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Abstract: We have investigated the interactions between economic growth and industrial 

wastewater discharge from 1978 to 2007 in China's Hunan Province using co-integration 

theory and an error-correction model. Two main economic growth indicators and four 

representative industrial wastewater pollutants were selected to demonstrate the interaction 

mechanism. We found a long-term equilibrium relationship between economic growth and 

the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan 

Province. The error-correction mechanism prevented the variable expansion for long-term 

relationship at quantity and scale, and the size of the error-correction parameters reflected 

short-term adjustments that deviate from the long-term equilibrium. When economic 

growth changes within a short term, the discharge of pollutants will constrain growth 

because the values of the parameters in the short-term equation are smaller than those in 

the long-term co-integrated regression equation, indicating that a remarkable long-term 

influence of economic growth on the discharge of industrial wastewater pollutants and that 

increasing pollutant discharge constrained economic growth. Economic growth is the main 
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driving factor that affects the discharge of industrial wastewater pollutants in Hunan 

Province. On the other hand, the discharge constrains economic growth by producing 

external pressure on growth, although this feedback mechanism has a lag effect. Economic 

growth plays an important role in explaining the predicted decomposition of the variance in 

the discharge of industrial wastewater pollutants, but this discharge contributes less to 

predictions of the variations in economic growth.  

Keywords: economic growth; industrial wastewater; error correction; vector auto-regression 

(VAR) model; vector error correction (VECM) model 

 

1. Introduction 

The impact of economic growth on the environment is an emerging and popular issue in resource, 

environmental, and ecological economics. Resource depletion and pollutant discharge that result from 

economic growth will inevitably lead to environmental degradation; however, technological progress, 

economies of scale, and the increased income that result from economic growth can be used to reduce 

pollutant discharge and ultimately to improve environmental quality. In 1991, Grossman and Kreuger [1] 

discovered that the relationship between the total discharge of various environmental pollutants (y) and 

economic growth (x) takes on the shape of an inverted U-shaped curve. This relationship, which is 

similar to the relationship between per capita income and the distribution level analyzed by the 

American economist Kuznets, was therefore named the “environmental Kuznets curve” (EKC) [2]. 

Research on the EKC developed rapidly, reaching a peak during the mid- to late 1990s, when the 

internal theoretical basis was explored from the perspective of the mechanisms responsible for  

EKC phenomena. 

Since then, many empirical studies have shown that linear, U-shaped, N-shaped, and inverted  

N-shaped relationships may also exist between the indices of environmental pollution and those of 

economic growth. Coondoo et al. [3] demonstrated the existence of an inverted U-shaped curve for the 

relationship between gross domestic product (GDP) per capita and environmental quality by analyzing 

panel data from 88 countries and a CO2 index. Peng and Bao [4] carried out an empirical analysis  

of the relationship between GDP per capita and multiple environmental pollution indices, and 

characterized the degree of uncertainty in their relationships using provincial-level panel data for 

China. This evidence demonstrated that the existing theory required improvement in terms of index 

characterization, measurement methods, treatment of endogenous defects, variable selection, model 

improvement, and formation mechanism [5]. 

The nature of the EKC is that it measures the impact of economic growth on the environment. In 

terms of the approach to measurement, researchers have developed a range of models based on 

different assumed conditions and different dominant factors. The most common equation form used in 

these models is a quadratic equation for the relationship between income and the resource environment. 

Sometimes an obviously inverted U-shaped curve can be achieved using a quadratic equation of the 

logarithm to highlight the curve’s characteristic shape. In contrast, an N-shaped cubic equation shows 

that there are many fluctuations in any real-world system. 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%b7%a5%e4%b8%9a%e5%ba%9f%e6%b0%b4&tjType=sentence&style=&t=industrial+wastewater
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Most current models are simple measurements based on single equations, and suggest that the 

environment has no feedback effect on economic growth. The unidirectional hypothesis, in which the 

economy influences the environment but the environment does not influence the economy leads 

directly to inaccurate assessments because it is based on an unrealistic assumption. As Dinda [6] 

criticized, most researchers have ignored the bidirectional relationship between environmental 

pollution and economic growth in their investigations of the inverted U-shaped curve for the 

relationship between environmental and economic parameters. The ignorance of this inverse effect has 

resulted in the emergence of what is called the “endogeneity bias”, because economic growth itself is 

an endogenous variable determined by environmental changes and other factors. 

Hu et al. [7] noted that it is necessary to set up a model that includes the variables that must be 

endogenized to discuss the interactions between economic growth and environmental quality. Any 

examination of the relationships among such variables should be carried out with strict and prudent 

methods, but direct regression analysis may lack a basis for the measurement of endogenous variables. 

The results of the assessment and their representativeness must also be reconsidered in terms of the 

lack of data stationarity. Therefore, the improvement of research methods has been a priority for 

researchers in this area. 

There are two main methods to account for endogeneity biases. First, the analysis can be performed 

by establishing simultaneous equations to produce a dynamic structural formula. For example, Huang 

and Shaw [8] adopted simultaneous equations in their assessment of the EKC using time-series data 

from Taiwan. The second method is referred to as a vector auto-regression (VAR) model, and was 

proposed by Sims as a simplified form of dynamic structural equations and a simpler alternative. In 

addition, as Lütkepohl [9] pointed out, the advantage of the VAR modeling method is that it provides a 

good analytical tool for analyzing the dynamic influences of different variables. 

The selection of VAR models for use in analyses of the relationships between environmental and 

economic parameters offers the following advantages: First, there are fewer constraints based on 

existing theories and assumptions. All the variables in the VAR system are regarded as endogenous 

and can enter every assessment equation symmetrically. Analysis of the effects of different variables 

on environmental changes and economic growth would be facilitated in terms of their long-term 

dynamics, and the problem of variable default would be avoided. Because it is difficult to analyze the 

economic meaning of test results obtained by direct application of VAR models, the impulse-response 

function is frequently used for analysis. 

In this context, the aim of the present study was to investigate the mutual relationships and 

interactions between economic growth and the environment (here, using the discharge of industrial 

waste pollutants as a proxy), and to demonstrate how this analysis could be used in a case study in 

China's Hunan Province. We attempted to resolve some of the problems discussed earlier in this paper 

by using co-integration and error correction models (ECMs). We hope that this study will improve our 

knowledge of the relationships between economic growth and industrial pollution. 
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2. Methods 

2.1. The Vector Error Correction Model (VECM) 

A VAR model is not based on economic theory, but is instead a regression that investigates the 

dynamic relationships among all the endogenous variables in a system based on hysteresis effects 

between changes in the values of each endogenous variable in the model and the resulting changes in 

the other endogenous variables; that is, there are interactions and path-dependence in these changes. 

There is no pre-condition (i.e., no assumptions) for each estimation process. The function can be 

described as follows: assuming that Yt is a time-sequence vector with a rank of n × 1, Yt = (y1t, y2t, ⋯, 

ynt)′, where t represents time and yit represents the parameters of the model (from i to n) at time t. The 

VAR model with rank k can be written as: 

Yt = Π1Yt-1 + Π2Yt-2 + ⋯ + ΠkYt-k + εt  εt ～IID (0, Ω) 

t = 1, 2, ⋯⋯,T  
(1) 

This function can also be written as VAR (k). Π1, ⋯ , Πk are parameter matrices with rank n × n.  

εt is the random-error column vector with rank n × 1 and Ω is the variance and covariance matrix with 

rank n × n. IID is covariance matrix with rank n × n and T is time segment. 

If Yt is not a stable component, the distribution of the parameters in this regression function will not 

form a normal distribution, and this could result in the misplay of the regular statistical inference [10]. 

However, Lee and Chang [11] found that if there was a co-integration relationship among the  

non-stable variables in the VAR model, an autoregression VECM based on the VAR model would 

make the variables in the VECM become a stationary sequence. In this way, based on equation (1), we 

can assume that Yt~I in equation (1), and after differential transformation, the VAR model can be 

expressed as follows: 

ΔYt =Γ1ΔYt-1 + Γ2ΔYt-2 + ⋯ + Γk-1ΔYt-k + ΠYt-k + εt (2) 

where Δ is the rank difference operator: 

ΓI = −I − Π1 - ⋯  − Πi,         i = 1, 2, ⋯ , k 

Π = −I + Π1 + ⋯  + Πk 

Equation (2) is called the regular expression in the VECM. The transformation from equation (1) to 

equation (2) is called co-integration. The Π in Equation (1) is called the “compression” matrix or the 

“effect” matrix, and represents the sum of the parameter matrix minus one unit matrix. i is the lag 

order, k is the maximum lag order , and Γ is the matrix of coefficients.  

The VECM is a type of VAR model, but with a restriction: it includes a co-integration relationship 

when it explains the variables [12]. When there is a short-term fluctuation over a large range, VECM 

will make the endogenous variables converge on their long time co-integration relationship. A partial 

short-term correction is used to correct the departure from the long-term equilibrium. For this reason, 

the co-integration can also be considered to be an error term. 
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2.2. Data Sources 

We adopted the following indicators in our analysis of the discharge of industrial wastewater: the 

amount of industrial wastewater generated, the amount discharged, the contaminant removal rate, and 

the amount of pollutants discharged in the industrial waste. Our case study was based on data from 

Hunan Province in southern China, where annual rainfall is high, and we assumed that the amount of 

pollutants discharged in industrial waste would have serious effects on the quality of the ecological 

environment. We adopted the following pollutant parameters (discharge amounts) as proxies for the 

impact of economic growth on the environment: chemical oxygen demand (COD), ammonia nitrogen 

(AND), petroleum pollutants (PPD), and heavy metals (HMD). 

We obtained time-series data from 1978 to 2007 from the Statistical Yearbook of Hunan Province 

and the China Environment Yearbook for each year and parameter. We chose two economic growth 

indicators based on the availability of data and the popularity of these indicators in previous research. 

On this basis, we chose the per capita GDP and the per capita consumer price index (CPI), and we 

analyzed their relative contributions to pollutant discharge by means of principal-components analysis. 

Both indicators can objectively represent the influence of the economic growth process on industrial 

wastewater discharge and the resulting pollutant discharge. To eliminate heteroscedasticity and  

obtain a better fit of the regression, we used the natural logarithm function to transform the data for 

each parameter. 

3. Results  

3.1. Co-Integration Analysis  

To make the six variables comparable under the same coordinate, we normalized the values using 

version 6.0 of the Eviews software (http://www.eviews.com/). All six variables showed a consistent 

upward trend, but our statistical analysis suggested that the six variables exhibited nonstationarity 

(Table 1).  

Table 1. Results of the unit root tests. 

Variance Test 

method 

ADF test 

value 

Critical 

value 

Critical 

value 

Conclusion 

ΔlnGDP (C,T,0) −3.1593 −2.9762 −3.6998 stable 

ΔlnCPI (C,T,0) −2.6692 −2.6299 −2.9810 stable 

ΔlnCOD (C,T,0) −6.0544 −2.9763 −3.6998 stable 

ΔlnNAD (C,T,0) −4.8663 −2.9762 −3.6998 stable 

ΔlnPPD (C,T,0) −6.4657 −2.9762 −3.6998 stable 

ΔlnHMD (C,T,0) −3.7614 −2.9762 −3.6998 stable 

Notes: C: constant term; T: tendency; 0: lag order; Δ: first-order difference; GDP: per 

capita GDP; CPI: per capita CPI; COD: COD discharge; NAD: nitrogen-ammonia 

discharge; PPD: petroleum pollutant discharge; HMD: heavy metal discharge. 

 

To confirm the degree of stability of the sequence, we analyzed the series for each of the six 

variables independently. We used the augmented Dickey–Fuller test (ADF) for this analysis. The 

http://dj.iciba.com/ammonia/
http://dj.iciba.com/nitrogen/
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results of the ADF test showed that the first-order difference in the economic environment and the 

economic growth variables had been taken logarithm. The obvious level was less than the critical value 

for the ADF unit root test, indicating that the following variables belonged to a first-order integration 

process I, which means that under the same unit root, the following variables would become a 

stationary series after single difference.  

Co-integration only reflects the long-term dynamic equilibrium among the variables, and the  

long-term elasticity of the dynamic equilibrium has a positive (or negative) relationship among the 

variables. The inadequacies of the long-term static model can be compensated for using a correction 

mechanism when short-term values deviate from the long-term equilibrium, and the correction is 

implemented using a short-term dynamic model; that is, an error correction model (ECM) can be 

constructed between the economic and environmental parameters. The error correction can adjust the 

long-term model for short-term fluctuations in economic growth, and implies that pollution amounts 

have clear effects on economic growth because of the two-way relationship between economic and 

environmental parameters. This conclusion must be further confirmed using the Granger causality test. 

3.2. Determination of Lag Order 

To model the parameters with more explanatory power and simultaneously eliminate 

autocorrelation of the error terms while keeping reasonable freedom, we chose 3 as the maximum lag 

order. The optimal lag order for a VAR model ranges from level 3 to level 1, in descending order. 

Akaike’s information criterion (AIC) and the SC information norm and likelihood ratio (LR) statistics 

were used as the testing standard for choosing the optimum lag order. In addition, we used the Q 

statistic to test whether autocorrelation existed in the remaining sequence, and the White test and 

ARCH statistics to confirm whether there was heteroscedasticity. For the co-integration test using a 

multivariate model, we used Johansen’s analytical framework for a VECM (Table 2). 

Table 2. Results of the Johansen test for co-integration. 

No. of CEs Trace  

statistic 

Trace test Max-Egon Max-Egon test 

5% critical value Prob 5% critical value prob 

None 132.7742 95.7536 0.0000 55.5041 40.0776 0.0005 

At most 1 77.2701 69.8189 0.0113 35.5217 33.8769 0.0316 

At most 2  41.7484 47.8561 0.5934 24.1177 27.5843 0.1307 

At most 3 17.6306 29.7971 0.6736 11.4452 21.1316 0.6029 

The trace test and the Max-Eigenvalue test of Johansen showed that at P < 0.05, there existed a  

co-integration relationship among the six variables and that there were two co-integration equations 

(Table 3). The results of this analysis showed that long-term economic growth was negatively 

correlated with NAD, HMD, PPD, and COD. The long-term elasticity of COD and economic growth 

was 0.55, which indicated that economic growth in Hunan Province was not strongly sensitive to 

COD. There was a negative relationship between economic growth and NAD. The long-term 

fluctuation showed that the long-term elasticity for NAD was 0.77, which means that economic growth 

was strongly affected by NAD. HMD had the smallest elasticity (0.21) because of changes in Hunan 

Province's industrial policy that reduced emissions of heavy metals. 

app:ds:descending%20order
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Table 3. Normalized co-integration equations. 

GDP CPI COD NAD PPD HMD 

1.0000 −1.0297 0.5513 0.7715 0.2110 0.2107 

 0.2010 0.4655 0.0128 0.4314 0.6138 

Notes: GDP: per capita GDP; CPI: per capita CPI; COD: 

COD discharge; NAD: nitrogen-ammonia discharge; PPD: 

petroleum pollutant discharge; HMD: heavy metal discharge. 

 

The VECM had a log-likelihood value of 209.41, which was sufficiently high to provide confidence 

that the model was reliable. Simultaneously, the AIC and SC values for the VECM were −16.34 and 

−12.64, respectively; both were sufficiently small to indicate that the whole model was well-fitted and 

had comparatively good explanatory power (Figure 1). After conducting Jarque-Bera multivariate 

normality tests for the residual error-correction model, we found that the residual error met the 

requirements for a normal distribution. The serial correlations in the LM and ARCH tests showed that 

autocorrelation and arch effects did not exist in the model for the residual errors.  

Figure 1 Results of the VECM. 
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Notes: GDP: per capita GDP; CPI: per capita CPI; COD: COD discharge; NAD:  

nitrogen-ammonia discharge; PPD: petroleum pollutant discharge; HMD: heavy  

metal discharge. 

3.3. Granger Causality Tests 

The co-integration among variables only tells us that there is also a long-term causal relationship 

among the variables. Because the specific direction of the causality (unidirectional or bidirectional) is 

still unknown, it is necessary to carry out causality tests to define the nature of the relationships among 

the variables. To do so, we chose the Granger causality test to identify any causality between the 

indices of economic growth and the pollution discharge indices. The theorem of Engle and Granger 

states that if there is co-integration among the variables of the VAR model, we can then establish an 

ECM, which includes error correction terms, and judge the causality among variables based on the 

VECM. The general form of the VECM, including double variables, is: 

, 1, 1, , 1 11 , , , , 1 ,i t j i i t i k i t k izi k i t k i t

k k

gdp gdp EC u               
(3)  

, 2, 2, , 1 21 , , 22 , , 2 ,i t j i i t i k i t k i k i t k i t

k k

EC gdp EC u               
(4)  
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where Δ denotes the D-value, k denotes the lag phase, 1, 1tEC   indicates the first-order lag residuals 

(error-correction terms) in the co-integration test results, and the causality can be determined by testing 

the significance of the independent variation coefficients in Equations (3) and (4). For the short-term 

causality, we can test all i and k using the null hypothesis H0:θ12ik = 0 in Equation (3) for all  

i and k and H0:θ21ik = 0 in Equation (4). The long-term causality can then be tested by observing the 

significance of the modification of rate λ, with λ as the coefficient of the error correction form εit-1. The 

significance of λ is that it reflects the long-term relationships identified by the co-integration process. 

The coefficients of the EC term contain information on whether the past variable values affect the 

current values. A significant non-zero coefficient indicates that error terms in the past equilibrium play 

an important role in determining the current results. For the long-term causality, we tested all i for the 

null hypothesis H0:λ1i = 0 for all i and k in equation (3) and for all i for the null hypothesis H0:λ2i = 0 in 

equation (4).  

Table 4. Results of the Granger causality tests. 

Pollutant 
Lag 

order 

Short term Long term 

H0: GDP does 

not Granger 

cause ED 

H0: ED does 

not Granger 

cause GDP 

H0: GDP does 

not Granger 

cause ED 

H0: ED does 

not Granger 

cause GDP 

COD 4 4.596 

(0.061) 

4.403 

(0.828) 

6.894 

(0.049) 

3.408 

(0.433) 

NAP 5 2.891 

(0.426) 

3.363 

(0.848) 

4.369 

(0.317) 

3.612 

(0.249) 

PPD 3 4.635 

(0.158) 

5.452 

(0.719) 

3.312 

(0.543) 

2.612 

(0.342) 

HMD 3 5.159 

(0.023) 

4.605 

(0.256) 

5.894 

(0.249) 

3.408 

(0.437) 

Notes: ED (environmental discharge) represents the logarithm of the values of the four 

environmental pollution variables; GDP: per capita GDP; COD: COD discharge;  

NAD: nitrogen-ammonia discharge; PPD: petroleum pollutant discharge; HMD: heavy  

metal discharge. 

We draw the following conclusions from the test results in Table 4: economic growth is an 

important cause of changes in environmental quality. For COD, the short-term causality values 

deduced from Equations (3) and (4) are statistically significant (P < 0.05), which shows an obvious 

short-term causality between COD and GDP and a bidirectional relationship between COD and GDP in 

the long term. For NAD, the short-term causality deduced from Equations (3) and (4) is significant  

(P < 0.05), which shows obvious bidirectional causality between NAD and GDP in the short term and 

a bidirectional causality in NAD in the long term. There is no obvious causality between PPD and 

GDP in the short term, but there is a bidirectional causality between PPD and GDP in the long term. 

For HMD, the short-term causality deduced from Equations (3) and (4) was significant (P < 0.05), 

which shows an obvious bidirectional causality between HMD and GDP in the short term; moreover, 

there is bidirectional causality in NAD in the long term. Although there is no obvious causality 

between PPD and GDP, the Granger tests show that changes in GDP can cause changes in the 

discharge of the four pollutants. 
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3.4. Impulse Response Function for Economic Growth and Environmental Pollution 

The impulse response function describes the response of an endogenous variable to the impact of 

error terms. The impulse response function based on the VAR model can be used to measure the 

impact of a change of 1 standard deviation in one variable that results from stochastic disturbance on 

the current and future values of the other variables, and can be used to analyze the whole process of 

how a disturbance of any variable in the VAR model will influence the other variables and ultimately 

the variable itself. We used general impulse response analysis in this part of our analysis. Its main 

function is to provide a more prudent scheme for the orthogonalization process than in the traditional 

impulse response analysis, and its main value is that it can provide a more prudent conclusion based  

on orthogonality of the impulses and no connection with the order in which the variables are  

arranged. Figure 2 shows the first-order differences in the normalized, ln-transformed values of the 

model parameters.  

Figure 2. Impulse responses of GDP and CPI and of the four pollutant discharges. 
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Notes: GDP: per capita GDP; CPI: per capita CPI; COD: COD discharge;  

NAD: nitrogen-ammonia discharge; PPD: petroleum pollutant discharge; HMD: heavy 

metal discharge. 

During the whole impulse response period, the response curve for COD to a one-unit response of 

GDP was N-shaped: the response value of COD in terms 1 and 2 was positive, decreased towards zero 

in terms 3 to 5, became positive again in terms 5 to 8, then finally decreased to remain around zero 

from terms 8 to 12. This suggests that the overall influence of GDP on COD was to increase this 

discharge, and the cumulative response was 0.186, which indicates that economic growth increases COD. 

The impulse response for NAD approximately resembled an N-shaped curve. The response value in 

terms 1 to 3 was positive, decreased towards zero from terms 3 to 5, was positive in term 6, was 

negative in terms 7 and 8, and then remained near zero from term 9 to 12. The impulse response of 

NAD to GDP was generally an increase in NAD, and the cumulative response was 0.034. The 



Int. J. Environ. Res. Public Health 2011, 8         

 

 

2946 

economic meaning of this result is that economic growth would increase NAD and that increased NAD 

would slow the rate of economic growth.  

The impulse response of PPD to GDP also took on an N-shaped curve. The response value of PPD 

during terms 1 to 3 changed from negative to positive, decreased to remain near zero in terms 3 to 8, 

and then became positive again from terms 9 to 12. The cumulative response was 0.027. Economic 

growth would therefore increase PPD. 

The impulse response of HMD to GDP took on a double U-shaped curve. The response values of 

HMD to GDP were initially positive then decreased to become negative in term 1, then increased to 

become positive in term 3 (the first U), then decreased from term 3 to term 7 and increased again to 

near zero by term 10 (the second U); thereafter, it remained stable near zero. The cumulative response 

was 0.215, which indicates that economic growth increases HMD. 

The response of GDP to pollutant discharge took on an inverted U-shaped curve. This demonstrates 

the adverse effects of environmental degradation and pollutant discharge on economic growth: As 

environmental quality deteriorated and pollutant discharge increased, changes in human preferences 

related to environmental quality and modulation of the industrial structures imposed external pressure 

on the mode of economic growth. At the beginning of economic growth, the effects of pollutant 

discharge on economic growth were small. Therefore, during the first three terms, the GDP curve 

increased rapidly, and all pollutant discharge response values reached their maximum value, step by 

step. With continuous economic growth, the discharge slowly became a constraint on economic growth 

and slowed the rate of economic growth. Thus, when GDP was close to a certain saturated level, 

during the third to sixth term, the response changed to a nearly horizontal line. From the eighth term 

onwards, the response of GDP to waste discharge was to decrease, which means that waste discharge 

became a significant constraint on economic expansion, a constraint on economic expansion until 

wastewater treatment capacity increased. The contradiction between economic growth and waste discharge 

then moderated, and GDP once more grew at a good pace, until a new round of adjustment began.  

3.5. Variance Decomposition Based on VECM 

Decomposition of variance refers to calculation of the mean square error of the impact of a variable 

into the contribution created by a random impulse from various variables, followed by calculation of 

the relative importance of each variable's impulse (i.e., its contribution to the total variance). The 

decomposition therefore quantitatively captures the relationship among the variables in the VAR model. 

Because of space constraints, we will use decomposition of variance for per capita GDP and COD 

to illustrate only two typical examples of variance decomposition. Figure 3 shows that after the term 4, 

NAD increased continuously, and was increasingly affected by the per capita GDP, and eventually 

accounted for more than 20% of the predicted variance in per capita GDP by term 8, which indicates 

that the long-term influence of NAD on per capita GDP was increasing, and gradually became an 

important factor that slowed economic growth. The effects of NAD on per capita GDP gradually 

decreased (i.e., the GDP curve appeared to be approaching an asymptote), accounting for 73% of the 

predicted variance, and then remained stable, indicating that NAD did not have a remarkable influence 

on economic growth in the short term, but had a remarkable influence in the long term. 
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Figure 4 shows that the predicted variance for COD mainly resulted from the effects of economic 

growth and itself. The effects of COD on economic growth accounted for about 57% of the predicted 

variance in COD, which indicates a strong influence on economic growth. The change in COD was 

obviously towards a weaker trend over time (i.e., the curve reached a plateau at around 15%), with the 

proportion of the predicted variance decreasing to 28.7%. The predicted variance for per capita GDP 

during terms 1 to 3 was weakening, but reached 2.8%; from term 4 onwards, its effects increased more 

rapidly, finally reaching a value of around 15% by term 12. 

Figure 3. The decomposition of variance for GDP. 
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Figure 4. The decomposition of variance for COD. 
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4. Discussion 

Co-integration relationships represent a kind of long-term statistical interpretation that balances the 

relationships among non-stable variables. The co-integration represents a certain linear combination of 

pairs of non-stable variables, and offers a certain degree of stability. The co-integration analysis tests 

whether there is a stable linear combination of relationships among non-stable variables and seeks a 

co-integrated relationship among the variables [13]. This form of analysis is necessary because 

applying direct regression analysis to a non-stationary time series can cause problems such as a 

spurious regression result. It is necessary to begin by judging the stationarity of the time series. This is 

tested using DF or ADF to conduct the unit root test [14]. The DF test assumes that the random error 

term of the tested models has no autocorrelation; however, most economic data series cannot meet this 

assumption [15]. 

We used the Jarque-Bera test for normality of the residual error because our analysis showed that 

when the remaining sequence of each regression equation met the condition of normality (P < 0.05), 

this indicates a lack of autocorrelation and heteroscedasticity [16]. Therefore, the goodness-of-fit of the 

VAR model with a lag order of 1 was quite good, and the remaining sequence exhibited stability.  

Maki [17] noted that time-series data such as those used in this paper may not be stable and are likely 

to be affected by common factors, and would therefore reflect a common trend over time. This would 

mean that a stability relationship existed among the variables and that some linear combination of  

the variables would be stable. The co-integration relationship made it clear that a long-term and 

balanced relationship existed among the variables in our study. This relationship was realized through 

constant adjustment of the error-correction terms to avoid serious errors in the long-term balanced  

relationship [18].  

Under normal circumstances, with more than one co-integration relationship among the variables, 

the first co-integration equation correctly reflects the long-term relationship among the variables [19]. 

Bekiros and Diks [20] stated that according to Granger's typical theorem, a set of variables for which a 

co-integration relationship existed could be used to establish an error-correction model. If a  

co-integration relationship existed among these variables, this would mean that a long-term stable 

relationship existed among these variables and was maintained through constant adjustment of  

short-term dynamic processes. This error-correction mechanism avoided expansion of the deviation for 

the long-term relationship in terms of both quantity and scope. Thus, an error-correction mechanism 

existed in the time series for the study variables, which was inter-coordinated to produce short-term 

adjustment behavior. Based on the error-correction model, the short-term dynamic relationship among 

these variables and the error correction model were established [21]. 

An impulse response function based on the VAR model can be used to measure the effects of the 

impact of a one-standard-deviation random disturbance term on all the current and future values of the 

variables. This function can be used to analyze how a disturbance of any variable in the VAR model 

would affect other variables in the model, finally resulting in feedback that affects the variable  

itself [22]. It is therefore natural that there would be a negative effect of increased HMD on economic 

growth. The reason for this may be that it took a long time for environmental technology to adjust to 

the industrial structure. The basic principle of variance decomposition is to decompose the predicted 

mean-square error for any of the endogenous variable into the contribution of the random impacts to 

dict://key.0895DFE8DB67F9409DB285590D870EDD/mean-squared%20error
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the overall system. Calculating the comparative importance of each variable to determine its 

proportional contribution to the overall system variation accounted for the whole contribution [23]. 

Variance decomposition can be used to analyze the contribution of each variable, and therefore, 

reflected the relative importance of random impacts of each variable on the VAR systematic  

variable [24]. 

In general, the decomposition result for comprehensive variance showed that economic growth 

played an important role in explaining various proportions of the predicted variance based on pollutant 

discharge indicators. Economic growth caused a predicted variance for COD, NAD, PPD, and  

HMD that together exceeded 72%. The results showed that economic growth in Hunan Province 

accompanied by increased wastewater discharge became an important factor in damage to the 

ecological environment. Comparatively speaking, the discharge of industrial wastewater accounted for 

a relatively small impact on economic growth. The contribution of COD was only 16.8%, which was 

much lower than that of the discharge of industrial wastewater. The influences of NAD and PPD were 

also relatively weak. One reason for this may be that as a result of maturation of Hunan Province’s 

economic development, the province increased its pollution control measures and its treatment of NAD 

and PPD. However, another possible reason is that during the process of data calculation, statisticians may 

make the statistical data lower than the actual due to subjective differences or governmental directives. 

5. Conclusions  

We have conducted a dynamic econometric analysis of Hunan Province’s economic growth and its 

discharge of industrial wastewater based on time-series data from 1978 to 2007. To do so, we used a 

co-integration test, impulse response analysis, and variance decomposition. The results showed a long-

term balance between economic growth and the discharge of industrial wastewater. Active and positive 

effects of economic growth on this discharge and a feedback effect of wastewater discharge on 

economic growth were both clearly revealed.  
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