for
each participant is a subset; and (2) leave-one-session-out LOOCV, in which each session’s data is a
subset. For details of this method, please see Appendix B.

4.2.3. Comparison of Fitted Models

We fit various models with the data. The individual models are covered in subsequent sections;
the key parameters of these models are given in Table 4.

The model BASE is the pure rational expectations model—according to the rational expectations
model, the participant’s forecast equals the fundamental value (also recall that the participants
were told the fundamental value in each period). Note that model BASE has no parameters to
be fitted. Next we consider two one-parameter models. The model F is a “modified rational
expectations” model where the hypothesis is that the participants believe that the fundamental value
is some number other than the fundamental value communicated to them, and they forecast their
belief of the fundamental value. Model ES assumes that the investors use only simple exponential
smoothing and therefore has only one parameter. Model BH has 2 parameters, and is based on
Brock and Hommes (1998). Models ESH2 and ESHE belong to the family of extrapolation-correction
models proposed in Cheriyan and Kleywegt (2016), with 3 and 4 parameters respectively.
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Table 4. Details of the models fit to the data.

Model (ψ) Generalized Mean (m) Correction Function (H) Parameters to Fit

BASE N/A N/A None
F N/A N/A f̄

ES Exponential Smoothing H(θ) = θ α
BH N/A N/A b0, b1

ESH2 Exponential Smoothing H2 α, f̄ , ρ
ESHE Exponential Smoothing H9 α, f̄ , ρ, η

4.2.4. Rational Base Case

For comparison, we take as base case the rational expectations forecast of a fully informed participant
(BASE). That is

ψj(X) = p̄t = 600 (BASE)

Thus, there are no parameters to fit for this model. For the Markov case in session 3, we used the
reference fundamental value of 600 to fit the model.

Table 5 gives the leave-one-period-out LOOCV RMSE for each session.

Table 5. Forecast errors of the rational base case (BASE) for the three sessions.

Session 1 Session 2 Session 3

Part. RMSEP
BASE CVP

BASE (%) RMSEP
BASE CVP

BASE (%) RMSEP
BASE CVP

BASE (%)

1 217.66 36.2767 105.273 17.5455 82.291 13.7152
2 211.608 35.2679 107.251 17.8752 86.6954 14.4492
3 220.79 36.7983 105.178 17.5297 83.2023 13.8671
4 221.015 36.8358 106.147 17.6911 84.9293 14.1549
5 221.923 36.9872 106.301 17.7169 82.9877 13.8313
6 230.33 38.3883 110.223 18.3705 81.2825 13.5471
7 231.04 38.5067 107.187 17.8645 84.3218 14.0536
8 218.861 36.4768 107.866 17.9777 84.3693 14.0615
9 220.128 36.6881 110.193 18.3655 84.007 14.0012

10 225.415 37.5692 108.192 18.0321 82.7644 13.7941
11 233.164 38.8607 103.875 17.3125 82.9435 13.8239
12 230.39 38.3984 101.052 16.8421 88.9848 14.8308
13 218.782 36.4637 100.625 16.7709 84.0285 14.0048
14 218.338 36.3896 102.668 17.1114 83.792 13.9653
15 218.261 36.3769 106.432 17.7386 84.16 14.0267
16 219.511 36.5852 104.591 17.4318 – –
17 – – 111.329 18.5549 – –

Also, the leave-one-session-out LOOCV RMSE is

RMSES
BASE = 150.34

CVS
BASE = 25.06%
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4.2.5. Modified Rational Expectations

Model F is similar to BASE, except that a parameter representing “perceived fundamental value” is
now fitted with data.

ψj(X) = f̄ (F)

where f̄ is the parameter to be fitted.
Table 6 gives the leave-one-period-out LOOCV RMSE for each session.

Table 6. Forecast errors of the modified rational expectations model (F) for the three sessions.

Session 1 Session 2 Session 3

Part. RMSEP
F CVP

F (%) RMSEP
F CVP

F (%) RMSEP
F CVP

F (%)

1 145.378 24.2296 60.6133 10.1022 35.165 5.86083
2 142.013 23.6689 62.7894 10.4649 37.508 6.25133
3 138.032 23.0054 62.7262 10.4544 35.6265 5.93775
4 147.772 24.6287 67.3448 11.2241 37.2925 6.21542
5 150.402 25.067 66.8102 11.135 36.3315 6.05525
6 153.929 25.6548 68.9046 11.4841 34.4464 5.74107
7 148.482 24.747 65.6383 10.9397 35.3149 5.88582
8 152.481 25.4135 63.1547 10.5258 36.3194 6.05323
9 147.757 24.6262 64.7539 10.7923 37.0776 6.1796
10 150.344 25.0573 64.4885 10.7481 35.7969 5.96614
11 149.164 24.8606 63.1322 10.522 35.7003 5.95006
12 146.896 24.4826 61.5347 10.2558 35.776 5.96267
13 149.369 24.8949 62.0644 10.3441 36.2216 6.03693
14 164.938 27.4897 61.362 10.227 36.8212 6.13687
15 143.054 23.8424 66.0542 11.009 33.6933 5.61555
16 148.349 24.7248 64.5339 10.7556 – –
17 – – 60.7467 10.1245 – –

The leave-one-session-out LOOCV RMSE is given by

RMSES
F = 109.04

CVS
F = 18.17%

4.2.6. Simple Exponential Smoothing

Model ES uses simple exponential smoothing with initial price ratio of 1.

ψj(X) = Xj−1yj (ES)

yj = (1− α)yj−1 + α
Xj−1

Xj−2
j = 3, . . . , n

y2 := 1

Table 7 gives the leave-one-period-out LOOCV RMSE for each session.
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Table 7. Forecast errors of the simple exponential smoothing model (ES) for the three sessions.

Session 1 Session 2 Session 3

Part. RMSEP
ES CVP

ES (%) RMSEP
ES CVP

ES (%) RMSEP
ES CVP

ES (%)

1 29.3523 4.89205 15.9516 2.65859 5.87511 0.979186
2 40.8778 6.81297 19.5621 3.26035 10.589 1.76483
3 27.4048 4.56746 11.6133 1.93555 4.95529 0.825882
4 24.4905 4.08174 10.7994 1.7999 4.47145 0.745242
5 22.6001 3.76669 13.1662 2.19436 2.5535 0.425584
6 30.8664 5.14439 18.1567 3.02612 5.59091 0.931818
7 25.7927 4.29878 11.5305 1.92175 4.30922 0.718204
8 19.7088 3.2848 23.1764 3.86274 2.18925 0.364875
9 28.7235 4.78725 25.3742 4.22903 2.41359 0.402265

10 30.5402 5.09003 18.3046 3.05077 2.45213 0.408688
11 37.0004 6.16673 15.4212 2.57019 9.71214 1.61869
12 23.1125 3.85208 16.7412 2.7902 15.5948 2.59914
13 23.9457 3.99094 14.3645 2.39408 5.01824 0.836374
14 38.4261 6.40435 22.18 3.69666 3.39276 0.56546
15 26.3165 4.38609 11.7149 1.95248 5.50357 0.917261
16 24.3416 4.05693 9.91197 1.65199 – –
17 – – 20.8576 3.47626 – –

The leave-one-session-out LOOCV RMSE is given by

RMSES
ES = 22.87

CVS
ES = 3.81%

4.2.7. Brock and Hommes Model (BH)

We adapt the model of expectation formation used in Brock and Hommes (1998) given in (3):

p̂t+1 = p̄t+1 + b0 + b1(pt−1 − p̄t−1)

Note that the forecast in period t + 1 is a linear function of the price in period t− 1. However, in
our experiment, at the beginning of period t, the participants entered the price forecast for that period.
Therefore, we modify the BH model to

p̂t = p̄t + b0 + b1(pt−1 − p̄t−1) (BH)

Table 8 gives the leave-one-period-out LOOCV RMSE for each session.
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Table 8. Forecast errors of the Brock and Homme model (BH) for the three sessions.

Session 1 Session 2 Session 3

Part. RMSEP
BH CVP

BH (%) RMSEP
BH CVP

BH (%) RMSEP
BH CVP

BH (%)

1 32.8829 5.48048 20.4555 3.40925 6.66709 1.11118
2 29.7489 4.95815 17.6728 2.94547 13.8489 2.30816
3 27.9104 4.65174 12.0573 2.00956 5.62034 0.936723
4 47.0301 7.83836 28.9688 4.82813 6.04289 1.00715
5 39.5275 6.58791 21.3855 3.56425 5.9418 0.990301
6 36.5602 6.09336 23.8271 3.97118 4.24954 0.708256
7 25.3059 4.21766 25.054 4.17567 6.6485 1.10808
8 47.8765 7.97942 19.1891 3.19819 6.48157 1.08026
9 38.0958 6.3493 20.0471 3.34118 7.09285 1.18214

10 42.571 7.09516 18.366 3.061 5.41897 0.903162
11 33.9904 5.66506 16.9797 2.82995 10.8703 1.81171
12 21.7463 3.62438 22.785 3.7975 15.5483 2.59138
13 37.3059 6.21766 22.0264 3.67107 8.46553 1.41092
14 35.1063 5.85105 21.3216 3.5536 5.02028 0.836713
15 27.1887 4.53146 21.4652 3.57754 5.9336 0.988934
16 30.092 5.01533 27.8947 4.64912 – –
17 – – 16.5292 2.75487 – –

The leave-one-session-out RMSE is

RMSES
BH = 23.97

CVS
BH = 3.99%

4.2.8. Exponential Smoothing with Quadratic H (ESH2)

The correction function is given by

H(θ) =
θ + ρ(θ − 1)2

1 + (θ − 1)2

In this case, the model function ψj is given by

ψj = f̄ H
(Xj−1yj

f̄

)
(ESH2)

yj = (1− α)yj−1 + α
Xj−1

Xj−2
j = 3, . . . , np

There are four parameters:

α = exponential smoothing parameter

y2 = initial price ratio to start the exponential smoothing

ρ = parameter for the H function

f̄ = fundamental value
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Initial numerical results showed that the objective function was very flat with respect to y2. This is
because the effect of y2 on the forecast goes down exponentially at rate 1− α, and the data of the first
10 periods are used to prime the exponential smoothing method, but as discussed before, the data of
the first 10 periods are not used in the squared error calculations. So unless α is very close to 0, y2 has
very little effect on the objective. Therefore, y2 was fixed at 1 and the remaining three parameters were
estimated by minimizing the sum of squared errors.

Figure 3 shows the actual forecasts and the forecasts predicted by model ESH2 for Participant 14
in Session 1; this participant had the highest value of CV. It can be seen from the figure that even for
this case, the forecasts predicted by model ESH2 match the actual forecasts reported by the participant
quite well.

Figure 3. Data fit for Participant 14 in Session 1. Note that the first 10 periods were used for priming,
hence are not included in the data fit.

Table 9 gives the leave-one-period-out LOOCV RMSE for each session.

Table 9. Forecast errors of the exponential smoothing with quadratic H model (ESH2) for the
three sessions.

Session 1 Session 2 Session 3

Part. RMSEP
ESH2 CVP

ESH2 (%) RMSEP
ESH2 CVP

ESH2 (%) RMSEP
ESH2 CVP

ESH2 (%)

1 17.6051 2.93419 13.802 2.30033 5.51619 0.919365
2 21.4067 3.56779 15.2125 2.53541 10.6341 1.77234
3 20.5887 3.43145 9.95013 1.65835 5.08502 0.847504
4 22.3997 3.73329 10.5322 1.75536 4.72411 0.787352
5 16.3869 2.73115 12.4787 2.07978 2.33086 0.388477
6 24.1159 4.01932 16.2193 2.70322 4.31467 0.719111
7 25.7992 4.29986 10.4045 1.73408 3.99644 0.666073
8 20.0133 3.33556 16.7847 2.79745 1.7952 0.2992
9 20.9099 3.48498 19.0443 3.17404 2.51195 0.418658

10 29.9577 4.99294 11.6179 1.93631 2.45609 0.409348
11 25.8743 4.31238 10.7424 1.79041 9.38085 1.56348
12 27.5461 4.59102 15.3596 2.55993 14.0158 2.33596
13 16.84 2.80667 13.9764 2.3294 5.06343 0.843905
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Table 9. Cont.

Session 1 Session 2 Session 3

Part. RMSEP
ESH2 CVP

ESH2 (%) RMSEP
ESH2 CVP

ESH2 (%) RMSEP
ESH2 CVP

ESH2 (%)

14 39.9483 6.65804 16.9594 2.82657 3.5487 0.59145
15 26.4518 4.40863 9.33683 1.55614 4.29295 0.715491
16 16.7662 2.79437 9.04149 1.50691 – –
17 – – 12.9543 2.15905 – –

The leave-one-session-out LOOCV RMSE is

RMSES
ESH2 = 19.51

CVS
ESH2 = 3.25%

4.2.9. Exponential Smoothing with Non-Mononotic H (ESHE)

The correction function is given by

H(θ) =

1 + (1 + ρ2)
(

1− exp
(
− 2η(θ−1)(1−ρ)

1+ρ2

)
+ ρ

(
1− exp

(
− 2η(θ−1)

(1+ρ2)

)))
if θ ≥ 1

1/H(1/θ) if θ < 1

The structure of the H function was chosen so that when ρ ∈ [0, 1], then H is increasing and when
ρ < 0, then H is non-monotonic. Thus, a fitted value of ρ that is negative would indicate that the
participant exhibits panicking behavior. Also, the parameter η is such that H′(1) = 2η.

Figure 4 shows members of this family of functions H.

Figure 4. Members from the ESHE family of functions. The solid lines are for η = 1/2 (H′(1) = 1) and
the dotted lines are for η = 1 (H′(1) = 2). For each η, functions are plotted for ρ = 1, 0,−1. When ρ < 0,
the function is non-monotonic, as defined in the main text.
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The model function ψj is given by

ψj = f̄ H
(Xj−1yj

f̄

)
(ESHE)

yj = (1− α)yj−1 + α
Xj−1

Xj−2
j = 3, . . . , n

There are five parameters:

α = exponential smoothing parameter

y2 = initial price ratio to start the exponential smoothing

ρ = monotonicity parameter for the H function

η = slope paramter for the H function

f̄ = fundamental value

In order to be consistent with fitting the ESH2 model, the y2 parameter was fixed to 1. We used
a trust region type method to fit the four parameters. Unfortunately the objective function for the
parameter fitting problem has multiple local minima. We started from 10 random starting points and
picked the solution that gave the best objective value. (For session 3, participant 13, we started from
100 random starting points as the algorithm terminated with a local solution for only some of the
starting points.)

Table 10 gives the leave-one-period-out LOOCV RMSE for each session.

Table 10. Forecast errors of the exponential smoothing with non-monotonic H model (ESHE) for the three
sessions.

Session 1 Session 2 Session 3

Part. RMSEP
ESHE CVP

ESHE (%) RMSEP
ESHE CVP

ESHE (%) RMSEP
ESHE CVP

ESHE (%)

1 18.6982 3.11636 12.5044 2.08407 6.17827 1.02971
2 21.986 3.66434 15.4513 2.57522 10.7462 1.79103
3 20.8771 3.47952 9.51516 1.58586 4.90735 0.817892
4 23.9088 3.9848 10.8678 1.81129 4.80413 0.800689
5 20.2253 3.37088 12.3063 2.05104 2.64659 0.441099
6 35.2502 5.87503 16.6865 2.78108 4.70287 0.783811
7 36.7429 6.12382 10.6514 1.77524 3.46634 0.577723
8 26.1145 4.35242 16.0153 2.66922 1.82649 0.304415
9 20.3506 3.39177 18.5346 3.08909 2.73675 0.456125

10 36.3602 6.06004 11.1061 1.85102 2.66171 0.443618
11 30.3859 5.06431 9.52843 1.58807 10.1615 1.69359
12 33.5378 5.58963 12.8078 2.13464 15.2613 2.54355
13 17.9947 2.99912 12.0823 2.01372 6.77343 1.12891
14 40.8638 6.81063 14.4793 2.41322 3.90796 0.651326
15 24.6398 4.10663 8.80488 1.46748 4.32493 0.720822
16 17.7253 2.95421 9.94192 1.65699 – –
17 – – 12.5098 2.08496 – –
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The leave-one-session-out LOOCV RMSE is

RMSES
ESHE = 19.25

CVS
ESHE = 3.21%

It is also interesting to note that fitting a single set of parameters to all the participants in all the
sessions gave an RMSE = 16.07 with the corresponding CV of 2.68%. Thus, the behavior of the group
can be described fairly well by a single set of parameters.

4.2.10. Comparison of Various Models

Figures 5–7 show a comparison of the leave-one-period-out LOOCV RMSE of the various models.
It can be seen that the pure rational expectations model (model BASE) has the highest errors throughout.
When we allow the fundamental value to be fitted (model F), the errors are reduced, but the errors
are still much larger than for the other models. The simple exponential smoothing model (model ES)
captures the participant forecasts remarkably well for a one-parameter model.

Figure 5. Comparison of leave-one-period-out LOOCV RMSE of all models for Session 1.
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Figure 6. Comparison of leave-one-period-out LOOCV RMSE of all models for Session 2.

Figure 7. Comparison of leave-one-period-out LOOCV RMSE of all models for Session 3.

Figures 8–10 show a comparison of the leave-one-period-out LOOCV RMSE of models ES, BH,
ESH2, ESHE only, that is, leaving out the two worst performing models BASE and F.
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Figure 8. Comparison of leave-one-period-out LOOCV RMSE of selected models for Session 1.

Figure 9. Comparison of leave-one-period-out LOOCV RMSE of selected models for Session 2.
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Figure 10. Comparison of leave-one-period-out LOOCV RMSE of selected models for Session 3.

The leave-one-session-out LOOCV RMSE of the various models are given in Table 11. As is the case
for the leave-one-period-out LOOCV RMSE, the rational expectations model (BASE) has the highest
leave-one-session-out LOOCV RMSE, and model F has slightly smaller leave-one-session-out LOOCV
RMSE. It can be seen that an exponential smoothing model with a single parameter for all sessions and
all participants captures much of the variation in the observed forecasts. More sophisticated models with
additional parameters (ESH2 and ESHE) provide only small improvements in the leave-one-session-out
LOOCV RMSE over what can be obtained with the ES model.

Table 11. Comparison of leave-one-session-out LOOCV RMSE of various models.

Model No. of Parameters RMSES CVS (%)

BASE 0 150.34 25.06
F 1 109.04 18.17

ES 1 22.87 3.81
BH 2 23.97 3.99

ESH2 3 19.51 3.25
ESHE 4 19.25 3.21

5. Interpretation and Implications of Results

In Cheriyan and Kleywegt (2016) the dynamical system associated with the price process was
studied both analytically and numerically. It was shown there that the qualitative behavior of the
trajectories of this dynamical system is determined by the parameter α and the nature of the H function.
These can also be related to the investors’ behavioral characteristics. Although the purpose of our
experiment was to calibrate models of investor forecasting behavior and not to calibrate the dynamical
system itself, in this section we make observations regarding the fitted models of investor forecasting
behavior and the qualitative behavior of the dynamical system.
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The parameter α captures the investors’ memory—the weight that they put on the most recent
observed price ratio. Given an H function and a fundamental dividend to price ratio δ (or price-earnings
ratio 1/δ), a critical value of α is given by

α∗ =
1 + δ− H′(1)

H′(1)
.

The slope of the H function at 1 captures investor confidence. If H′(1) < 1, it denotes cautious
confidence, and if H′(1) > 1, it denotes excessive exuberance. It can be shown that if α < α∗, then
the fundamental value corresponds to a stable attracting point, that is, price trajectories that start in
a neighborhood of the fundamental value, converge to the fundamental value. Numerical evidence
suggests that the same is true for all trajectories, that is, if α < α∗, then all price trajectories eventually
converge to the fundamental value. If α > α∗, then numerical results in Cheriyan and Kleywegt (2016)
show that a price cycle appears that attracts all trajectories. This bifurcation process is continuous in the
sense that the price cycles are small if α is slightly larger than α∗, and the price cycles gradually grow
larger as α increases from α∗.

For α not too far from α∗, the price cycles appear to be predictable, that is, the price trajectories
converge to a smooth curve, and any two trajectories that start close to each other will remain close to
each other at all times. If the H function is monotonic, this behavior persists for α > α∗. However, if H
is non-monotonic, then for larger values of α, the price trajectories can be non-predictable. This means
that the trajectories do not converge to a smooth curve, and they exhibit sensitive dependence on initial
conditions, that is, two trajectories that start close to each other will grow apart exponentially fast.
A non-monotonic H captures what we called panicking behavior of the investor—as the extrapolation
forecast increases beyond the fundamental value, the price forecast initially increases (confidence or
exuberance), but beyond some value the price forecast decreases and moves closer to the fundamental
value (panic).

Table 12 shows the fitted parameters for the ESH2 model. For this function H′(1) = 1 and
α∗ = δ = 1/60. The fitted α-values are all greater than the critical α∗, and this is consistent with the price
cycles observed in the three sessions.

Table 13 shows the fitted parameters for the ESHE model. It can be seen that the α parameter is
much larger than the critical α∗. Once again, this is consistent with the observed price cycles. The slopes
of the fitted H functions at the fundamental value, H′(1), are all close to 1. Some participants exhibit
less exuberance (H′(1) ∈ (0, 1)), and some exhibit more excessive exuberance (H′(1) > 1). All the fitted
values for ρ are positive—thus we do not find evidence of panicking behavior in the data.
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Table 12. Fitted parameters for quadratic H model (ESH2) for the three sessions.

Session 1 Session 2 Session 3

Part. α ρ f̄ CV (%) α ρ f̄ CV (%) α ρ f̄ CV (%)

1 0.35 0.01 172.32 2.6 0.73 0.18 365.69 1.94 0.6 2.26 543.41 0.78
2 0.24 0.52 407.91 3.03 0.43 0.36 395.39 2.34 0.49 0.03 312.63 1.7
3 0.29 0.01 141.31 3.12 0.15 0.07 317.4 1.54 0.56 1.69 493.54 0.76
4 0.99 0.01 186.84 3.52 0.99 0.11 413.81 1.71 0.99 0.61 488.64 0.72
5 0.49 0.01 179.32 2.51 0.62 0.19 405.06 1.9 0.72 0.08 697.33 0.37
6 0.39 0.01 167.4 3.86 0.5 0.01 214.67 2.48 0.09 1.69 452.22 0.6
7 0.17 0.01 146.57 3.87 0.99 0.03 298.27 1.64 0.84 1.37 475.69 0.58
8 0.99 0.01 250.59 3.23 0.44 0.23 370.67 2.52 0.49 0.89 472.42 0.25
9 0.38 0.28 371.52 2.89 0.49 0.1 321.78 2.83 0.94 0.01 816.76 0.37

10 0.47 0.01 168.01 4.01 0.35 0.06 302.52 1.78 0.71 0.19 643.85 0.31
11 0.25 0.01 142.26 3.96 0.42 0.36 414.8 1.62 0.51 1.18 569.84 1.53
12 0.19 0.01 143.75 4 0.99 1.06 473.49 2.24 0.99 3.17 460.64 2.21
13 0.35 0.01 184.62 2.58 0.96 1.08 490.54 2.04 0.99 1.95 498.14 0.78
14 0.19 0.08 448.71 5.43 0.51 0.79 444.85 2.43 0.47 0.06 419.71 0.53
15 0.23 0.42 394.28 3.55 0.57 0.12 370.91 1.37 0.52 3.45 482.54 0.6
16 0.35 0.01 175.67 2.67 0.99 0.05 351.82 1.47 – – – –
17 – – – – 0.34 0.09 291.93 1.99 – – – –

Table 13. Fitted parameters for exponential smoothing with non-monotonic H model (ESHE) for the three
sessions.

Session 1 Session 2 Session 3

Part. α α∗ ρ H′(1) α α∗ ρ H′(1) α α∗ ρ H′(1)

1 0.349 −0.003 0.874 1.019 0.604 −0.101 0.800 1.131 0.012 −0.122 1.000 1.158
2 0.246 −0.051 0.365 1.071 0.433 −0.086 1.000 1.113 0.445 0.002 0.916 1.014
3 0.300 0.031 0.871 0.986 0.172 0.102 0.928 0.922 0.550 −0.069 0.905 1.092
4 0.990 −0.060 0.862 1.082 0.990 −0.036 0.915 1.055 0.990 −0.023 0.393 1.041
5 0.470 −0.052 0.872 1.072 0.595 −0.046 0.876 1.065 0.610 −0.028 0.253 1.046
6 0.463 −0.369 0.810 1.610 0.550 −0.163 0.847 1.215 0.336 −0.117 0.807 1.152
7 0.182 −0.008 0.872 1.024 0.990 0.002 0.917 1.015 0.874 −0.074 0.362 1.098
8 0.990 −0.087 0.866 1.114 0.439 −0.070 0.568 1.094 0.478 −0.013 0.484 1.030
9 0.384 −0.048 0.945 1.068 0.475 −0.034 0.731 1.053 0.901 −0.022 0.961 1.040

10 0.457 −0.035 0.873 1.054 0.355 0.080 0.908 0.942 0.667 0.020 0.946 0.997
11 0.248 −0.042 0.858 1.061 0.423 −0.110 0.811 1.142 0.393 −0.065 0.570 1.088
12 0.205 0.003 0.873 1.013 0.990 −0.159 0.116 1.209 0.990 −0.131 0.846 1.170
13 0.342 −0.048 0.868 1.067 0.686 −0.146 0.805 1.190 0.010 −0.135 0.937 1.176
14 0.194 −0.161 1.000 1.212 0.479 −0.148 1.000 1.194 0.422 −0.012 0.948 1.029
15 0.230 0.016 0.886 1.001 0.547 −0.040 0.849 1.059 0.568 −0.113 0.255 1.146
16 0.347 −0.037 0.870 1.056 0.990 0.040 0.938 0.977 – – – –
17 – – – – 0.343 −0.022 0.746 1.039 – – – –

Table 14 summarizes the fitted parameter values for the Brock and Homme model (BH).
Brock and Hommes (1998) calls b0 and b1 the “bias” and “trend” parameters respectively. In particular,
if b1 < 0, then the investor is called a “contrarian”, and if b1 > 0, then the investor is called a “trend
chaser”. If b0 = 0 and b1 = 0, then the investor is a “fundamentalist”. The fitted parameter values
indicate that all the participants in our experiment were trend chasers.
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Table 14. Summary of fitted slope parameters for model BH.

Session min b0 avg b0 max b0 min b1 avg b1 max b1

1 −12.87 4.78 45.11 0.95 1.02 1.14
2 −12.74 −1.69 4.35 0.93 0.98 1.05
3 −6.63 4.61 8.59 1.01 1.09 1.15

6. Conclusions

We designed an experiment to study investors’ price forecast formation in the context of a market
for an investment asset. Many experiments in the literature use trading runs with a pre-announced
finite number of periods. However, the known end-of-horizon seems to affect participants’ forecasts,
apparently via reasoning involving backward induction from the end of the horizon, that is not
representative of forecasting in actual asset markets. In our experiment, we emulated an infinite
horizon with discounting by stopping the trading run in each period with a pre-announced stopping
probability. We conducted three experimental sessions with one trading run each. The equilibrium prices
in all three trading runs exhibited cycles.

We fit a number of models of expectation formation to the data. The fit for the rational base case
(BASE) indicates that the rational expectations model does not provide an accurate model of investor
forecasting behavior. Even when the fundamental value was replaced by a parameter that was fitted
with the data (model F), the accuracy of the model did not improve much. (For example, the CV of
the fit decreased from 22 to 18%). In contrast, a one-parameter exponential smoothing model (ES)
gave remarkably accurate predictions of investor forecasts for such a simple model (with CV around
4%). Thus the evidence indicates that the investors, despite being reminded of the importance of the
fundamental value of an investment asset and being told explicitly what the fundamental value was,
resorted mostly to extrapolating from the past price data. Models with a larger number of parameters
provided a slightly better fit. Moreover, it can be shown that these models are able to explain price cycles
and more complex price trajectories in addition to price bubbles, see Cheriyan and Kleywegt (2016) for
details. For every participant, the fitted value of α was larger than the critical value α∗ for the associated
dynamical system, which is consistent with the price cycles observed in the sessions. The parameter fits
also indicated some amount of overconfidence. The data did not provide evidence of panicking behavior.

An interesting observation was the gap between theoretical knowledge and internalized knowledge.
For example, based on correct answers to questions before the experiment, we concluded that the
participants understood the meaning of the memoryless property of the geometric distribution and
the computation of fundamental value. Nevertheless, their answers to questions and their trading
behavior during the experiment seemed to indicate that they did not believe the theoretical properties.
For example, the total number of periods in a trading run was a geometric random variable, and this
was explained to the participants together with a reminder of the memoryless property of the geometric
distribution. However, at the beginning of each period, each participant was asked to give the expected
number of periods remaining in the trading run, and few participants gave the correct answer. It would
be interesting to design an experiment that could lead to a better understanding of this apparent gap
between theoretical and internalized knowledge.
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Appendix A. Fundamental Value Computations Corresponding to Different Dividend Processes

Appendix A.1. Deterministic Constant Dividend

Recall that in each period of the market, trades are made first and then the dividend is paid out.
The dividend for each time period is a constant d. If the realization of a Geometric(p) random variable
is a success, the salvage value s is paid out for each unit of stock held, otherwise, a new period starts.
Algorithm A1 gives the details of the market algorithm for this case. Since the actual duration of the
experiment is of the order of hours, we assume the discount factor is 0.

Algorithm A1 Market Algorithm with Deterministic Constant Dividend

1. t← 1
2. For each participant, initialize account with initial stock and initial cash
3. Begin period t
4. Capture forecast data for period
5. Conduct trades

(a) Participants enter buy and sell orders
(b) Perform market clearing to determine market clearing price
(c) Execute trades and update cash and stock accounts for each participant

6. For each participant, distribute dividend d for each unit of stock
7. Generate ξt+1 ∼ Bern(p)

(a) IF ξt+1 = 1

i. For each participant, distribute s for each unit of stock
ii. STOP

(b) ELSE

i. End period t. t← t + 1
ii. Proceed to step 3

Lemma 1. In the setting of Market Algorithm A1, the fundamental value of a unit of stock is constant at each
period and is given by

p̄ =
d
p
+ s

Proof. Let ξt be the random variable that is 1 if the market is running in period t and is 0 otherwise.
Then {ξt}∞

t=1 is a sequence of iid Bernouilli(1− p) random variables. Let Dt be the dividend in period t.
We have that

Dt = ξ1ξ2 . . . ξtd
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Note that if any of the ξi’s are zero, then the entire expression is zero, this automatically captures
the fact that if the market stops in period i, then for t ≥ i, Dt = 0. Also, for the present period, we know
that the dividend is certain to be d, that is

D0 = d

The dividend stream at period t is given by

D =
∞

∑
i=0

Di

=⇒ E[D] =
∞

∑
i=0

E[Di]

Now,

E[Di] = E[ξ1ξ2 . . . ξid]

= E[ξ1]
id (ξi iid)

= (1− p)id

Therefore,

E[D] =
∞

∑
i=0

(1− p)id =
d
p

Now the dividend stream is

D =
∞

∑
i=0

Di

=⇒ E[D] =
∞

∑
i=0

E[Di]

Now,

E[Di] = E[ξ1ξ2 . . . ξid]

= E[ξ1]
id (ξi iid)

= (1− p)id (A1)

Therefore,

E[D] =
∞

∑
i=0

(1− p)id =
d
p

which is independent of t. Since a unit of stock held for ever necessarily will result in a final payout of s,
and since the discount factor is 0, the fundamental value of a unit of stock is given by

p =
d
p
+ s
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Remark. Equation (A1) says that, in the case of deterministic dividends, probabilistic stopping of the market with
stopping probability p is equivalent to an infinitely lived marked with discount factor 1− p.

Appendix A.2. Markov Dividends

In the case of Markov Dividends, the support of the dividend distribution in a period t depends on
the market state in that period. The market states Xt ∈ {1, 2} evolve according to a Markov chain with
transition matrix P. Let π denote the stationary distribution corresponding to transition matrix P. In our
experiment, the initial state X0 was drawn from the distribution π.

Let the matrix Q denote the conditional p.m.f. for the dividend

qij = P(dt = j|Xt = i)

and
Algorithm A2 gives the details of the market algorithm in the case of Markov dividends.

Algorithm A2 Market Algorithm with Deterministic Constant Dividend

Given:

• p, the stopping probability
• π, the initial probability distribution for market state
• P = [pij], the state transition matrix for the Markov chain; pij = P(Xt = j|Xt−1 = i)
• Q = [qij], the dividend distribution; qij = P(dt = j|Xt = i)

Algorithm:

1. t← 1
2. For each participant, initialize account with initial stock and initial cash
3. Begin period t
4. Generate Xt. IF t = 1, generate X1 ∼ π, ELSE generate Xt ∼ pXt−1
5. Capture for forecast data for period
6. Conduct trades

(a) Participants enter buy and sell orders
(b) Perform market clearing to determine market clearing price
(c) Execute trades and update cash and stock accounts for each participant

7. Generate dividends dt ∼ qXt
8. For each participant, distribute dividend dt for each unit of stock
9. Generate ξt+1 ∼ Bern(p)

(a) IF ξt+1 = 1

i. For each participant, distribute s for each unit of stock
ii. STOP

(b) ELSE

i. End period t. t← t + 1
ii. Proceed to step 3
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Participants have complete information about the parameters of the Markov Chain (P, Q, π) and
but they do not know the underlying state process {Xt}. They know that the market started in the steady
state π = [π1, π2], that is X0 is chosen according to π.

They observe the prices pt−1, pt−2, . . . and the dividends dt−1, dt−2, . . . Let dt−1 = (d1, . . . , dt−1)

denote the history of dividends up to and including period t− 1.
Let ν̂x,t(dt) = P(Xt+1 = x|dt). That is, ν̂x,t(dt) is the estimate at the end of period t (i.e., beginning

of period t + 1) that the probability of the state Xt+1 will be x ∈ {1, 2, }. Let ν̂t(dt) = [ν̂1,t(dt), ν̂2,t(dt)].
In each period, the investor updates v̂t and uses it to compute the fundamental value for the next period.

The estimate of the probability distribution of the state is given by

ν̂0 =
[

P(X1 = 1) P(X1 = 2)
]
= [π1π2]

ν̂x,t(dt) =

∑
xt−1

pxt−1xqxdt ν̂xt−1,t−1(dt−1)

∑
xt

∑
xt−1

pxt−1xt qxtdt ν̂xt−1,t−1(dt−1)

=

(
ν̂t−1(dt−1)

T P
)

x qxdt

(ν̂t−1(dt−1)T PQ)dt

Then, the fundamental value at period t can be computed as follows:

p̄t(dt−1) =
∞

∑
k=0

E[Dt+k|ξt+k = 1, dt−1] + s

=
∞

∑
k=0

E[dt+k|dt−1] + s

Now, for k ≥ 0,

E[dt+k|dt−1] = ∑
xt+k

E [dt+k|Xt+k = xt+k] P(Xt+k = xt+k|dt−1)

= ∑
xt+k

E [dt+k|Xt+k = xt+k]∑
xt

P(Xt+k = xt+k|Xt = xt)P(Xt = xt|dt−1)

= ∑
xt+k

dxt+k ∑
xt

p(k)xtxt+k ν̂xt ,t−1(dt−1)

= ∑
xt+k

dxt+k (ν̂t−1(dt−1)Pk)xt+k

= ν̂t−1(dt−1)Pk

[
d1

d2

]
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Therefore

p̄t(dt−1) =
∞

∑
k=0

E[dt+k|dt−1] + s

=
∞

∑
k=0

(1− p)k ν̂t−1(dt−1)Pk

[
d1

d2

]
+ s

= ν̂t−1(dt−1)

(
∞

∑
k=0

(1− p)kPk

)[
d1

d2

]
+ s

= ν̂t−1(dt−1) (I − (1− p)P)−1

[
d1

d2

]
+ s

The next period’s fundamental value is given by

p̄t+1(dt−1) =
∞

∑
k=0

(1− p)kE[dt+1+k|dt−1] + s

where

E[dt+1+k|dt−1] = E[dt+(k+1)|dt−1] = ν̂t−1(dt−1)Pk+1

[
d1

d2

]

following similar calculations as above. Thus,

p̄t+1(dt−1) =
∞

∑
k=0

(1− p)k ν̂t−1(dt−1)Pk+1

[
d1

d2

]
+ s

= ν̂t−1(dt−1)P

(
∞

∑
k=0

(1− p)kPk

)[
d1

d2

]
+ s

= ν̂t(dt)P (I − (1− p)P)−1

[
d1

d2

]
+ s

This was the fundamental value displayed to the participants.
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Next,

p̄t−1(dt−1) =
∞

∑
k=0

(1− p)kE[dt−1+k|dt−1] + s

= dt−1 +
∞

∑
k=1

(1− p)kE[dt+k−1|dt−1] + s

= dt−1 +
∞

∑
k=1

(1− p)k ν̂t−1(dt−1)Pk−1

[
d1

d2

]
+ s

= dt−1 + (1− p)
∞

∑
k=1

(1− p)k−1ν̂t−1(dt−1)Pk−1

[
d1

d2

]
+ s

= dt−1 + (1− p)ν̂t−1(dt−1)

(
∞

∑
k=0

(1− p)kPk

)[
d1

d2

]
+ s

= dt−1 + (1− p)ν̂t−1(dt−1) (I − (1− p)P)−1

[
d1

d2

]
+ s

and

p̄t−2(dt−1) =
∞

∑
k=0

(1− p)kE[dt−2+k|dt−1] + s

= dt−2 + (1− p)dt−1 +
∞

∑
k=2

(1− p)k ν̂t−1(dt−1)Pk−2

[
d1

d2

]
+ s

= dt−2 + (1− p)dt−1 + (1− p)2
∞

∑
k=2

(1− p)k−2ν̂t−1(dt−1)Pk−2

[
d1

d2

]
+ s

= dt−2 + (1− p)dt−1 + (1− p)2ν̂t−1(dt−1)

(
∞

∑
k=0

(1− p)kPk

)[
d1

d2

]
+ s

= dt−2 + (1− p)dt−1 + (1− p)2ν̂t−1(dt−1) (I − (1− p)P)−1

[
d1

d2

]
+ s

Thus, at the beginning of period t, the investor forms the expectation p̂t+1 as follows:

ŷt(dt−1) = (1− α)ŷt−1(dt−2) + α
pt−1

pt−2

p̄t−2(dt−1)

p̄t−1(dt−1)

=⇒ p̂t+1(dt−1) = p̄t+1(dt−1)H
(

pt−1

p̄t−1(dt−1)
ŷ2

t

)
Appendix B. Details of Leave-One-Out-Cross-Validation Approach

To compare different models that were fitted, we used Leave-One-Out-Cross-Validation (LOOCV)
approach. We perform LOOCV with two types of subsets (1) leave-one-period-out LOOCV and (2)
leave-one-session-out LOOCV



J. Risk Financial Manag. 2018, 11, 3 39 of 41

For reference, the notation we use is repeated below:

σ = 1, 2, 3 session index

nσ = number of periods in session σ

Nσ = number of participants in session σ

Xσ,j = equilibrium price in period j

Yσ,j,u = price forecast reported by participant u in session σ in period j

(n3 = 55, as discussed in the main body.)
Consider a family of models of forecast formation represented as

Yσ,j,u = ψj(Xσ,1, Xσ,2, . . . , Xσ,j−1; γ) + ε j

where γ denotes the vector of parameters of the model and ε j are i.i.d. N(0, σ2) random variables.
The parameter fit for participant u in session σ is given by

γ̂(σ, u) := arg min
γ

nσ

∑
j=11

(Yσ,u,j − ψj(Xσ,1, Xσ,2, . . . , Xσ,j−1; γ))2

The parameter fit using all data in all sessions is given by

γ̂ := arg min
γ

3

∑
σ=1

Nσ

∑
u=1

nσ

∑
j=11

(Yσ,j,u − ψj(Xσ,1, Xσ,2, . . . , Xσ,j−1; γ))2

Leave-One-Period-Out LOOCV

In this case, separate parameters are fit for each individual participant. The resulting RMSE gives a
measure of predictability when a separate model is fitted for each participant. The leave-one-period-out
LOOCV RMSE for a participant is computed as follows.

Let γ̂−i(σ, u) denote the vector of parameters fitted for the participant u in session σ after dropping
the data for period i. That is,

γ̂−i(σ, u) := arg min
γ

nσ

∑
j=11,j 6=i

(Yσ,u,j − ψj(Xσ,1, Xσ,2, . . . , Xσ,j−1; γ))2

Then, the leave-one-period-out LOOCV RMSE of the model ψ for the participant is given by

RMSEP
ψ(σ, u) :=

√√√√√ nσ

∑
i=11

(Yσ,u,i − ψi(Xσ,1, Xσ,2, . . . , Xσ,i−1; γ̂−i(σ, u)))2

nσ − 10
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The leave-one-period-out LOOCV coefficient of variation is the leave-one-period-out LOOCV RMSE
scaled by the fundamental value, given by

CVP
ψ :=

RMSEP
ψ(σ, u)

600
× 100%

Leave-One-Session-Out LOOCV

In this case, one set of parameters are fit for all participants and all periods in all sessions but one
(thus in two sessions). The fitted model is then used to calculate forecasts for all particpants and all
periods in the omitted session. The resulting RMSE gives a measure of predictability if a common model
is fitted for all sessions and participants.

The leave-one-session-out LOOCV RMSE is computed as follows. Let γ̂−s denote the vector of
parameters fitted after dropping all observations in session s. That is,

γ̂−s := arg min
γ

3

∑
σ=1,σ 6=s

Nσ

∑
u=1

nσ

∑
j=11

(Yσ,j,u − ψj(Xσ,1, Xσ,2, . . . , Xσ,j−1; γ))2

Then, the leave-one-session-out LOOCV RMSE is given by

RMSES
ψ :=

√
∑3

s=1 RMSE2
s

3

RMSEs :=

√√√√√√
Ns

∑
u=1

ns

∑
j=11

(Ys,j,u − ψj(Xs,1, Xs,2, . . . , Xs,j−1; γ̂−s))
2

Ns(ns − 10)

The leave-one-session-out LOOCV coefficient of variation is the leave-one-session-out LOOCV
RMSE scaled by the fundamental value, given by

CVS
ψ :=

RMSES
ψ

600
× 100%
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