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ABSTRACT

This study investigates optimal hedge ratios in all base metal markets. Using recent
hedging computation techniques, we find that 1) the short-run optimal hedging ratio is
increasing in hedging horizon, 2) that the long-term horizon limit to the optimal hedging
ratio is not converging to one but is slightly higher for most of these markets, and 3) that
hedging effectiveness is also increasing in hedging horizon. When hedging with futures
in these markets, one should hedge long-term at about 6 to 8 weeks with a slightly greater
than one hedge ratio. These results are of interest to many purchasing departments and

other commodity hedgers.
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I. INTRODUCTION

Hedging is considered an integral part of a competitive and successful commodity
purchasing department. =~ With raw material demand rising globally the strategic
importance of hedging has never been as critical as it is today. Volatility in commodity
markets continues to increase because of 1) political uncertainty and natural disasters, 2)
the expanding global nature of trade and the resulting soaring demands from remote
markets, and 3) a corresponding shift in manufacturing capacity as more product flow
into the U.S. from abroad (Dickson et al. (2006)). Due to the increased volatility in
commodity markets and strengthened global competition, companies can no longer rely
on traditional approaches, such as strategic sourcing and volume aggregation, to manage
their purchasing needs. Multinational firms no longer compete “...by exploiting scale and
scope economies or by taking advantage of imperfections in the world’s goods, labor, and
capital markets” (Hansen and Nohria (2004)). Firms must rely more than before on risk
management techniques to manage their materials exposure. These techniques include,
but are not limited to, eliminating cost inefficiencies in operations, hedging commodity

price risk with financial derivatives, and altering hedging horizons.

Our study concentrates on optimal hedging ratios and horizons in the metals
markets. Our results show that 1) the short-run optimal hedging ratio is increasing in
hedging horizon, 2) the long-term horizon limit to the optimal hedging ratio is not
converging to one but is slightly higher for most of these markets, and 3) hedging
effectiveness is also increasing in hedging horizon. The best hedging decision for these

markets is to hedge long-term at about 6 to 8 weeks with a slightly greater than one hedge
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ratio. These findings provide insights and a better understanding of the characteristics and
properties that shape the effectiveness of futures commodity trading, insights that are

valuable and relevant to the general commodity hedger.

In 2003, a survey taken as part of the Corporate Executive Board Procurement
Strategy Council (2003) revealed that 41% of risk managers believe that their
procurement department will become significantly more important in the coming years
and, critically, over 50% acknowledge that the effectiveness of their procurement
organization’s risk management division needs significant improvement. In fact, these
managers ranked commodity price risk as more relevant than currency price risk by a 3 to
2 ratio. Consequently, it is no surprise that hedging demand in the metals markets is such
that, over the period from Jan-June 2005 to Jan-June 2006, non-precious metals futures
trading increased by 21% in volume and the volume for aluminum contracts alone
increased by 32% (Holz (2006)). Wall Street is responding to the demand by hiring more
traders and new product developers. Barclays aims to hire 20% more staff in 2007 after it
already increased staff by 35% the previous year (Freed (2007)). Market demand
projections see no end to this trend. In the aluminum market, demand is projected to grow
by 9.4% in 2007, following on the 2006 8% growth. This matches unfavorably with the
projections in supply. The International Primary Aluminum Institute forecasts an increase
in production in 2007 of 6.5% and an increase in 2008 of 3.4%. While metals producers
can expect profitable years, metal consumers are faced with difficult choices and reduced
profitability. Market conditions point to the need for a concerted risk management policy

at the corporate level.
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The hedging literature is vast and covers both the motives for hedging and the
strategies used to address these motives. For the current study, it is important to recall
two areas of the literature. First, one branch of the literature aims to justify the use of
hedging by procurement divisions (Froot et al (1993), Hansen and Nohria (2004),
Koppenhaver and Swidler (1996)), while the second helps determine how best to select
optimal futures positions that minimize the risk inherent in the spot (cash) market
(chronologically, Fletcher and Ward (1971), Benninga et al (1984), Perron (1989), Baillie
and Meyers (1990), Chowdhury (1991), Lien and Luo (1993), Geppert (1995), Alexander
(1999), Chen, Lee and Shrestha (2004)). This study is an investigation into the optimal

hedge ratio and hedging effectiveness for base metals.

Hedging in futures markets involves taking a futures position opposite to that of a
spot market position (Institute for Financial Markets (1998)). For commodity purchasing
departments, the futures markets effectively represent a pricing mechanism in the
commodity purchasing process. One common definition of the optimal hedge ratio is
“...the ratio of the covariance between spot and futures prices to the variance of the
futures price” (Myers and Thompson (1989)). Intuitively, the optimal hedge ratio defines
the futures market position that will simultaneously minimize the risk absorbed in the
spot market or, plainly, what amount of the commodity should be hedged with futures.
We also look specifically at the hedging horizon, as previously studied by Chen, Lee, and
Shrestha (CLS) (2004) using cointegration to estimate the optimal hedge ratio, to

determine whether hedging effectiveness improves across greater hedging time horizons.
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This study analyzes the six base metals traded on the London Metal Exchange
(LME): aluminum, copper, lead, nickel, tin, and zinc. The use of LME base metals is
beneficial given its global acceptance as the world’s leader in metal futures trading. It is
also interesting to study these futures and their respective hedging effectiveness given
their dramatic upswing in volatility over the past few years: the six base metals

volatilities increased by 174% on average.

The paper first presents a review of the academic literature then Section III
presents the empirical questions. In Section IV, we present the data and the methodology.

Section V reports the results and we conclude in Section VI.

II. LITERATUTE REVIEW

Our study builds on the last 25 years of the optimal hedge ratio literature. Our
empirical models for estimation are based on the body of research that started with
Ederington in 1979. This research area evolved through three phases. First and notably,
Ederington (1979) established the first empirical models; later more sophisticated
techniques of GARCH estimation were applied, and most recently approaches of

cointegration have been used.

Ederington (1979) is the first to empirically estimate optimal hedge ratios and is
accordingly credited with formulating the theoretical framework. Ederington summarizes
the three working theories of hedging at the time: 1) Traditional Theory, 2) Theories of

Holbrook Working, and 3) the Portfolio Theory. He finds fault with Traditional Theory,
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the leading theory at the time. Ederington challenges its convenient yet unrealistic
assumption that a change in futures price is exactly proportionate to a change in cash
prices. Ederington argues that the theories of Holbrook Working improve on the inherent
weakness of the Traditional Theory by bringing light to the fact that most hedgers do
account for the dynamic information the cash-futures basis provides at the time the hedge
is placed. Still, the study argues that a more realistic approach is to view hedging in a
risk and return framework best formulated by an approach that combines Portfolio
Theory and Working’s Theory. This provides rationale as to why a hedger may at

different times be either hedged or completely un-hedged.

Ederington’s seminal contribution to the optimal hedge ratio literature is the
empirical finding that even pure risk minimizers will hedge less than their spot market
requirements which is contrary to the findings of preceding research. Moreover, he finds
that hedging effectiveness improves across two time horizons for financial security
futures. Specifically, his findings show that the futures markets for two financial
securities prove to be more effective hedging instruments over longer periods. However,
the limitation of only using two time horizons, along with the arbitrary method of
defining a long period as four weeks and a short period as one week, jeopardizes the
applicability of Ederington’s conclusions. Furthermore, the study assumes that the
minimum variance hedge ratio is simultaneously the optimal hedge ratio without formally
proving or interpreting this relationship. A second related weakness lies in the
assumption that a hedger who maximizes profit will simultaneously be minimizing the

variance of the hedge.
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In consideration of these limitations, several important studies quickly addressed
these concerns. Benninga, Eldor, and Zilcha (1984) respond first, finding fault in the
latter of the two weaknesses. Benninga et al. (1984) find that assuming a hedger has a
quadratic utility function presents ‘undesirable properties’ for estimation and also point
out that the assumption that the minimization of producer income variance is equivalent
to the optimal hedge ratio is theoretically inappropriate. Instead, Benninga et al. do prove
that, in unbiased futures markets, the minimization of income variance is equivalent to

the optimal hedge ratio.

Benninga et al. make two assumptions: 1) the futures price is an unbiased
predictor of the future spot price, [Fo=Eo(F1)=E¢(P>)], and 2) the regressibility of spot
prices on futures price, [Py= a + BF; + €] where € is homoscedastic. Fy represents the
futures price at t=0, F; represents the futures price at t=1, and P, represents the spot price
at t=2. Therefore, both F; and P, are unknown prices that the producer faces in everyday
hedging decisions. In unbiased markets, the only reason for the producer to hedge is to
minimize risk, given that on average there will be little to gain in an unbiased market.
Therefore, the optimal hedge is where X=pQ with Q representing the quantity required in
the spot market and X representing the optimal amount hedged on the futures market.
Assumption 2 may be econometrically troublesome since the use of price levels can lead
to autocorrelation with the residuals. Therefore, using price changes, [(P1 - Pg) = a +
B(F; - Fy) + €] rids the model of autocorrelation. This model still yields the optimal hedge
ratio under the assumption of unbiased futures markets. The only uncertainty remaining

in the producer’s expected income is the residual and the regression coefficient, p, is the
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minimum variance hedge ratio. The strength of their results “...derives from its
generality (it is free from assumptions about utility functions) and from the ease of its

applicability (it requires only a regression analysis to derive the optimal hedge ratio)”

(Benninga et al (1984)).

Following the research by Benninga et al (1984), the empirical estimation of the
optimal hedge ratio was improved by accounting for cointegration between spot and
futures prices. One of the key findings is that spot and futures prices tend to drift
together over time. Chowdhury (1991) proves that “...the market efficiency hypothesis
requires that the current futures price and the future spot price of a commodity are close
together.” This follows from the definition of market efficiency which implies that
current prices should reflect all current and past price information in establishing current
market prices. Chowdhury uses price data from the LME to test the hypothesis of market
efficiency (cointegration) for copper, lead, tin, and zinc.' Cointegration is found between
the four base metals studied suggesting that the use of conventional estimation techniques
to estimate the optimal hedge ratio would lead to over-hedging. A model that fails to
incorporate the long run co-movement between variables does not capture the mean
reverting tendency of the model, which leads to an upward bias in the point estimates in

the model.

! Base metals are some of the most commonly traded futures contracts, yet this is the only study to
incorporate base metals in the optimal hedge ratio analysis. It should be noted that the Chowdhury study
does not give any attention to hedging strategy, paying all of its attention to the statistical properties of
cointegration.
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Lien and Luo (1993) address the problem of over-hedging by estimating the
optimal hedge ratio using an error correction model to account for the issue of
cointegration the Chowdhury study raises. Lien and Luo run their estimation at 9
hedging horizons and find that the optimal hedge ratio tends to fluctuate before
converging towards one suggesting that the optimal hedge ratio converges to the naive
hedge ratio over time. These findings were later augmented by Geppert (1995), who
establishes that hedging effectiveness and the optimal hedge ratio both depend on the
permanent and transitory components of the price changes between spot and futures
prices. “Over long horizons, the shared component ties the spot and futures series
together and the two prices will be perfectly correlated” (Geppert (1995)). A major
weakness in the Geppert study is the model requirement that both spot and futures prices
be I(1) to implement the Stock and Watson (1988) methodology suggested in the study.
It would be useful to adopt a methodology that provides valid hedge ratios when the unit-
root condition is not satisfied.

Such a study is Chen, Lee and Shrestha (CLS) (2004). CLS empirically estimate
the optimal hedge ratio with a cointegration methodology that does not require both the
spot and futures prices to contain a single unit root. They are able to estimate both the
short-run and long-run hedge ratios with the Pesaran et al (2001) approach that does not
require both series to be I(1) or I(2) together. This approach works when prices are unit
root processes and when they are stationary. In all, 9 different hedging horizons are
considered over 25 different commodities. As expected, they find that the futures and
spot prices share a stochastic trend implied theoretically by market efficiency and the no-

arbitrage condition. In estimating the optimal hedge ratios they find that hedging
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effectiveness does improve over greater hedging horizons and that the short-run hedge
ratio is significantly less than one. Our study of the six LME metals follows the CLS

methodology.

III. EMPIRICAL QUESTIONS

In principle, futures markets exist to offer buyers and sellers of the underlying
commodities, financial instruments, or index the opportunity to minimize the price risk
inherent in cash market positions. These open markets allow for better price discovery.
Moreover, futures markets are appealing to firms because of high liquidity and ease of
entry/exit properties. Various businesses across the globe utilize these advantageous
properties to manage price risk exposure. This translates to firm cost savings as they
mitigate their risk exposure. Firms especially adept at risk management will likely
survive periods of high price risk and volatility. Given the recent competitive nature of
the commodity landscape, firms are implementing and plan to implement multitudes of

hedging strategies to trim the costs of elevated commodity prices.

In commodity purchases, hedging using futures contracts can be thought of as
offsetting the risk imposed by a firm’s commodity requirements. A firm that requires a
fixed amount of copper in the production of their good would want to offset their market
price risk by buying copper futures against their annual requirements. Under a futures
contract, the price is set for delivery at a future date. Therefore, if the trader is

anticipating a bullish copper market, she would be wise to assume a long position defined
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as buying deferred month futures contracts. This allows the trader to realize this gain in

futures prices which would alleviate the upside price risk in the spot market.

Hedging price risk involves not only when to be short and when to be long but it
also requires a thorough understanding of the long-run relationship between the spot and
futures markets. This may be the most important element in an efficient commodity
purchasing department because it ultimately reveals how effective a department is at
using the price discovery relationship in formulating hedging strategies. The price
discovery relationship implies that spot and futures share a long-run stochastic trend;
thus, an effective hedging department would understand that over longer hedging
horizons prices tend to revert to the mean together. For these reasons, the hedging
horizon is the key issue being addressed in this research. Given the volatile and upward
trending data employed in this study, it seems appropriate to hypothesize that the hedging
effectiveness of a firm with a comparatively longer hedging horizon would be much more
effective in minimizing risk over our data period. The current research consensus is that
spot and futures markets move together over long horizons. This implies that a firm
facing adverse upside price risk would be wise in lengthening their hedging horizon to
offset the unfavorable prospect of increasing spot market prices.

Let us look at a trading scenario in the aluminum futures market to emphasize the
importance of effective risk management. Consider major American beverage industry
players such as Pepsi-Cola Co., Anheuser-Busch Inc., Miller Brewing Co., and Coca-
Cola Co. All of these firms have significant annual aluminum requirements.

Correspondingly, all these companies assume a long position in the futures markets

51



Journal of Risk and Financial Management

because they are always in demand of (buying) aluminum to package their respective
products. Aluminum has recently experienced a 41% increase in its mean historical
futures price. Likewise, the spot market prices followed this trend but in an often erratic
and unpredictable fashion. This naturally introduced a considerable amount of basis risk,
making the hedging decisions by commodity traders within these companies difficult at
best. Basis risk is the unexpected fluctuations in the prices of cash and futures that is a
product of influences ranging from seasonality to supply disruptions. All of these firms
likely would have endured this period unsuccessfully without the use of some form of
hedging strategy.

Consider a beverage company, similar to one of the firms mentioned above, with
an annual and realistic aluminum requirement of 100,000 metric tons (MT). The
standard aluminum contract is specified for 25 MT at some point in time for future
delivery. Now, consider the price of $1,322 for cash aluminum in October of 1998 and

compare it to the prices prevailing in May of 2000.

Actual Aluminum Market Timeline

»
|

October 1998 May 2000
Price: $1,322 Price: $1,498

Actual Aluminum Market Time Spread

81

October 1998
Price: $1,322
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The market in October was in contango as indicated by the futures price being
greater than that of the market. Therefore, pursuing the recommended strategy above
would lead to hedging the spot market position of 100,000 MT. This strategy would lock
in the price of $1,357/MT on October of 1998 for delivery in May 2000. Assuming away
transaction costs, this simple hedging strategy would save the hypothetical firm $14M
dollars (= (1,498-1,357) * 100,000). The questions a commodity hedger has to answer
before implementing her strategies include: what is the best hedge ratio and what is the
best time horizon for this hedge? Our methodology allows us to answer these two

questions.

IV. ECONOMETRIC METHODOLOGY

Table 1 shows the six metals markets our data set covers. All these metals are
traded on the London Metal Exchange: Aluminum, Copper, Lead, Nickel, Tin, and Zinc.
Our dataset is longer than those in previous studies and provides the daily close price for
both the cash and futures prices dating back to July of 1998 and up to October 2006. The
futures data is collected from Futuresource, a database specifically designed for
commodity traders. The futures price data represent the near-by futures contract or the
contract with the closest settlement date and rolled over 10 days prior to expiration. Cash
prices used are very closely related to the second bell close on the LME, since nearly all

metals pricing is based on this quote.

[INSERT TABLE 1 HERE]
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Table 2 illustrates the recent increased volatility in the metal markets: the price
standard deviation increased across the six metals by an average of 174%. The table also
reports the ratio of the standard deviation to the mean price to indicate how volatility
increased in proportion to the average price for all six of the base metals. This statistic
indicates that both mean prices and standard deviation increased over the period. Figure 1
illustrates the increased volatility prevailing in the current commodity landscape. The
figure shows the dramatic upward shift in prices that has occurred in all six of the
contacts over the last two years of our sample. We observe that mean aluminum futures
prices increase over 41% after the break point in March 2005, with a record high being
reached on May 11, 2006. Copper provides a similar story, but the mean futures prices
more than doubles (137%) with a record high also being reached on May 11. The copper
contract is usually regarded as the leading base metal, primarily because of its large
trading volume, which helps explain the contract’s significant uptrend in comparison to
aluminum, lead, nickel, and tin. Finally, Panel A illustrates the increase of futures prices
in the zinc market of over 100%. Lead’s historical prices reached a record high on
October 16 and the mean futures price increasing over 77%. Nickel’s price path parallels
that of copper with its price more than doubling (124%). Again, the record high was
established on October 16. Tin increases modestly in comparison to Lead and Nickel

with a much less dramatic increase of 51% with a record high being set on October 16.

[INSERT FIGURE 1 HERE]

[INSERT TABLE 2 HERE]
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Empirically, the estimation follows the derivation provided by Benninga et al.
(1984). First, let’s assume that a commodity purchasing department for a beverage
company has to buy some quantity (Q) of aluminum at t=1. The price (P;) at period t=1
is uncertain since one is unable to predict future prices. The commodity trader can
purchase futures (Fo) at t=0 to offset the uncertainty of the price (P;) at t=1. The income
of the firm after implementing the hedge is, therefore, represented in equation (1) below,

QP+ X(Fo—Fy) (1)

where F represents the futures price at t=1 and X represents the trader’s hedge.

In this case, the quantity X represents a long position in the futures market and the

difference in the two futures prices will establish whether the hedge was favorable.

In order to derive the optimal hedge ratio, one must assume that the futures
market is an unbiased predictor (market efficiency) of the spot market which is denoted
below in equation (2). This assumption is not unrealistic given the wide body of research
on cointegration that indicates that futures and spot prices do share a mean-reverting
relationship in the long run (Lien and Luo (1993), Geppert (1995), Alexander (1999),
CLS (2004)). It is also assumed that the spot price shares a linear relationship with the
futures market or that spot prices can be regressed on futures prices. This holds if €, the
error term, is not correlated with F; (Benninga et al (1984)).

Fo=Eo(F1)=Eo(P2) (2)

P_a+BF +c(3)
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Subsequently, the variables are differenced to rid the model of this inherent
problem as illustrated below in equation (4). All the assumptions still hold if equation (4)
is estimated in favor of equation (3).

(P1—Po)=a+ B (F;—Fp)+ & (4)

Equation (5) replicates equation (1) but in this case the dependent variable is

included to capture the income of the firm after the hedge is completed.
I=QP;+ X*(Fo—F)) (5)

The expected income of the firm is found to equal the cost of the spot market
requirement under the unbiasedness assumption in equation (2). This relationship is
denoted below in equation (6), where the two futures prices cancel out under the
assumption of unbiasedness. The only reason remaining to hedge is to minimize the risk
that the commodity poses.

Eo(I) = Q*Eo(P1) + X*(Fo— Eo(F1)) = Q*Eo(P1) (6)

If the commodity trader allows his hedge position to equal the product of the
coefficient in the regression equation (B) with the physical requirement of the commodity
(Q) then equation (7) below follows. This is the result of substituting (f * Q) for X in
equation (5).

[=Q @i -BF)+QPFo(7)
Solving equation (3) for (P; - B F;) allows the substitution of (a + €) into equation

(8) below:

1=Q(a+8)+QPBFo(8)
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Equation (8) proves that the optimal hedge ratio is X = (Q B) and it indicates that
the only remaining uncertainty in the equation is in the error term which, by definition,
cannot be hedged. Therefore, all income variance is eliminated and the only reason for
the trader to hedge is to minimize the risk variance captured by (Q B). This finding
proves that the minimum variance hedge ratio is also the optimal hedge ratio.

Equation (9) represents the minimum variance hedge ratio defined by Ederington

(1979) when the trader/producer is attempting to minimize income variance.
Var [ =Q? Var P, + X* Var F;— 2 Q X Cov (P; , F) (9)

The minimum variance hedge can also be represented as equation (10) below with

the use of simple differentiation:
X = Q Cov (P] . F]) / Var F] (10)

Note that X/Q is equivalent to B, the coefficient representing the hedge ratio in
equation (4), which is also equivalent to the expression Cov (P, F;) / Var F.

Given this proof, it is theoretically valid to empirically estimate the optimal hedge
ratio with the differenced form equation (4) above. Before estimating this model, it needs
to be addressed how the optimal hedge ratio will be estimated for the different hedging
horizons. These estimation techniques are produced in the studies by Geppert (1995) and
CLS (2004). Both studies prove that the price changes (AP; and AF;) in equation (4)
should be k-period differenced to properly estimate a respective k-period hedging horizon
optimal hedge ratio. Simply put, this means that the frequency of the data must match the
hedging horizon of the estimated optimal hedge ratio. A major drawback in the Geppert
study is the use of overlapping differencing to prevent the sample size from becoming too
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small. As CLS points out, such a method produces correlated observations which lead to
a regression that has autocorrelated error terms. This should be avoided to eliminate the
upward bias in estimates of the statistical significance of coefficient estimates. The
sample size in the present study is large enough to warrant the use of non-overlapping
differences which prevents the troublesome properties of autocorrelated error terms

produced by overlapping differencing.

The next step in the methodology is to test for unit root in the prices for both the
spot and futures in all six of the base metals. This is necessary because, as market
efficiency implies, futures and spot prices should move together over time. Under market
efficiency, if the futures move in one direction then so do the spot prices, implying that if
both series are I(1) then they also should be cointegrated. Perron (1989) unit root tests
are performed to account for the breaks in the data that are quite obvious when visually
examining Figures 1-6. This method tests for stationarity after detrending the series and
allowing for structural breaks. The structural breaks in this test should be exogenous.
This is easily supported in the base metals as speculative hedge funds have increasingly
emerged in commodity markets to create more balanced portfolios. This phenomenon
has coincided with the price increases outlined in Figures 1-6 and would be difficult to
conceive as anything but exogenous in the causality of futures prices. Detrending the
series using both slope and intercept shifts are employed after several updates to the study
have shown this method to be preferred (Pesaran (1997)). Choosing the break points for
these tests is done by visually examining the data to determine the break in the data

which is used in estimating the test statistic.
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After the unit root tests are performed, it is necessary to evaluate whether
cointegration exists among the prices of both the futures and spot markets. Again, market
efficiency implies that this is the case. CLS only assumes cointegration so this study
improves upon this by empirically verifying the long-run co-movement. Cointegration is
tested using the Pesaran et al method (2001) which transforms equation (4) into the
unconstrained version of the error-correction model denoted by equation (11) below:

APi= a - B 1AFy — B2 AF o+ B 3APy; + B 4AP, + @ Fy + @2 Py + (1)

In (11), two lags are included for the purpose of uniformity but in the actual
estimation of the test, lags will be determined with the Akaike Information Criterion
(AIC) model selection test. The Pesaran approach uses an F-statistic to test whether the
lagged level variables are jointly significant [®;= ®,=0]. Critical values for these tests are
obtained from the study by Pesaran et al (2001). These tests are performed with the
weekly data that are also used in the unit root tests.

After testing for cointegration, the simultaneous equation models considered by
Pesaran (1997) in equation (8) of that study is adapted to jointly estimate the ratios,
which allow us to evaluate the long-run relationship that exists between spot and futures
prices enabling a dynamic model that corrects short-run deviations from the long-run
equilibrium (Alexander (1999). Equation (12) is “...parameterized so as to be closely
associated with the error-correction models encountered in the vector autoregressive
models with cointegration” CLS (2004):

(P] — P()) =0y t+ 0Py + o3F g + B (F] — F())+ e (12)
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This equation differs from the error correction model in that AF;is used instead of
the AF., term that the vector autoregressive model yields. This alteration is supported
theoretically in the CLS study which uses AF; because it explicitly represents the short-
run hedge ratio. Additionally, a simultaneous equations approach is avoided because the
interest lies only in the short-run and long-run ratios. In equation (12) both the short-run
and long-run hedge ratios can be estimated where - a3/ a, is the long-run hedge ratio, as
proved by Geppert, and B is the short-run hedge ratio. This eliminates the problem
associated with equation (4) only incorporating short-run information. It is anticipated
that the long-run hedge ratio will remain constant and that the short-run ratio will
converge to the long-run ratio across greater time horizons. Equation (12) is supported

theoretically by CLS and adapted from Pesaran et al.

The final and most important step in the methodology involves testing the out-of-
sample hedging effectiveness. Out-of-sample hedging effectiveness will enable the
researcher to evaluate how effective the hedging strategy is over increasing hedging
horizons. Using equation (13) as the hedged portfolio, hedging effectiveness will be
determined by equation (14) which frequently serves as a measure of hedging
effectiveness in the body of research on optimal hedge estimation (see among others,
Anderson and Danthine (1981) or Meyers and Thompson (1989)):

AVy=Q (AP;) + X(AFy) (13)
1 — [Var(AVy) / Var (APy)] (14)
The first half of the sample will be utilized to compute the optimal hedge ratio

across all of the hedging horizons with these estimated hedge ratios being substituted for
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X in equation (13). Furthermore, the second half of the data set will be used in
calculating the remainder of the coefficients with Q being set to 1. Ultimately, this
equation represents the amount of variance reduced with the implementation of the hedge

above and beyond that of an unhedged position.

V. RESULTS

The first part of the methodology involves testing for unit root or the stationarity
of the variables. Table 3 shows the results of the unit root tests conducted on the weekly
data for each market. All the variables except for the futures prices on zinc appear to be
I(1) or integrated of order 1. The A represents the proportion of the sample at which the
break point occurs, measured from the beginning of the data sample to the breaks, which
are determined visually.” The finding on zinc might be attributed to the low power of unit
root tests. In any case, the test statistic is close to passing the test and would
hypothetically pass at the 12% level of significance. The DF-GLS test was also used to
provide further insight into the results, and the finding from this test shows that zinc does
in fact have unit root. These findings coupled together point to zinc futures being I(1).
The fact that the cash prices have unit root suggests the futures should as well, given the
no-arbitrage condition and market efficiency condition assumed in the literature (CLS

(2004)). Therefore, all prices are assumed to suffer from unit root.

[INSERT TABLE 3 HERE]

* A range of possible break points were selected including the minimum, mean, and maximum. All three of
these were tested with their respective lambda statistic and all proved to change the results very little. Also,
the test statistics were calibrated as needed to more appropriately capture a break that falls between the
values offered in the study. These were altered approximately 0.75 for each incremental move away from
the lambda statistic to produce more reliable estimates.
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Given that all the variables appear to be integrated of order 1, the optimal hedge
ratios are calculated for 9 hedging horizons ranging from one day, one week to eight
weeks. The results are reported in Table 4. All the estimates in Table 4 prove to be
significant at the 1% level of significance. Estimation of the ratios is performed using
simple OLS from equation (4). The variables are differenced to account for unit root and
autocorrelation. Ultimately, all the optimal hedge ratios do not converge towards one
across greater hedging horizons. Many of them do appear to fluctuate across the horizons
but each of the markets exhibit a distinct trend (except aluminum) towards a value greater
than one. The very short horizon (one-day) optimal hedge ratios are all less than 0.65
but, as soon as the differentiation frequency is increased to 1-week, the optimal ratio
increase to a range from 0.83 (Tin) to 0.99 (Nickel). The ratio at the 4-week horizon are
all greater than 1, ranging from 1.00 (Aluminum and Copper) to 1.11 (Nickel). At the
longest time horizon we study, the optimal ratios range from 1.00 (Aluminum) to 1.17
(Nickel). Overall, the average (median) 8-week hedging horizon across the six metals is
roughly 1.074 (1.066). Empirically, this means that the trader should be hedged 7.4%
above the respective spot position. This finding is contrary to the findings of CLS and
Geppert who both found that the optimal hedge ratio converges to one across greater time
horizons. Table 4 suggests that, in general, the proportion of spot positions to be covered
by opposite positions on futures markets is greater than one. This finding is of
importance, but at this point, should be considered preliminary since the I(1) prices in this
study are assumed to trend together over time which can lead to misleading results in an

OLS regression (Chowdhury (1991)).
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[INSERT TABLE 4 HERE]

Given that all the variables in the model contain unit root, it is anticipated that all
the relationships between spot and futures prices share a long-run stochastic trend. Table
5 verifies that each of the 6 markets studied do share a mean-reverting relationship, as in
each case the test statistic is greater than the upper I(1) bound found in the Pesaran study.
The test employed here has two variables (k), an intercept, and no trend. The 10%
critical value is 4.14 in this case, which means that for the series to be cointegrated the
test statistic must be greater than the 4.14 test statistic. The use of this test improves on
several earlier studies that used the Engle-Granger method. Using this test takes
advantage of the minimum variance criterion used in the test that is also used in the risk
management application of this study (Alexander (1999)). These tests were reinforced

with the Engle-Granger test that provided the same conclusions as the Pesaran approach.

[INSERT TABLE 5 HERE]

Having confirmed that all the variables within each respective market are
cointegrated, the associated joint estimation that ties this long-run co-movement together
is performed. The estimation approach is CLS’s which jointly estimates the long-run and
short-run hedge ratios. Table 6 presents the result from this approach and it is apparent
that the results are very similar to that of the previous short-run estimation. This

estimation, which correctly includes the long-run properties of the cash-futures
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relationship, should account for the concerns associated with the estimation of equation
(4). Correcting for cointegration issues, the results in Table 6 tend to bear out that the
naive estimation of equation (4) leads to over-estimation of the optimal hedge ratio. At
the 8-week horizon, the optimal hedge ratio in Table 6 is lower than that in Table 4 for 4
of the 6 metal markets, namely aluminum, lead, nickel and zinc. Nonetheless, the results
in Table 6 confirm that, after controlling for cointegration issues, the hedgers should have
been overhedged to minimize the variance of their cash position. Namely, market
participants should, across the six metals on average, overhedge by 6.7% at the 8-week
hedging horizon. One may question whether 7.4% and 6.7% are really different from one
another. However, using the hypothetical aluminum requirement of 100,000 MT used in
Section III as a benchmark, the two different hedge ratios account for a $1.9M difference
when employing the two hedge ratio values. Any firm would be more than glad to add
this additional cost avoidance to their portfolio. Again, these findings are indicative of the

volatile commodity landscape that has taken form over the recent years.

[INSERT TABLE 6 HERE]

The study by CLS points out that the short-run hedge ratio should approach the
long-run hedge in this joint estimation. Table 6 provides confirmation of this fact. First,
as one can anticipate, at the one day horizon, the two estimates are very different. The
average value of the percentage difference between the two estimates, measured as
(Short-run ratio — Long-run ratio) / Long-run ratio, is a high -41%. At the one-week

horizon, the difference is already greatly reduced to -7.6% and is further reduced at the 2-
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week horizon to -2.7%. Aggregating all other horizons reported in Table 6, the difference
narrows to an average 0.1% confirming the convergence but we should note that the sign
of this difference is not consistent either across horizon or across markets.

Finally, Table 7 presents the findings of how effective these optimal hedge ratios
would be in a portfolio consisting of cash and futures positions. All the metals are
considered in this example to thoroughly evaluate the effectiveness of the hedges. All the
values appear to exhibit a common trend towards the mid-90% across the hedging
horizons. The hedging effectiveness value represents the percentage reduction in variance
over and beyond a portfolio unhedged. It is evident that these optimal hedge ratios are
useful in minimizing variance but even more important, the hedges improve across the
time horizons. Namely, a hedge may be more favorable as the hedging horizon is

lengthened given the nature of price discovery in the spot and futures relationship.

[INSERT TABLE 7 HERE]

A viable question in commodity purchasing departments is: how far out a
company should hedge given the nature of the commodity landscape? The empirical
evidence contained in this study indicates that, in general, a longer hedging horizon may
help mitigate the risk in the spot market. The results provided in Table 7 indicate that the
optimal hedging horizon should be at 8-week or the longest hedging horizon considered
in this study. This statement is not saying that the 8 week effectiveness value is always
greatest at this horizon, as in the case of aluminum the 6-week horizon is preferred to the

8-week horizon. Rather, it is evident that these values are generally asymptotically
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improving across the horizons and therefore, it is inferred that this would also occur
across a broader dataset. A longer hedging horizon is the course of strategy advocated in

this study.

VI. CONCLUSIONS

This study investigates the optimal hedge ratio and hedging effectiveness for six
base metals markets. After applying careful econometrics methods, we first document
that the short-run optimal hedging ratio is increasing in hedging horizon. If a corporate
hedger is attenuating demand risks for his company with a longer time-frame in the
futures market, he should increase his exposure to the futures market as his hedging
horizon lengthens. Second, we show that the optimal hedging ratio, contrary to results in
other markets, does not converge to the naive ratio of 1 for our markets over our time-
period over longer time horizons. We document that the appropriate position a hedger
should take is to over-hedge by over 5% in order to best minimize price impacts. Finally,
we find that hedging effectiveness for the optimal hedging ratios we computed in an out-
of-sample methodology is very high in the mid-90’s in percentage terms. In other words,
implementing a hedge with the hedge ratios we determined would eliminate over 90% of
price uncertainty for large corporation procurement departments. Overall, the best
hedging decision for these markets is to hedge long-term at about 6 to 8 weeks with a
slightly greater than one hedge ratio. These results are robust to the increased volatility
over our data period and are of great interest to many purchasing departments and other

commodity hedgers.
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FIGURE 1

Figure 1 graphs in two panels the complete time series of data used in the study. In each panel,
using the same scale, we highlight the dramatic price increase experienced by the metals markets over the
study period. From these representations, we determine break points which are reported in Table 2.
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TABLE 1 — Data Description

Table 1 reports the time period and frequency of the data used in our empirical determination of
the optimal hedge ratio and optimal hedging horizon. All prices are prices from the London Metal
Exchange (LME). The futures price information is obtained from Futuresource, a platform relaying the
LME data, and represents the near-by futures contract. The cash prices are related to the second bell close

on the LME.

Base Metal Data Sample Range Frequency Observations

Aluminum July 8,1998 - October 19,2006 Daily 2068

Copper July 8,1998 - October 19,2006 Daily 2066

Lead July 8,1998 - October 19,2006 Daily 2068

Nickel July 8,1998 - October 19,2006 Daily 2063

Tin July 15,1998 - October 19,2006 Daily 2064

Zinc July 15,1998 - October 19,2006 Duaily 2058
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TABLE 2 - Descriptive Statistics

Table 2 reports sample descriptive statistics for the cash prices for all 6 metal markets investigated in the
study. Over the sample period, each of these markets exhibited a large change in both price level and
volatility level. The table reports the mean, maximum, minimum and the standard deviation of prices for
each market for the two distinct periods: before the price level change break and after the price level
change break. The break points are determined visually from the historical price charts and are reported in
the table below. In addition, the table reports the ratio of volatility to level of prices (o/p) before and after
the break to confirm that the break represents both a change in level and a change in volatility in prices.

Metal Before Break | After Break | % Increase
ALUMINUM [Break Point Date 17-Mar-05
Mean $1,540 $2,169 41%
Standard Dev $180 $354 97%
Maximum $2,186 $3,180 45%
Minimum $1,161 $1,688 45%
o/u 0.117 0.163 40%
COPPER Break Point Date 15-Nov-04
Mean $2,012 $4,770 137%
Standard Dev $483 $1,796 272%
Maximum $3,140 $8,650 175%
Minimum $1,339 $2.865 114%
o/u 0.240 0.377 57%
LEAD Break Point Date 29-Jan-04
Mean $560 $989 77%
Standard Dev $106 $165 56%
Maximum $862 $1,540 79%
Minimum $415 $693 67%
o/u 0.189 0.167 -12%
NICKEL Break Point Date 8-Jan-04
Mean $7,204 $16,126 124%
Standard Dev $1,777 $4,442 150%
Maximum $17,100 $31,900 87%
Minimum $3,785 $10,550 179%
o/u 0.247 0.275 12%
TIN Break Point Date 18-Mar-04
Mean $5,371 $8,095 51%
Standard Dev $769 $887 15%
Maximum $7,795 $11,000 41%
Minimum $3,638 $6,000 65%
o/u 0.143 0.110 -23%
ZINC Break Point Date 17-Mar-05
Mean $1,036 $2,213 114%
Standard Dev $162 $894 452%
Maximum $1,672 $3,960 137%
Minimum $745 $1,178 58%
o/u 0.156 0.404 158%
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TABLE 3 — Perron Unit Root Test

Table 3 reports the results of the Perron Unit Root test performed on both the cash and the futures price
time series. The Perron Unit Test allows to determine if the price series is integrated of order 1, I(1). Unit
root testing was performed on weekly data. A represents the proportion of the sample at which the break
points occurs. The tests are based on Perron (1989) 10% critical values with both a slope and intercept
shift. * denotes an I(1) series or unit root.

Variables Cash Futures
METAL Sample Frequency | ) | Test Statistic | Critical Value [ A | Test Statistic | Critical Value
ALUMINUM Weekly (433) 0.8 -3.34* -3.69 0.8 -3.53* -3.69
COPPER Weekly (433) 0.7 -2.77* -3.86 0.7 -2.51* -3.86
LEAD Weekly (433) 0.7 0.02* -3.86 0.7 0.02* -3.86
NICKEL Weekly (433) 0.7 -0.38* -3.86 0.7 0.14* -3.86
TIN Weekly (433) 0.7 0.71% -3.86 0.7 -0.64* -3.86
ZINC Weekly (433) 0.9 -2.53* -3.46 0.8 -3.97 -3.86
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TABLE 4- OLS Minimum Variance Hedge Ratio

Table 4 reports the empirical results of estimating the optimal minimum variance hedge ratio for each of
the six metal markets. The estimation in this table relies on Equation (4):

(Pi=Po)=a+B(F—Fo)t+e
where the MV Hedge Ratio reported is the point estimate of 3 in Equation (4) found with an Ordinary Least
Squares (OLS) estimation. The table also contains the standard deviation of the estimate and the adjusted
R-Square of the OLS regression. The analysis is repeated at different level of differentiation from as short
as one day to as long as 8 weeks. Due to data constraint (our time series contains 433 weeks worth of data),
we limit our longest hedging horizon to 8 weeks to insure our results remain statistically meaningful.

1 1 2 3 4 5 6 7 8
METAL Statisti Day | Week | Weeks | Weeks | Weeks | Weeks | Weeks | Weeks | Weeks

ALUMINUM MV Hedge Ratio] 0475 | 0909 | 0973 | 099 | 1002 | 1.020 | 1.067 | 1054 | 1006
Std Deviation| (0.020) | (0.020) | 0.028) | 0.028) | 0.031) | (0.036) | 0.031) | (0.038) | (©.029)
Adj. RSquared| 0210 | 0824 | 0853 | 089 | 0907 | 0903 | 0940 | 0927 | 0959

COPPER MV Hedge Ratio] 0391 | 0.860 | 1.007 | 1.032 | 1.001 | 1.018 | 1.051 | 0.990 | 1.026
Std. Deviation| -0.019 | -0.021 | -1.027 | -0.015 | -0.020 | -0.025 | -0.016 | -0.014 | -0.016
Adj. R-Squared] 0178 | 0800 | 0868 | 0973 | 0960 | 0953 | 0983 | 0988 | 0987

LEAD MV Hedge Ratio] 0.654 | 0951 | 1.023 | 1.022 | 1.075 | 1.055 | 1.100 | 1046 | 1108
Std. Deviation] -0.023 | -0.027 | 0036 | -0.028 | 0.049 | 0032 | -0.034 | -0.034 | -0.032
Adj. R-Squared| 0284 | 0749 | 0792 | 0904 | 0820 | 0930 | 0938 | 0941 | 0957

NICKEL MV Hedge Ratio] 0526 | 0992 | 1.103 | 1.074 | 1116 | 1.002 | 1.084 | 1.034 | 1173
Std. Deviation| -0.022 | -0.025 | 0028 | -0.037 | -0.032 | -0.027 | -0.021 | -0.047 | 0.044
Adj. R-Squared] 0218 | 0788 | 0879 | 0853 | 0920 | 0944 | 0975 | 0892 | 0932

TIN MV Hedge Ratio] 0443 | 0832 | 0872 | 1.004 | 1.012 | 1.062 | 1.030 | 1.043 | 1033
Std Deviation| -0.021 | -0.026 | 0.028 | -0.023 | -0.030 | -0.043 | -0.028 | -0.029 | -0.032
Adj. R-Squared| 0.185 | 0.701 | 0820 | 0903 | 0915 ] 0880 | 0951 | 0957 | 09%4

7INC MV Hedge Ratio] 0554 | 0982 | 0986 | 1.099 | 1.036 | 1.002 | 1.059 | 1117 | 1079
Std. Deviation| -0.021 | -0.020 | -0.025 | 0023 | -0.024 | 0016 | -0.024 | -0.017 | -0.014
Adj. R-Squared] 0255 | 0853 | 0884 | 0943 | 048 | 0979 | 0966 | 0986 | 0992
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TABLE 5 — Pesaran Cointegration Tests

Table 5 reports the results of test statistics about the cointegration of the data series. Specifically, the
Pesaran cointegration test (1997) is run. The test employed has two variables (k), an intercept and no trend.
The 10% critical value is 4.14 in this case. Cointegration was also found to be the case in Engle-Granger
tests using ADF and the Engle-Granger test statistics.

METAL # of Lags Beta F-Statistic Cointegration
ALUMINUM 5 1.02 5.06 YES
COPPER 6 0.64 7.93 YES
LEAD 5 0.58 9.87 YES
NICKEL 6 0.83 11.23 YES
TIN 5 0.60 6.00 YES
ZINC 6 0.72 12.87 YES
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TABLE 6 — Joint Estimation of the Short-Run and Long-Run MV Hedge Ratios

Table 6 reports the empirical results of estimating the optimal minimum variance hedge ratio for each of
the six metal markets. The estimation in this table relies on Equation (12):
(Py—Po) = a; + azP + a3F + B (Fy — Fo)+ ¢

where the (short-run) MV Hedge Ratio reported is the point estimate of § in Equation (12). The table also
contains the standard deviation of the estimate and the adjusted R-Square for that estimation. The long-run
MYV Hedge ratio is computed as —oi3/a; and is also reported. The analysis is repeated at different level of
differentiation from as short as one day to as long as 8 weeks. Due to data constraint (our time series
contains 433 weeks worth of data), we limit our longest hedging horizon to 8 weeks to insure our results
remain statistically meaningful.

1 1 2 3 4 5 6 7 8

METAL Statistic Day Week | Weeks | Weeks | Weeks | Weeks | Weeks | Weeks | Weeks

ALUMINUM] MV Hedge Ratio] 0.624 0.946 0.981 0.985 0.982 1.009 1.033 1.013 0.987
Std. Deviation| (0.021) | (0.019) | (0.025) | (0.025) | (0.027) | (0.030) | (0.031) | (0.034) | (0.027)

-a3/a2 0.990 0.996 0.992 0.997 0.994 0.995 0.991 1.007 0.983

Adj. R-Squared| 0.305 0.859 0.887 0.922 0.935 0.941 0.954 0.954 0.971

COPPER MYV Hedge Ratio] 0.487 0.901 1.022 1.036 1.009 1.044 1.063 0.999 1.042
Std. Deviation| (0.020) | (0.020) | (0.025) | (0.015) | (0.020) | (0.023) | (0.017) | (0.014) | (0.016)

-a3/a2 1.017 1.026 1.033 1.045 1.040 1.046 1.061 1.050 1.060

Adj. R-Squared| 0.227 0.829 0.894 0.976 0.967 0.966 0.987 0.990 0.990

LEAD MYV Hedge Ratio| 0.716 0.967 1.029 1.018 1.063 1.033 1.078 1.059 1.100
Std. Deviation| (0.023) | (0.025) | (0.033) | (0.027) | (0.046) | (0.031) | (0.035) | (0.035) | (0.035)

-a3/a2 1.044 1.053 1.056 1.052 1.064 1.053 1.065 1.065 1.053

Adj. R-Squared| 0.335 0.783 0.830 0.918 0.862 0.944 0.949 0.952 0.963

NICKEL MYV Hedge Ratio| 0.597 0.996 1.088 1.055 1.109 0.999 1.059 1.051 1.128
Std. Deviation| (0.023) | (0.024) | (0.027) | (0.035) | (0.032) | (0.028) | (0.023) | (0.047) | (0.048)

-a3/02 1.054 1.063 1.068 1.059 1.072 1.033 1.042 1.069 1.091

Adj. R-Squared]| 0.262 0.810 0.899 0.889 0.935 0.952 0.979 0.921 0.952

TIN MYV Hedge Ratio| 0.596 0.908 0.926 1.004 1.009 1.066 1.015 1.043 1.033
Std. Deviation| (0.021) | (0.024) | (0.026) | (0.024) | (0.030) | (0.034) | (0.025) | (0.024) | (0.028)

-a3/02 1.027 1.030 1.030 1.025 1.033 1.038 1.030 1.030 1.024

Adj. R-Squared]| 0.285 0.768 0.859 0.927 0.939 0.926 0.965 0.971 0.969

ZINC MYV Hedge Ratio| 0.617 0.994 0.993 1.058 1.002 0.997 1.073 1.015 1.112
Std. Deviation| (0.023) | (0.025) | (0.018) | (0.018) | (0.026) | (0.019) | (0.022) | (0.031) | (0.038)

-a3/a2 1.032 1.012 1.029 1.036 1.032 1.032 1.029 1.031 1.031

Adj. R-Squared] 0.334 0.912 0.947 0.966 0.975 0.977 0.991 0.990 0.991
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TABLE 7 — Hedging Effectiveness using Out-of-Sample Analysis

Table 7 reports the empirical results of implementing the optimal long-run MV Hedge Ratio as determined
with the technique used in Table 6. However, in order not to resample, we split the sample in two halves.
The first half of the data is used to estimate Equation (12) and to determine the optimal long-run MV
Hedge Ratio. This optimal Hedge Ratio was then used to put in place a hedged position for the second half

of the sample. We keep track of the changes in value of that portfolio defined as Equation (13):

AVy=Q*(AP,) + X*(AF,)
We use the series of AV), to compute the Hedging Effectiveness as defined in Equation (14):
1 — [Var(AVy) / Var(AP))]
The table contains both the estimated optimal Hedge Ratio and the corresponding Hedge Effectiveness

achieved.
1 2 3 4 5 6 7 8
Week | Weeks | Weeks | Weeks | Weeks | Weeks | Weeks | Weeks
METAL Statistic
ALUMINUM | Hedging Effectiveness | 0.839 0.850 0.927 0.902 0.899 0.960 0.936 0.942
Optimal Hedge Ratio 0.923 1.037 0.976 1.080 1.052 1.090 1.026 | 1.1066
COPPER Hedging Effectiveness | 0.747 0.773 0.844 0.887 0.842 0.932 0.924 0.962
Optimal Hedge Ratio 0.876 0.912 0.995 1.015 1.091 1.074 1.084 1.031
LEAD Hedging Effectiveness | 0.916 0.935 0.921 0.943 0.957 0.949 0.965 0.966
Optimal Hedge Ratio 0.964 1.012 1.002 1.058 1.059 1.025 1.064 1.098
NICKEL Hedging Effectiveness | 0.789 0.815 0.860 0.892 0.926 0.935 0.947 0.953
Optimal Hedge Ratio 0.984 1.054 1.036 1.093 1.048 1.011 1.112 1.100
TIN Hedging Effectiveness | 0.799 0.846 0.882 0.916 0.932 0.914 0.926 0.954
Optimal Hedge Ratio 0.914 0.938 1.012 1.009 1.045 1.037 1.055 1.041
ZINC Hedging Effectiveness | 0.869 0.881 0.900 0.912 0.897 0.925 0.946 0.979
Optimal Hedge Ratio 0.979 0.999 1.078 1.001 1.071 1.036 1.050 1.093
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