Next Article in Journal
Next Article in Special Issue
Previous Article in Journal
Previous Article in Special Issue
Int. J. Environ. Res. Public Health 2011, 8(8), 3299-3317; doi:10.3390/ijerph8083299
Article

Spatial Variation of Surface Soil Available Phosphorous and Its Relation with Environmental Factors in the Chaohu Lake Watershed

* ,
 and
Received: 21 June 2011; in revised form: 28 July 2011 / Accepted: 8 August 2011 / Published: 15 August 2011
(This article belongs to the Special Issue Geostatistics in Environmental Pollution and Risk Assessment)
View Full-Text   |   Download PDF [1101 KB, updated 19 June 2014; original version uploaded 19 June 2014]
Abstract: The study presented in this paper attempts to evaluate the spatial pattern of soil available phosphorus, as well as the relation between soil available phosphorus and environment factors including elevation, slope, precipitation, percentage of cultivated land, percentage of forest land, percentage of construction land and NDVI using statistical methods and GIS spatial analysis techniques. The results showed that the Spline Tension method performed the best in the prediction of soil available phosphorus in the Chaohu Lake watershed. The spatial variation of surface soil available phosphorus was high in Chaohu Lake watershed and the upstream regions around Chaohu Lake, including the west of Chaohu lake (e.g., southwest of Feixi county, east of Shucheng county and north of Lujiang county) and to the north of Chaohu Lake (e.g., south of Hefei city, south of Feidong county, southwest of Juchao district), had the highest soil available phosphorus content. The mean and standard deviation of soil available phosphorus content gradually decreased as the elevation or slope increased. The cultivated land comprised 60.11% of the watershed and of that land 65.63% belonged to the medium to very high SAP level classes, and it played a major role in SAP availability within the watershed and a potential source of phosphorus to Chaohu Lake resulting in eutrophication. Among the land use types, paddy fields have some of the highest maximum values and variation of coefficients. Subwatershed scale soil available phosphorus was significantly affected by elevation, slope, precipitation, percentage of cultivated land and percentage of forest land and was decided by not only these environmental factors but also some other factors such as artificial phosphorus fertilizer application.
Keywords: soil available phosphorous; spatial distribution; environmental factor; Chaohu Lake watershed soil available phosphorous; spatial distribution; environmental factor; Chaohu Lake watershed
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Gao, Y.; Gao, J.; Chen, J. Spatial Variation of Surface Soil Available Phosphorous and Its Relation with Environmental Factors in the Chaohu Lake Watershed. Int. J. Environ. Res. Public Health 2011, 8, 3299-3317.

AMA Style

Gao Y, Gao J, Chen J. Spatial Variation of Surface Soil Available Phosphorous and Its Relation with Environmental Factors in the Chaohu Lake Watershed. International Journal of Environmental Research and Public Health. 2011; 8(8):3299-3317.

Chicago/Turabian Style

Gao, Yongnian; Gao, Junfeng; Chen, Jiongfeng. 2011. "Spatial Variation of Surface Soil Available Phosphorous and Its Relation with Environmental Factors in the Chaohu Lake Watershed." Int. J. Environ. Res. Public Health 8, no. 8: 3299-3317.


Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert