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Abstract: Tidal streams are complex watercourses that represent a transitional zone
between riverine and marine systems; they occur where fresh and marine waters converge.
Because tidal circulation processes cause substantial turbulence in these highly dynamic
zones, tidal streams are the most productive of water bodies. Their rich biological diversity,
combined with the convenience of land and water transports, provide sites for concentrated
populations that evolve into large cities. Domestic wastewater is generally discharged
directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality
of these streams. Given the complex flow dynamics of tidal streams, only a few models can
effectively evaluate and identify pollution levels. This study evaluates the river pollution
index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for
interpolating random spatial variation to estimate linear grid points in two or three
dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which
is typically considered as 1D in hydraulic engineering. The proposed method efficiently
evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the
Tanshui River downstream reach available from an estuarine area validate the accuracy and
reliability of the proposed method. Results of this study demonstrate that this simple yet
reliable method can effectively estimate RPI in tidal streams.
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1. Introduction

The complex flow of tidal streams is mainly influenced by interactions between river water and
seawater. Thus, tidal streams are in constant flux as they adapt to river and climate conditions.
The half-day tidal variation of the sea is the main driver of cyclic fluctuation in tidal streams [1].
Seasonal changes in flow conditions from estuaries determine water salinity. Upstream flooding is a
factor in the changes in the vertical texture of water bodies and is attributed to flow irregularities.
Among climatic factors, wind conditions significantly affect tidal streams. Waves caused by wind
shear alter the circulation patterns and mixing process of river water and seawater. Within this process,
only a 2% difference in density between river water and sea water results in a horizontal pressure
gradient, which affects water flow. This difference is mainly attributed fluctuations in temperature and
water salinity; the role of the latter is significantly stronger [2]. The physical process of the flow
mechanism appears to be complex and is rather difficult to explain. Moreover, this phenomenon drives
additional processes in the water body such as sedimentology, biology, and chemistry [3].
Thus, traditional models fail to accurately estimate the flow and water quality of tidal streams.
The flow field must be estimated through a hydraulic model before determining water quality.
Therefore, a considerable amount of river data including sectional features, flow, level, and quality is
necessary to calibrate the numerous model parameters and requires substantial time, labor,
and capital [4—6].

The application of geostatistical methods or those combined with other models to water quality
monitoring and estimation has been discussed extensively during the past two decades.
Lo et al. (1999) [7] applied a steady-state quality model to simulate the biochemical oxygen
demand (BOD) and kriging theory for selecting optimal sampling locations and frequency.
Their results indicated a total number of monitoring stations in the Keelung River of 21 and a sampling
frequency of approximately 2—3 times per month. Mohammad et al. [8] also applied genetic algorithm-
, kriging- and analytical hierarchy process-based methods to evaluate suitable sampling locations and
frequency in Iran. Yang et al. [9] proposed a spatial regression method in conjunction with the kriging
approach to estimate the nitrogen concentrations of nonpoint source pollution (NOP) in some
Iowa (USA) streams. Polus ef al. [10] demonstrated that geostatistical methods reduce uncertainties in
a physically based models (DPBMs) distributed along the Seine River in France. Liu ef al. [11] used
hierarchical clustering analysis, principal component, and factor analysis with geostatistics to assess
the water quality of an alpine lake in Taiwan. Moreover, other researches focused on spatial modeling of
the scaling issue. Militino et al. [12] proposed a linear mixed incorporating both spatial as well as
longitudinal information for detecting excessive nitrate. Garreta et al. [13] proposed various relevant
methods based on geostatistics for application to prediction and error maps of Meuse and
Moselle basins in France.

Tidal stream water quality is difficult to simulate with the water quality model because of the many
effects of run-off convergence from rainfall upstream and tide recession downstream; thus, a



Int. J. Environ. Res. Public Health 2012, 9 3087

geostatistical method was used in this study. Four variables of water quality were obtained
simultaneously from sampling stations along the tidal streams. The water quality for each station was
then estimated by kriging analysis to evaluate the pollution of tidal streams. In particular, our proposed
algorithm is based on 1D kriging and provides a simple and efficient solution for the complexities of
boundary conditions encountered in traditional 2D hydrological models.

2. Theory and Methods

The geostatistical method adopted in this study for estimating RPI is based on the sampling data
obtained from the Tanshui River. The use of an RPI is characterized by the fact that, although the
spatial distribution of drainage area is 2D, pollution in the mainstream generally remains in a
ID variable flow transmitted from upstream to downstream. Thus, spatial estimation based on a
2D random variable domain is impossible. In this study, RPI calculations were performed at various
separate sampling points in the mainstream of the Tahan River upstream from the converging point
between the Hsintien and Keelung rivers to establish the testing semivariogram by geostatistics on an
hourly basis. On the basis of the optimal theoretical semivariogram model, the RPI values were then
estimated hourly for other areas without measuring points along the three rivers. Since the
Tanshui River is a tidal stream, pollutants are likely transmitted back upstream at high tide.
The overlapping estimates of RPI per river kilometer among the three rivers were averaged; data from
the separate stations were estimated directly without overlapping.

2.1. Kriging Analysis

Geostatistics, a scientific method that analyzes spatial structures, is based on parameters of natural
phenomena in the structural characteristics of spatial distribution. In this method, regionalized
variables are established in various locations, the estimation of which is based on variograms.
Various research fields that apply the theory of regionalized variables include meteorology, soil
physics, groundwater, mining and metallurgy, environmental monitoring, and hydrology [14-18].

Matheron [19,20] pioneered kriging analysis, referring to the function as Krige. The spatial
variation of rainfall was interpolated by using an ordinary kriging method. While not designed to
optimize the appearances of interpolation, kriging is characterized by its statistical capability to
increase estimation accuracy at grid points. Kriging is the decomposition of the variable Z(x) into the sum:

Z(x) = m(x) +e(x), (1)

where m(x) represents the mean and e(x) represents the zero-mean function specific for a given
position x. Notably, mean m(x) is an unknown constant that leads to ordinary kriging, which follows
the best linear unbiased estimator. The kriging estimator of derived as if all n observed data used is of
the linear model as the form:

Zg = Z&'Zﬁa 2)

where Z; represents observed data and A; represents a weight placed on Z;. Using the unbiased
estimator,
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E(Z))=E(z,) 3)
To satisfy the optimal condition, /; is selected to minimize the error Zy — Z;:
. * 2 *
min{E|z, - 2, |=var(z, - 2, 4)
Equation (4) can be solved by the method of Lagrange multipliers, subsequently yielding:
Z;i’jj/y'+ﬂ:7/0i i=12,-,n (5)
j=1
1 >
=l )=l -2 o
D Ay =1 (7)
i=1

where y;; represents the covariance of i and j; [x; — x;| represents the distance between x; and x;; #1s the
mean value.

The kriging variance (o), which provides a measure of the error associated with the kriging
estimator, is obtained by premultiplying the first » equation of (5) by 4

Oy = p+ Z ﬂ“ﬂ/(xo X ) (8)
i=1
Based on the hypothesis of second-order stationarity, the development of kriging assumes that the
mean and variogram are known. Therefore:

m(h) = E[Z(x)=Z(x+ )] ©)
2y(h)=Var[Z(x)—Z(x + h)]. (10)

Variance of the increments has a finite value 2y(%), depending on length 4 within the domain.
The variogram indicates the extent of which the dissimilarity between Z(x) and Z(x + &) evolves with
distance 4. The graph of y(/) against 4 reveals that the semivariogram increases with 4, as shown
in Figure 1. However, the semivariogram is bounded by a finite value known as sill. Notably, Z(x) and
Z(x + h) are uncorrelated with each other when # is larger than sill. A nugget effect may occur when
significant variance occurs in a very short distance 4. Additionally, the semivariogram and covariance
function shown in Figure 2 are related. The value of y(4) approaches C(0) when distance / increases to
infinity. Several models, including spherical, exponential, Gaussian, and power-law models, are used
to correlate with the relation of y(/#) and 4 to determine the sill and range (Figure 3). The power model
is expressed as:

y(h)=C,+ Ch” (r<2) (11)

the spherical model:
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] s
yh)=w (h>a)

the exponential model:

y(h)=C,+ C{l - eXp(__hH with influence range 3 ; (13)

a

and the Gaussian model:

y(n)=c, +C{1—exp(—(2jzﬂ (14)

The exponential mode is a conventionally used covariance function for modeling discontinuity at
the origin of the variogram. In addition to the four basic theoretical models described above, a nested
structure consisting of these models can be used to correlate with the realistic variance of a random
field. Additional details of the kriging theory were reported by Journel and Huijbregts [21].

Figure 1. A diagram of the theoretical semivariogram.
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Figure 2. A diagram of the semivariogram r(h) and covariance function C(h).
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Figure 3. The theoretical semivariogram.
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2.2. River Pollution Index

The conventionally adopted classification system in Taiwan for monitoring water quality is an
RPI [22] that includes four variables: dissolved oxygen (DO), biochemical oxygen demand (BODs),
suspended solids (SS), and ammonia nitrogen (NH3-N). DO is an important index for the quality of
water bodies and includes dissolutions from the atmosphere, natural and artificial aeration, and
photosynthesis from water plants. In water contaminated by organic matter, DO is consumed by
aquatic microorganisms during decomposition; hypoxia occurs when DO in the water is diminished.
BODs indicates the content of organic matter that can be decomposed by aquatic microorganisms,
indirectly representing the degrees of contamination by organic matter in water bodies. Organic matter
containing nitrogen is derived mainly from the decomposition of animal waste, animal corpses, and
plant remains. During the decomposition process, amino acids are released first, followed by the
sequential release of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen until stabilization.
Therefore, the presence of ammonia indicates the short-term contamination of the water body.
SS refer to organic or inorganic particles suspended in water by stirring or flowing, including colloids.
SS impair light penetration in the water, and their effects on aquatic organisms are similar to those of
turbidity. SS deposited on riverbanks block water flow, while solids deposited in reservoir areas
diminish reservoir capacity.

Each variable of water quality used to determine RPI is converted to one of four index scores
(S;=1, 3, 6, or 10). Notably, RPI refers to the arithmetic average of these index scores with respect to
the water quality:

1 4
RPI = 4—; S, (15)

where S; represents the index scores based on Table 1 and the RPI value ranges from 1 to 10.
According to the river pollution index listed in Table 1, the four classifications of pollution are
unpolluted, negligibly polluted, moderately polluted, and severely polluted.
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Table 1. Definition of river pollution index (RPI).

Ranks

Items Negligibly  Moderately Severely

Unpolluted polluted polluted polluted
DO (mg/L) Above 6.5 4.6-6.5 2.0-4.5 Under 2.0
BOD; (mg/L) Under 3.0 3.0-4.9 5.0-15 Above 15
SS (mg/L) Under 20 2049 50-100 Above 100
NH;-N (mg/L) Under 0.5 0.5-0.99 1.0-3.0 Above 3.0
Index Scores (S;) 1 3 6 10
RPI Under 2 2.0-3.0 3.1-6.0 Above 6.0

3. Study Site Descriptions

A length of 159 km and drainage area of 2,726 km” makes the Tanshui River the third largest river
in Taiwan. The Tahan, Hsintien, and Keelung rivers constitute the three main tributaries converging
around Taipei from south to north. The Tahan River originates from Pintian Mountain at 3,529 m
above sea level and flows through Hsinchu, Taoyuan and Taipei via the Shihmen Reservoir with a
drainage area of 1,200 km®. The Tanshui River begins at Jiangzicui and converges with the Tahan and
Hsintien rivers; its mainstream converges with the Keelung River at Guandu, flowing through Danshui
into the Taiwan Strait. The drainage area of the Hsintien River is approximately 900 km?, and its
upstream consists of the Beishih and Nanshih rivers. Two springs of the Beishih River originate near
Kanchenkang at an elevation of approximately 620 m; the other begins near Ping Qi at an elevation of
approximately 700 m. Two sources converge at the crossing and disembogue into Feitsui Reservoir.
Nanshih River originates at the northern Chilan Mountain and flows northbound at an elevation of
approximately 2,130 m.

The Beishih and Nanshih rivers converge near Hsintien, then discharge into the Tanshui River
at Jiangzicui. The Keelung River originates at Jingtong Mountain with gorges above Badu and
flows downward into a plain to converge with the Tanshui River at Guandu, which has a drainage area
of 600 km’.

This study analyzed water quality data from nine sampling stations along the drainage area of the
Tanshui River at the Shain and Shinhai bridges along Tahan River; the Zonan and Chung Cheng
bridges along the Hsintien River; the Jansho, Nanhu, and Banlin bridges along the Keelung River; and
the Taipei and Guandu bridges along the Tanshui River (Figure 4). The data included DO, BODs,
NH;-N, and SS values of water quality obtained from the sampling stations during 13 h from 5 a.m. to
5 p.m. on 29 September 2010. Each data point was converted to the corresponding score index;
indicator integral values were later calculated by consolidating the data of the four categories.
The results represent the RPI for each sampling point.
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Figure 4. Map of study area.
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4. Results and Discussion

4.1. One-Dimensional Design along the Tanshui River

3092

1D ordinary kriging analysis was performed along the river to estimate RPIs of the Tanshui River

during a 13 h period. First, this study divided the drainage area of the Tanshui River into three

sections. The first section included four sampling stations along the Keelung and Tanshui rivers: the

Jansho, Nanhu, Banlin and Guandu bridges from upstream to downstream. The second section

included four sampling stations along the Hsintien and Tanshui rivers: the Zonan, Chung Cheng,

Taipei, and Guandu bridges from upstream to downstream. The third section included four sampling

stations along the Tahan and Tanshui rivers: the Shain, Shinhai, Taipei, and Guandu bridges from

upstream to downstream. The 1D distance between two sampling stations equaled the distance from an

estuary along the river direction. Figure 5 describes the spatial relative positions and distance of the

rivers in the Tanshui River drainage area. The results of the four water quality designations including

DO, BODs, SS, and NHs-N are listed in Table 2.
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Figure 5. Distances in river kilometers of sampling stations in the catchment of the

Tanshui River.
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4.2. Spatial Variability Analysis

The 1 D ordinary kriging analysis was performed along the river to estimate RPI. The hourly testing
semivariogram for the three rivers in the Tanshui River drainage area were calculated, and the data of
the testing semivariograms were mixed. The results obtained were then applied to the
theoretical semivariogram models, including power, sphere, index, and Gaussian models. Finally, RPIs
of the Tanshui River were estimated by wusing the theoretical semivariogram model.
Individual semivariograms were established for three estuaries.
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Table 2. Results of water quality sampled from nine sites and their computed RPI values.

Water

quality DO (mg/L) BODs (mg/L) NH3-N (mg/L) SS (mg/L) RPI

Station mean + std Min. Max. mean+std Min. Max. mean+std Min. Max. | mean = std Min. Max. mean<+std Min. Max.

Shai

Brfzze 445084 28 61 221£033 17 26 002001 001 004 : 1376391 101 231 198£043 150 275

Shinhai

Bridge 1.22+0.77 0.1 2.8 8.45+2.77 4.3 127  5.72+£094 4.37 740 : 32.08+6.55 232 442  7.04+0.54 550 7.25

Zonan

Bridge 3.39+0.43 2.7 4.0 1.89 £0.58 1.3 2.8 0.53+0.37 0.13 1.25 - 17.39+5.00 7.0 245  271+£042 225 3.50

Chung :

Cheng 4.07 £0.75 2.9 5.1 2.48 +£0.61 1.5 3.7 1.58+£0.44 0.82 2.41 23.88+10.32 139 540 : 3.67+£0.59 275 4.0

Bridge 5

Jansho

Brid 3.99 +0.46 3.1 4.8 1.20+0.15 1.0 1.4  0.01+£001 0.01 0.03 : 13.95+948 34 289  238+£026 2.00 275
ridge :

Nanhu

Brid 3.32+0.57 2.4 4.2 3.11 £0.81 1.8 45 0.70+0.22 037 0.96 : 3894+26.07 158 958 : 3.52+0.81 225 450
ridge :

Banlin

Brid 1.76 £ 0.22 1.4 2.1 2.98 +£0.59 2.2 4.1 1.98+0.14 1.64 2.16 : 13.45+2.88 10.5 189  450+046 3.50 5.00
ridge :

Taipei

Bridge 1.78 £ 0.38 1.4 2.6 2.98 +0.96 1.6 44 373+£0.71 2.55 533 :3051+1475 142 615  588+1.12 350 7.25

Guandu

2.27+0.34 1.5 2.7 196 £1.49 0.01 6.1 [ 1.66+044 053 221 2081+£6.09 125 332 | 396=+£0.67 2.75 525

Bridge
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The RPI obtained at 5 a.m. on 29 September 2010, from the Tanshui River was chosen as the
standard value. In this study, subsequent testing semivariograms were applied to the theoretical
semivariogram models. Table 3 and Figure 6 summarize the results applied to the Tanshui River.
These error sums of squares results are expressed as RSS; a smaller value implies a smaller error.
This study demonstrated that the highest error sum of squares occurred in the power model, while the
applied results from the other models were similar. Additionally, the correlation coefficient of the
regression model is expressed as R%; a higher coefficient implies better applied results. According to
Table 3, the coefficients of determination from the sphere, index, and Gaussian models were higher
than those of the power model. An inflection phenomenon occurred in the Gaussian model at the
short-distance area, while the sphere model was limited to certain distances. Therefore, in this study,
the index model was selected to calculate the RPIs for those rivers. Table 4 summarizes the applied
results of the index model for the 13 h of study along the Tanshui River.

Table 3. Parameters of the four fitted theoretical semivariograms.

Parameter Power Exponential Gaussian  Spherical
Co —0.005 —135.409 0.001 —0.006
c 2.318 136.996 2.312 2.320

a 0.417 0.002 1.000 0.480
Least Error Sum of Squares (RSS) 3.968 4.558 3.968 3.968
Coefficient of Determination (R?) 0.5289 0.4589 0.5289 0.5289

Figure 6. Fitted diagram of experimental and theoretical semivariograms of data obtained
at 5 a.m. on 29 September 2010.
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Table 4. Fitted parameters of exponential model.

Time 29 September 2010 Co C a RSS R?
5am. —0.005 2.528 0.420 9.949 0.3476
6 a.m. —0.003 2.300 0.528 6.114 0.4181
7 a.m. —0.006 2.773 0.424 16.512 0.2787
8 a.m. —0.005 2.318 0.417 3.968 0.5289
9 a.m. —0.007 3.549 0.437 11.234 0.4818
10 a.m. —0.002 2215 0.617 6.567 0.3829
11 a.m. —0.004 3.355 0.631 18.835 0.3317

noon —0.002 2.003 0.607 5.725 0.3678
1 p.m. —0.015 3.201 5.662 6.497 0.5555
2 p.m. —0.002 2.073 0.623 11.562 0.2174
3 p.m. —0.002 1.906 0.692 4.571 0.3727
4 p.m. —0.002 1.609 0.605 4.969 0.3020
5 p.m. —0.002 2.221 0.609 9.146 0.3095

4.3. Estimation of RPI

This study used 1D ordinary kriging analysis to examine the RPI of the Tanshui River. During the
study, four values of water quality obtained from the sampling stations were assigned to the
corresponding points; the RPIs at various time intervals were calculated for each sampling station.
Finally, 1D ordinary kriging analysis was performed again to estimate the RPIs along the
Tanshui River. As shown in Figure 5, RPIs were individually estimated for three estuaries from Herko
to upstream points. Hence, the computation for RPIs of the main estuary of the Tanshui River can be
divided into three sections. The first section, from its origin to its convergence with the Hsintien River,
included the same RPI as that estimated for the Tanshui River itself. In the second section, between the
connections with the Hsintien and the Keelung rivers, the RPI was the average of that estimated for the
Tanshui and Hsintien rivers. In the third section, between the convergence with the Keelung River and
Herko, the RPI was equal to the average of all three RPI estimates.

Based on Table 1, water quality is classified as unpolluted for the integral of RPI under 2.0;
negligibly polluted refers to the integral of RPI between 2.0 and 3.0; moderately polluted indicates
water quality above 3.0 but under 6.0. For the integral of RPI above 6.0, water quality is classified as
severely polluted. In this study, the RPIs are assigned gradient colors to indicate the levels of river
pollution. The estimated RPI from data obtained at 3 p.m. on 29 September 2010, served as the
standard value, as shown in Figure 7a. According to the figure, the Tahan River showed the highest
pollution level, followed by the Hsintien River; the Keelung River was the least polluted. The water
quality of the Tahan River was classified as moderately polluted; the RPI value of the section near the
Hsintien River reached 6.83 and was classified as severely polluted. The water quality of the Hsintien
River was also classified as moderately polluted; however, the RPI values ranged from 4 to 5, which
were lower than that of the Tahan River. Finally, the water quality of Keelung Creek was also
classified as moderately polluted; however, the RPI values were largely under 4.3, indicating a lower
pollution level than that of the Hsintien River. Moreover, the Tanshui River is a tidal stream, thus
allowing the hourly fluctuations during the daytime to be understood through analysis of various RPIs
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of the river sections. In addition, the inverse distance weighting IDW method was applied for spatial
interpolation of RPIs along the Tanshui River, as illustrated in Figure 7b. A comparison of Figure 7a
and 7b reveals that if RPI values of adjacent two sampling stations are the same, the RPIs between
those two stations remain the same value. However, the RPIs determined through kriging are estimated
through the semivariogram versus distance, which appears a non-linear relationship in Figure 6.
In such a case, the RPIs differ. Moreover, the RPI value estimated by IDW was smaller than that by
kriging between Herko and the Guandu Bridge because the RPI at Herko was assumed to be zero.
In particular, IDW estimation indicates that the adjacent upstream and downstream river sections are
all severely polluted at approximately 23 river kilometers, near the Shinhai Bridge. Figure 8 shows the
temporal fluctuations in estimated RPI at the distance. The highest RPI value was apparent at 1 p.m.

Figure 7. Spatial distribution of RPIs in the Tanshui River estimated by the (a) kriging and
(b) IDW method. Data was obtained at 3 p.m. on 29 September 2010.

Mgshou Bridge

£ Chimiganbain B}idge

Legend
TanshuiRiver

| unpolluted

negligibly polluted

\:| moderately polluted
iy .
8.000 4,000 0 8.000 Meters - severely polluted

(@)



Int. J. Environ. Res. Public Health 2012, 9

Figure 7. Cont.
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5. Conclusions

The water quality of tidal streams was calculated by using conventionally adopted hydrological and
water quality models, which are time-consuming and costly. In this study, the pollutant transfer from
the upstream to downstream was first estimated by a 1D concept and later used to determine the value
of pollutants in a 2D space. The spatial distribution of RPIs of the Tanshui River and its branches was
simulated successfully by combining the 1D ordinary kriging method with water quality data collected
in the field. This approach is simpler than simulation through conventional 2D variable hydrological
models. Moreover, this approach solves the problem of determining complex initial conditions
necessary for boundary building in models; instead, only the sampled data are used to represent the
average water quality of the studied river section. In this method water quality along a tidal stream can
be obtained efficiently. This study also analyzed the spatial distribution of RPIs obtained from various
sections at given times in addition to the time distribution for each sampling station. The water quality
estimation model in this study was constructed on the basis of the water quality of the tidal stream
from the Tanshui River, subsequently allowing for determination of the water quality of various river
sections. The results of this study demonstrate the feasibility of using the geostatistics method to
estimate the complex water quality of tidal streams.
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