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Abstract: Understanding the effects of intensive agricultural land use activities on water 

resources is essential for natural resource management and environmental improvement.  

In this paper, multi-scale nested watersheds were delineated and the relationships between 

two representative water quality indexes and agricultural land use intensity were assessed 

and quantified for the year 2000 using multi-scale regression analysis. The results show 

that the log-transformed nitrate-nitrogen (NO3-N) index exhibited a relationship with 

chemical fertilizer input intensity and several natural factors, including soil loss, rainfall 

and sunlight at the first order watershed scale, while permanganate index (CODMn) had a 

positive relationship with another two input intensities of pesticides and agricultural plastic 

mulch and organic manure at the fifth order watershed scale. The first order watershed and 

the fifth order watershed were considered as the watershed adaptive response units for 

NO3-N and CODMn, respectively. The adjustment of agricultural input and its intensity may 

be carried out inside the individual watershed adaptive response unit. The multiple linear 

regression model demonstrated the cause-and-effect relationship between agricultural land 

use intensity and stream water quality at multiple scales, which is an important factor for 

the maintenance of stream water quality. 
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1. Introduction 

Land use intensity is one of the most significant forms of land cover modification, and can have a 

major detrimental impact on terrestrial and aquatic ecosystems [1,2], and also directly influence human 

and ecosystem health. Many developed countries are experiencing environmental pollution due to 

intensive agricultural activities, including intensive crop and livestock production [3]. This is also the 

true for the fast developing countries, such as China. From a land use perspective, intensive 

agricultural activities have been identified as the major sources of non-point source pollutants and are 

known to alter and impact the quality of the receiving water bodies. As an environmental factors that 

relate directly to human health, water quality is always subject to degradation when agricultural land 

use intensity is too high [4]. Thus, understanding the effects of intensive agricultural land use activities 

on water resources is essential for natural resource management and environmental improvement. 

However, these effects on water quality conditions are difficult to determine because of the complex 

relationships between agricultural land use activities and water quality. 

In previous studies water quality was generally linked to land use inside the catchments area. 

Several studies have found that land use has a strong influence on the receiving water body quality [5–7]. 

The majority of studies about the effects of land use on water quality have focused on either 

deterministic modeling, or spatial, or statistical analyses. Examples of modeling studies include those 

performed by Tong and Chen [5], Chaplot et al. [8], Cao et al. [9], Bhattarai et al. [10], etc. which 

have adopted the existing watershed-scale hydrological variables and nonpoint-source pollution 

models to evaluate or predict how land use/land cover scenarios affect water quality. Since modeling 

methods need long-term water quality monitoring data and regional parameters are difficult to obtain, 

current modeling methods are still developmental and confined to mechanism studies in local 

watersheds. Consequently, there are more studies that have adopted statistical methods such as 

correlation analysis [11,12], single linear regression analysis [13,14], multiple linear regression 

analysis [15–17], nonparametric statistical analysis techniques [18], etc. to examine the relationships 

between watershed land use/land cover and water quality. 

Since no statistical significant relationships between land uses and nitrate level were found when using 

the whole basins, contributing areas inside buffer zones were developed by Basnyat et al [19]. There have 

been more subsequent studies taking buffer zones as analysis units to explore water quality characteristics 

and their relationships [20–22]. The definition of contributing zone may open additional ways of 

visualizing the problem. The previous studies have demonstrated that the contributing zone is influenced 

by many factors, including the water-quality parameter being assessed and geomorphic/climatic setting 

of the watershed [19]. To some extent, buffer zones with multi-scale characteristics, created using the 

distance from the stream, are not true hydrological units, and they are difficult to delineate and explain 

the hydrological and ecological condition of the stream validly. To overcome this, our study defines 

the multi-scale nested watersheds based on the basic watershed units created by a digital elevation 

model for the purpose of more effective watershed management, and multi-scale analysis is adopted to 
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explore the relationships between agricultural land use intensity and water quality, and further to 

identify watershed adaptive response units for every water quality parameter. 

Beijing’s mountainous watersheds, providing 69.9% of its surface water resources, have played 

increasingly important roles in drinking water supply and headwater conservation considering the 

population increase and urban sprawl of Beijing. Moreover, land use changes in the Beijing 

mountainous areas have brought about many land related problems, such as water pollution, soil 

contamination and air pollution [23]. We had adopted emergy analysis with principal component 

analysis, regression analysis and cluster classification to investigate the characteristics and patterns of 

agricultural land use intensity of study areas in 2000, as the baseline of ecological monitoring and 

assessment [24]. However, the effects of the agricultural land use intensity on surface water quality 

have not been discussed. Therefore, the objective of this study, taking the Beijing mountainous area  

as a case, was to investigate the impacts of agricultural land use intensity on selected physical 

properties of surface water quality using multi-scale analysis for building a baseline database 

applicable to long-term monitoring. 

2. Materials and Methods 

2.1. Study Areas 

Beijing’s mountainous areas, with an area of 1.04 × 10
6
 ha, are located to the west, north and 

northeast of Beijing. The study areas comprise a total of five rivers, including the Yongding River, 

Chaobai River, Beiyun River, Jiyun River and Daqing River (Figure 1). Mean annual precipitation in 

the area is about 566 mm, about 60% of which falls in July and August. The annual average 

evaporation is about 1,761 mm. Annual average runoff was about 1.8 × 10
9
 m

3
, but this had decreased to 

1.3 × 10
9
 m

3
 by the end of the last century as a result of climate and land use/land cover changes. 

Figure 1. Study area and monitoring sites. 
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With the population increase and urban sprawl of Beijing, mountain agriculture has played 

increasingly important roles in areas such as services, the economy, ecological security and tourism. 

Figure 2 shows that the gross value of agricultural output in the study area increased quickly with the 

pressure for arable land resources in plain areas that have become non-agricultural land owing to city 

sprawl, particularly in the high development periods of the mid 1990s. The past studies suggested that 

the increase in agricultural output mainly depended on the input of a large amount of non-renewable 

resources, especially agricultural chemical fertilizers, pesticides and plastic film, according to the 

correlation analyses of agricultural inputs and outputs in 2000 [24]. The main non-renewable 

agricultural inputs have still increased in recent decade years, which has led to greatly increased 

environmental damage such as water pollution, soil contamination and air pollution caused by 

agriculture, especially high intensity industrialized agriculture. 

Figure 2. Gross agricultural output for the Beijing mountainous areas. 

  

2.2. Surface Water Quality Data  

There are 27 monitoring sites in the study area. The monitoring Sites 1–8, 9–13, 14–17, 18–25 and 

26–27 correspond to the Chaobai River, Juyun River, Beiyun River, Yongding River and Daqing River 

watersheds, respectively (Figure 1). The streams on which they are respectively located are listed in 

Table 1. Water samples were taken at these stations monthly from May to October 2000. Of these, 

June, July, August and November in 2000 were the rainy reason, and the rest was the dry season.  

A total of 162 samples were collected at the 27 sites of the Beijing mountainous areas. Water samples 

were analyzed in the laboratory for eight water quality characteristics, including nitrate-nitrogen (NO3-N), 

permanganate index (CODMn), biochemical oxygen demand for five days (BOD5), total nitrogen (TN), 

total phosphorus (TP), total mercury (Hg), total cadmium (Cd) and total lead (Pb). Then the monthly 

average values of water quality characteristics for each site were derived, which were used for our 

statistical assessment. 
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Table 1. The streams and watersheds of the 27 monitoring sites. 

Watersheds Stream Site 

Chaobai River 

Bai River 1–3 

Chao River 4 

Yanqi River 5 

Huaisha River 6 

Huaijiu River 7 

Huai River 8 

Jiyun River 

Cuo River 9 

Zhenluoying Rock River 10 

Huangsongyu Rock River 11 

Jiangjunguan Rock River 12 

Ju River 13 

Beiyun River 

Deshengkou Ditch 14 

Zhuishikou Ditch 15 

Dongsha River 16 

Qintun River 17 

Yongding River 
Qingshui River 18–20 

Yongding River 21–25 

Daqing River 
Dashi River 26 

Juma River 27 

The surface water quality characteristics NO3-N and CODMn have been considered as two of the 

four water pollutant load control indexes in China. Furthermore, the relationship between water quality 

characteristics was tested at the significance levels of p < 0.01 and 0.05, which showed that NO3-N had 

a high positive correlation with TN, TP, Hg, Cd and Pb, and CODMn had a positive correlation with 

Hg, Cd and Pb (Table 2). 

Therefore, we focused on the two conventional water quality characteristics NO3-N and CODMn, 

which not only can reduce the complexity of the study, but also is of great significance for water 

resources management. 

Table 2. Bivariate correlation coefficients of water quality variables. 

 NO3-N CODMn BOD5 Hg Cd Pb TN TP 

NO3-N 1        

CODMn 0.607 b 1       

BOD5 0.655 –0.034 1      

Hg 0.809 b 0.857 b –0.611 1     

Cd 0.917 b 0.640 b –0.742 0.904 b 1    

Pb 0.917 b 0.640 b –0.742 0.904 b 1.000 b 1   

TN 0.996 a –0.829 0.587 0.282 0.107 0.107 1  

TP 0.999 a –0.805 0.621 0.242 0.065 0.065 0.999 a 1 
a 
Significant at the 0.01 level. b

 
Significant at the 0.05 level. 
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2.3. Multi-Scale Watershed Delineation 

2.3.1. Basic Watershed Units 

A watershed is the up-slope area contributing flow to a given location. Such a feature is also 

variously referred to as a catchment or basin, and comprises a part of a hierarchy in that any given 

watershed is generally part of a larger watershed [19]. A digital elevation model (DEM) with 30 m × 30 m 

grid resolution was adopted to create basic watershed units for the Beijing mountainous area using the 

hydrologic functions in the ArcView extensions. The minimum number of cells for a stream network 

in the hydrologic functions is very important for the watershed delineation. Many studies have shown 

that when the minimum number of cells was smaller, the extracted stream networks were denser, and 

the created basin areas were smaller. The stream network extracted by hydrologic functions should be 

similar to that existing in Nature, and each of the monitoring sites should be located at the pour point 

of different basic watershed units for the purpose of this study. Therefore, the thresholds of 15,000, 

12,000, 10,000, 8,000 and 5,000 were chosen as the minimum number of cells for a stream network 

during the test of basic watershed unit creation. The results indicated that a few monitoring sites were 

located in the same basic watershed unit when the thresholds was bigger than 10,000, and the stream 

networks extracted were far denser than natural stream network when the threshold was less than 

10,000. Ultimately, the thresholds of 10,000, i.e., 900 ha, which is far smaller than the average area of the 

Beijing mountain towns (9,285 ha), was determined as the minimum number of cells for a stream 

network to delineate basic watershed units (Figure 3). 

Figure 3. Basic watershed units delineated in the study area. 
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2.3.2. Delineating Multi-Scale Watersheds as Watershed Analysis Units 

Multi-scale watersheds corresponding to the 27 monitoring sites were identified as watershed 

analysis units for further analysis according to the flow direction and rivers, respectively. Since some 

monitoring sites are located on the same streams, such as Sites 1–3 (Bai River), Sites 18–20 (Qingshui 

River) and Sites 21–25 (Yongding River), perhaps they are statistically highly correlated and, to some 

extent, all the upstream points contribute to the measurements of any monitoring point. This is 

statistically undesirable and would produce strongly biased results. To solve this problem, the 

independence of these sites’ data should be tested. A serial autocorrelation test was adopted to analyze 

the possible correlation between neighboring sites. The test results showed that these upstream 

monitoring sites had little contribution to their nearest downstream sites for NO3-N and CODMn water 

quality data in 2000. Therefore, the monitoring samples can be considered independent for further 

statistical analysis, and the watersheds contributing flow to these sites cannot be included in the their 

nearest downstream sites’ watersheds when delineating the watershed analysis units. 

Figure 4. The whole watersheds for the 27 monitoring sites. 

 

Firstly, the basic watershed units contributing flow to every monitoring site were delineated as the 

whole watershed of every monitoring site, which did not have a nest relation according to the result of 

serial autocorrelation test mentioned above (Figure 4). Table 3 shows the number of towns covered by 

the whole watershed for every monitoring site. Subsequently, multi-scale watersheds were determined 
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in the whole watershed area of every monitoring site. The basic watershed units directly contributing 

flow to every monitoring site were considered as the first order watershed (Zone 1). The Zone 1 and 

the basic watershed units directly contributing flow to the Zone 1 were together defined as second 

order watershed (Zone 2). By analogy, the next order watersheds were derived and named in order 

third order watershed (Zone 3), fourth order watershed (Zone 4) and fifth order watershed (Zone 5), etc. 

Figure 5 illustrates the process of delineating multi-scale watersheds for Site 1. Table 3 also lists the 

number of scales for every monitoring site. 

Figure 5. Illustration of how the multi-scale watersheds were defined: (a) The whole 

watershed for Site 1. (b) Definition of the Zone 1. (c) Definition of the Zone 2.  

(d) Definition of the Zone 3. (e) Definition of the Zone 4. (f) Definition of the Zone 5. 

 

Table 3. The number of scales and towns be covered for 27 monitoring sites. 

Site Towns  Scale Site Towns Scale 

1 6 >10 14 3 1 

2 7 >10 15 2 3 

3 2 2 16 4 4 

4 6 7 17 1 2 

5 4 3 18 1 7 

6 2 1 19 2 3 

7 5 10 20 2 8 

8 3 1 21 2 4 

9 4 5 22 2 2 

10 2 1 23 4 6 

11 4 1 24 4 3 

12 3 1 25 2 2 

13 2 1 26 8 >10 

   27 1 1 
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2.4. Agricultural Land Use Intensity for Watershed 

With more attention being paid to land use and land cover change, an approach to assess 

agricultural land use intensity including agricultural input and output intensity on a general basis has 

been developed in our previous work [24]. The measurement and assessment of agricultural land use 

intensity was preformed at municipal/town level because the agricultural inputs and outputs 

information derived from census data are aggregated and officially reported at this level, and this level 

also is the smallest administrative unit as planning and management purpose in China. Four indices of 

agricultural input intensity and six of output intensity have been derived with principal component 

analysis at this level for the Beijing mountainous areas using the amount of emergy of each 

agricultural input and output derived from agricultural census data [24]. Their eigenvectors are given 

in Tables 4 and 5. The several indices reflecting agricultural input and output intensity were 

dimensionless, and the meanings of these indices according to their eigenvectors are shown in Table 6. 

The higher the index value, the greater the agricultural input or output intensity. 

Table 4. Eigenvectors of the input intensity [24]. 

Components IPC1 IPC2 IPC3 IPC4 

Sunlight 0.990 −0.075 −0.083 0.018 

Rain, chemical energy 0.983 −0.056 −0.086 0.070 

Rain, geopotencial energy 0.932 −0.163 −0.159 −0.096 

Earth cycle 0.991 −0.071 −0.086 0.028 

Wind, kinetic energy 0.991 −0.071 −0.086 0.028 

Soil loss 0.991 −0.071 −0.086 0.028 

Agricultural electricity −0.252 0.364 0.527 0.156 

Nitrogen fertilizer −0.102 0.792 0.165 0.448 

Phosphorus fertilizer −0.062 0.852 0.011 0.305 

Potash fertilizer −0.103 0.890 0.113 0.139 

Compound fertilizer −0.119 0.809 0.270 0.184 

Pesticides 0.005 0.109 0.787 −0.103 

Agricultural plastic mulch −0.165 −0.024 0.673 0.180 

Machinery power 0.003 0.619 0.348 −0.085 

Human labor 0.140 0.344 0.620 0.494 

Livestock labor 0.135 0.020 −0.034 0.875 

Organic manure −0.088 0.471 0.268 0.648 

Seed −0.090 0.761 0.234 0.425 

Table 5. Eigenvectors of the output intensity [24]. 

Components OPC1 OPC2 OPC3 OPC4 OPC5 OPC6 

Grain crops  0.569 0.423 0.258 0.186 0.055 0.045 

Oil crops −0.021 −0.003 −0.050 0.911 0.056 0.046 

Vegetables  0.761 0.136 −0.105 −0.156 −0.028 −0.092 

Fruits −0.077 −0.088 0.867 −0.131 0.088 0.064 

Pork 0.682 0.228 0.226 0.325 0.187 −0.033 

Beef 0.240 0.792 −0.061 0.063 −0.139 0.096 

app:ds:measurement
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Table 5. Cont. 

Components OPC1 OPC2 OPC3 OPC4 OPC5 OPC6 

Mutton  −0.053 0.109 0.069 0.050 0.021 0.967 

Fowl  0.359 0.094 0.548 0.389 −0.175 −0.002 

Milks 0.097 0.855 −0.026 −0.071 0.146 0.008 

Eggs  0.815 0.111 −0.038 0.003 0.055 −0.124 

Forest logging  0.062 0.036 0.026 0.048 0.968 0.020 

Fish 0.781 −0.237 −0.077 −0.120 −0.101 0.225 

Table 6. The indices of agricultural input and output intensity. 

 
Indices at 

town level 
Meanings 

Indices at 

watershed level 

Agricultural  

input 

intensity 

IPC1 

Natural factors, 

including soil loss, rainfall and sunlight  
WI-IPC1 

IPC2 Chemical fertilizer, seed and mechanized power  WI-IPC2 

IPC3 
Pesticides, agricultural plastic mulch, human 

labor and agricultural electricity 
WI-IPC3 

IPC4 Organic manure WI-IPC4 

Agricultural  

output 

intensity 

OPC1 Eggs, vegetables, pork and grain crops WI-OPC1 

OPC2 Milks and beef WI-OPC2 

OPC3 Fruits and fowl WI-OPC3 

OPC4 Oil crops WI-OPC4 

OPC5 Forest cut WI-OPC5 

OPC6 Sheep WI-OPC6 

For watershed-scale analysis, the indices of agricultural input and output intensity should be 

translated from the municipal/town level to the watershed level. Because there is a spatial 

incompatibility between the watershed analysis unit and the municipal/town unit, the weighted values 

with the percentage of town’s agricultural land area in the watershed analysis unit were used as the 

weights to calculate the agricultural land use intensity indices for watershed analysis unit, which is as 

follows: 

jj

n

j

i TUIWTWUI 
1

%  (1) 

where WUIi are the agricultural input and output indices for the watershed analysis unit i, %WTj is the 

percentage of town j’s agricultural land area in a watershed analysis unit i. TUIj is the agricultural input 

and output indices for town j. Therefore, the indices for watershed analysis unit i were the weighted 

values with agricultural land area percentage used to reflect agricultural input and output intensity at 

every watershed scale. 

2.5. Agricultural Land Use Intensity and Water Quality Linkage  

The question of a relationship between agricultural land use intensity and water quality was 

examined at various scales by applying multiple regression techniques considering nutrient 
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concentrations as dependent variables and the agricultural land use intensity as explanatory variables. 

The functional form of the relationship for each of these scales is as follows: 

)( ii WUIfNPS   (2) 

where NPSi is nutrient concentration for monitoring site in question in watershed analysis unit i, WUIi 

is equal to the indices of agricultural input and output intensity for watershed analysis unit i. 

In previous studies, the concentration of nutrients over an area can be described in the form of an 

exponential model or a linear model considering the proportions of land use/land cover as explanatory 

variables. Delivery of non-point source pollutants from discrete upstream contributing zones to a 

particular downstream point is a multi-step, often episodic, process [25]. A first order rate equation can 

be used for modeling nutrient attenuation in flow through various land uses to the nearest stream [25]. 

Since agricultural land use intensity has been one of the most significant forms of land cover 

modification, the exponential model was chosen for this research to explore the relationship between 

agricultural land use intensity and water quality, and to recognize how agricultural land use intensity 

affects water quality at various watershed scales. Stepwise multiple regression analysis was performed 

using log transformed dependent variables to reduce the asymmetric distribution of the data. The 

numbers of scales for 27 monitoring sites were different, thus, the used monitoring sites and sample 

number at various scales were different in the multi-scale regression analyses (Table 7). Because the 

sample numbers were too small to make valuable regression analysis above the scale of Zone 5, the 

multi-scale regression analyses were carried out with SPSS 13.0 at the scales from Zone 1 to Zone 5. 

Based on this statistical analysis, watershed adaptive response units for each water quality variable can 

also be identified. 

Table 7. The monitoring sites at various scale level in the multi-scale analyses. 

Scale Sites Number 

Zone 1 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 

22, 23, 24, 25, 26, 27 
27 

Zone 2 1, 2, 3, 4, 5, 7, 9, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26 17 

Zone 3 1, 2, 4, 5, 7, 9, 15, 16, 19, 20, 21, 23, 24, 26 14 

Zone 4 1, 2, 4, 7, 9, 16, 20, 21, 23, 26 10 

Zone 5 1, 2, 4, 7, 9, 20, 23, 26 8 

Zone 6 1, 2, 4, 7, 20, 23, 26 7 

Zone 7 1, 2, 4, 7, 20, 26 6 

>Zone 7  <5 

3. Results 

3.1. Water Quality Assessment  

Table 8 shows the 2000 yearly mean concentration of NO3-N and CODMn. The concentration of 

NO3-N in the samples ranged from 0.46 to 12 mg/L, while CODMn ranged from 1 to 7.4 mg/L.  

Only the concentration of NO3-N for Site 12 exceeded to 10 mg/L, which is the Chinese surface 

drinking water standard limit. Different from NO3-N, there are five types of surface water 

environmental quality standard for CODMn. Since type IV and V cannot be acceptable for drinking 
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water, the type III recommended value of 6 mg/L is considered as the surface drinking water standard 

limit for CODMn. According to this standard limit of 6 mg/L, Site 12 was faced with organic 

contaminant and reducible inorganic substance drinking water pollution. Since Sites 10, 11, 17 and 22 

were close to the standard limit of 6 mg/L, especially Site 10, they also had a pollution risk caused by 

CODMn. 

Table 8. The concentration of NO3-N and CODMn in stream water of 27 monitoring sites. 

Monitoring 

site 

NO3-N CODMn 

NO3-N 

(mg/L) 

Standard 

limit 
Type 

CODMn 

(mg/L) 

Standard 

limit 
Type 

1 1.6 10 Not exceeding 2.4 4 II 

2 1.26 10 Not exceeding 2.2 4 II 

3 0.79 10 Not exceeding 2.3 4 II 

4 3.14 10 Not exceeding 2.1 4 II 

5 0.46 10 Not exceeding 3.2 4 II 

6 1.67 10 Not exceeding 1.9 2 I 

7 2.69 10 Not exceeding 1.5 2 I 

8 0.66 10 Not exceeding 2.5 4 II 

9 1.95 10 Not exceeding 1.5 2 I 

10 3.4 10 Not exceeding 6 6 III * 

11 2.57 10 Not exceeding 4.4 6 III * 

12 12 10 Exceeding * 7.4 10 IV ** 

13 1.09 10 Not exceeding 2.6 4 II 

14 0.86 10 Not exceeding 1.4 2 I 

15 1.06 10 Not exceeding 1.5 2 I 

16 0.37 10 Not exceeding 2.7 4 II 

17 0.18 10 Not exceeding 4.9 6 III * 

18 1.68 10 Not exceeding 1.4 2 I 

19 1.72 10 Not exceeding 3.2 4 II 

20 1.78 10 Not exceeding 1.3 2 I 

21 1.88 10 Not exceeding 2.1 4 II 

22 1.6 10 Not exceeding 4.4 6 III * 

23 1.33 10 Not exceeding 4 4 II 

24 1.51 10 Not exceeding 3.9 4 II 

25 1.51 10 Not exceeding 4 4 II 

26 3.51 10 Not exceeding 1 2 I 

27 1.76 10 Not exceeding 1.6 2 I 

3.2. Linkage Model Results at Multiple Scales 

The regression models of NO3-N and CODMn at the various watershed scales are shown in Table 9 

and Table 10, respectively. The log-transformed NO3-N exhibited a relationship with WI-IPC1 and  

WI-IPC2 at the scale of Zone 1, while no statistically significant relationships were found between 

agricultural land use intensity and nitrate level at the other watershed scales. The regression equation 
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in the Zone 1 model, with the value 0.374 of R
2
 and the level 0.004 of statistical significance, is as 

follows: 

ln (NO3-N) = −0.026 − 0.901WI-IPC1 + 0.418WI-IPC2 (3) 

Although the coefficients of determination R
2
 is relatively weak, the model is statistically 

significant. The model suggests that natural factors act as sinks, and as the input intensity of natural 

factors including rainfall and sunlight inside the contributing zone (Zone 1) increases, NO3-N levels 

downstream decrease. In addition, several artificial inputs, especially chemical fertilizer input, are 

identified as the second largest contributors of NO3-N, and as chemical fertilizer input intensity within 

the contributing zone (Zone 1) increases, NO3-N levels downstream also increase. 

Table 9. Multiple regression model of NO3-N. 

Scales Variable in equation Standardized Beta R
2
 Sig. Number of samples 

Zone1 
WI-IPC1 −0.469 

0.374 0.004 27 
WI-IPC2 0.412 

Zone2 no variables were entered 17 

Zone3 no variables were entered 14 

Zone4 no variables were entered 10 

Zone5 no variables were entered 8 

Table 10. Multiple regression model of CODMn. 

Scales Variable in equation Standardized Beta R
2
 Sig. Number of samples 

Zone1 no variables were entered 27 

Zone2 no variables were entered 17 

Zone3 no variables were entered 14 

Zone4 no variables were entered 10 

Zone5 
WI-IPC3 0.527 

0.452 0.001 8 
WI-IPC4 0.085 

For the water quality index CODMn, no variables were entered in the stepwise regression analysis 

for the scales from Zone 1 to Zone 4, while the most important explanatory variables were the WI-IPC3 

and WI-IPC4 at the watershed scales of Zone 5. The regression equation between agricultural land use 

intensity and permanganate index in the Zone 5 model, with the value 0.452 of R
2
 and the level 0.001 

of statistical significance, is as follows: 

ln (CODMn) = 0.745 + 0.514WI-IPC3 + 0.052WI-IPC4 (4) 

In the regression model of permanganate index, the two input intensities of pesticides and 

agricultural plastic mulch and organic manure inside the contributing zone (Zone 5) both have the 

positive impact on the permanganate level downstream. Therefore, the input of pesticides and 

agricultural plastic mulch is considered as the larger contributor than the organic manure input. 
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4. Discussion and Conclusions 

4.1. Agricultural Input Intensity and Surface Water Quality Risk 

Land use/land cover management, particularly high-input agriculture, is considered to be an 

important source of pollution export from catchments and frequently has been identified as a major 

contributor of surface water pollution [26]. The above results and analysis provide insight into the 

linkages between agricultural land use intensity and regional surface water quality. For the Beijing 

mountainous study area, several groups of agricultural input affecting surface water quality were 

identified during the year 2000. The results indicated that the explanatory variables behind the various 

water quality indexes were quite different at the respective significant watershed scales. The view that 

nitrate may be a useful general indicator of intensive land use was supported by previous work by  

Hunt et al [27]. As in Hunt [27], nitrate in particular can be considered as a useful indicator of 

intensive natural factors and agricultural chemical fertilizer input at the significant watershed scale in 

the Beijing mountainous areas. The input intensity of pesticide and agricultural plastic mulch in the 

Beijing mountainous areas watersheds has increased drastically between 1984 and 2000, which 

resulted in the permanganate index pollution risk. Several studies have indicated that the proportion of 

vegetable-planted land exhibited a positive correlation with permanganate index [28]. For the Beijing 

mountainous areas, vegetable outputs depended principally on the abundant inputs of pesticide and 

agricultural plastic mulch in 2000, according to our previous research [24]. 

4.2. Watershed Adaptive Response Unit 

The significant scales at which there were statistically significant relationships between agricultural 

land use intensity and each water quality variable were identified on the basis of the multi-scale 

regression analysis, which were considered as the watershed adaptive response units for each water 

quality variable. Thus, the first order watershed (Zone 1) of 27 monitoring points was the adaptive 

response unit for nitrate-nitrogen, while the fifth order watershed (Zone 5) was the adaptive response 

unit for the permanganate index. 

In the Beijing mountainous study area, watershed adaptive response units differ with the water 

quality variables being assessed, which are related with transformation regularity of nitrate-nitrogen 

and permanganate index. After the use of nitrate fertilizer that is the source of nitrate-nitrogen on 

agricultural fields, nitrate-nitrogen formed by nitrification is either absorbed and utilized by plants or 

transformed into gaseous nitrogen through denitrification under reducing conditions. Therefore, only 

the agricultural inputs inside the first order watershed zones can make a significant contribution to the 

concentration of nitrate-nitrogen at the pour-point, while that inside other order watershed zones has 

little influence on the nitrate-nitrogen level at the pour-point with the action of long distance transport. 

Compared to nitrate-nitrogen, permanganate index contamination is relatively steady. As the main 

source, the transformation time of agricultural plastic mulch and pesticides is relatively long. It could 

not make a significant contribution to the concentration of permanganate index until it accumulates. 

Therefore, the smaller area basins, such as first order watershed to the fourth order watershed, hardly 

respond to permanganate index as a contributing zone. 
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The definition of watershed adaptive response unit based on the basic watershed units, actually a 

contributing zone, is very meaningful for the purpose of more effective watershed management. It is 

important to address the fine-scale management issues relate to watershed adaptive response units for 

every water quality parameter. The adjustment of agricultural input structure and intensity may be 

carried out inside the individual watershed adaptive response units. 

4.3. Modeling 

The multiple linear regression model performed using log transformed dependent variables, which 

was adopted in many previous studies to explore the relationship between land use and stream water, 

can also provide insight into the linkages between agricultural land use intensity and stream water 

quality at multiple watershed scales. The statistical models in this study are valuable in examining the 

relative sensitivity of water quality indexes to alterations in agricultural land use intensity inside the 

various contributing zones when coupled with expert knowledge. The modeling results can also further 

help to identify the cause-and-effect relationships between agricultural input intensity and stream water 

quality inside the watershed adaptive response units, which are important in the management of water 

quality. The modeling, although statistically significant, showed the relatively weak coefficients of 

determination. It may be that the spatial incompatibility between the watershed spatial unit and the 

municipal/town unit was actually existed, or that other potential factors influencing stream water 

quality variable were not included in the analysis. All of these are worthy of further research. 

Although multiple linear regression models are an effective approach for identifying significant 

agricultural input intensity affecting water quality and explaining the relationship between agricultural 

land use intensity and stream water quality, they do not appear to quantitatively estimate contribution 

of respective agricultural land use intensity on the water quality because they are only based on the 

existence of statistical significance in the analysis data, rather than any mechanistic relationships 

between sources and receptors. Our future research will focus on understanding the exact mechanisms 

of the effect of agricultural land use intensity on stream water quality by adopting an alternative 

―sources-receptors model‖ based on the mass balance approach. 
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