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Abstract: China has experienced rapid urbanization in recent years. The acceleration of 

urbanization has created wealth and opportunity as well as intensified ecological and 

environmental problems, especially soil pollution. Our study concentrated on the variation 

of heavy metal content due to urbanization in the vegetable-growing soil. Laws and other 

causes of the spatial-temporal variation in heavy metal content of vegetable-growing soils 

were analyzed for the period of urbanization in Nanjing (the capital of Jiangsu province in 

China). The levels of Cu, Zn, Pb, Cd and Hg in samples of vegetable-growing soil were 

detected. The transverse, vertical spatio-temporal variation of heavy metals in soil was 

analyzed on the base of field investigations and laboratory analysis. The results show that: 

(1) in soil used for vegetable production, the levels of heavy metals decreased gradually 

from urban to rural areas; the levels of the main heavy metals in urban areas are 

significantly higher than suburban and rural areas; (2) the means of the levels of heavy 

metals, calculated by subtracting the sublayer (15–30 cm) from the toplayer (0–15 cm), are 

all above zero and large in absolute value in urban areas, but in suburban and rural areas, 

the means are all above or below zero and small in absolute value. The causes of spatial 

and temporal variation were analyzed as follows: one cause was associated with 

mellowness of the soil and the length of time the soil had been used for vegetable 
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production; the other cause was associated with population density and industrial intensity 

decreasing along the urban to rural gradient (i.e., urbanization levels can explain the 

distribution of heavy metals in soil to some extent). Land uses should be planned on the 

basis of heavy metal pollution in soil, especially in urban and suburban regions. Heavily 

polluted soils have to be expected from food production. Further investigation should be 

done to determine whether and what kind of agricultural production could be established 

near urban centers. 

Keywords: urbanization; heavy metal; soil; spatio-temporal distribution 

 

1. Introduction 

Urbanization, can be viewed as a typical phenomenon of economic growth and industrial 

advancement. Due to the increasing rate of urbanization, there continues to be concern about the 

impact of anthropogenic activities on urban and suburban soil. Urbanization and industrialization have 

changed the urban space into specific urban ecosystems and the soil is an important component of 

these systems [1]. The original structure and properties of soil have been deeply modified, and new 

soils with particular characteristics, the anthroposols, have been created [2]. Recently, much research 

has been done on urban and industrial soils including: (1) the studies on spatio-temporal distribution of 

heavy metals and their functional roles along industrialization gradients within single cities [3-6];  

(2) the research concentrated on different possible sources for the enrichment of heavy metals in  

soils [7-10]; and (3) due to bioavailability and toxicity of heavy metal in soil in food chains via plant 

uptake, the studies on human health risks and control measures of soil heavy metal pollution [11-16]. 

However, these studies focused mainly on limited locations, particularly in urban areas or major 

pollution sources. In contrast, there are few extensive surveys on heavy metal distributions in soils 

along an urban-rural gradient, especially in agricultural soils.  

The average urbanization level in China was approximately 12% in 1950, 29% in 1996, 32% in 

1999, and 36% in 2000 [17]. Excessive accumulation of heavy metals in soils, especially in 

agricultural soils may not only result in environmental contamination, but elevated heavy metal uptake 

by crops may also affect food quality and safety. Owing to rapid economic development, heavy metal 

contamination of urban and peri-urban agricultural soils has also become increasingly serious in  

China [18-21]. Urban and peri-urban agricultural soils can contribute substantial amounts to the 

proportion of food consumed in the city, for example, it estimated that 15–20% of the vegetables and 

meat is produced on peri-urban agricultural soils in Nanjing City. This potential risk indicates that 

there is an urgent need to conduct further studies into heavy metal contamination of urban and  

peri-urban agricultural soils. Most of soil heavy metals come from industry resources or agricultural 

resources or the sediments. However, there were few reports to analyze which were the mainly 

pollution sources of heavy metals in vegetable-growing soil near urban.  

The present investigation aims to: (1) investigate the distribution of heavy metals (Pb, Zn, Cr, Hg 

and Cu) in vegetable plot soil using urban–rural gradients in Nanjing city, (2) compare some current 
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data with those of a 1985 sampling, and (3) analyze the possible pollutant sources which could cause 

the accumulation of soil heavy metals in vegetable plots. 

2. Materials and Methods 

2.1. Study Area 

Nanjing region, with a population of 5.63 million and covering 6,597 km2, lies in eastern China 

(31°14'–32°36' N, 118°22'–119°14' E). It is in the process of rapid economic growth, urbanization and 

industrialization. About 15.6% of this region is urbanized.  

2.2. Soil Samples Collection and Preparation 

Fourteen vegetable plots were sampled from three concentric rings around the city of Nanjing. The 

centre-most, urban ring extends from the city wall (which surrounds the centre of the city) to a distance 

of 4.0 km and encompasses 5 of the plots. Next, 5 sites were sampled from the suburban ring which 

extends from 4.0 km to 7.5 km. Finally, 4 rural sites were sampled from the outer-most ring extending  

7.5 to 15 km from the city wall (Figure 1). All the sample sites are far away from the point pollution 

sources (such as landfill regions, gas station and factories) and line pollution sources (about 200 meters 

away from rivers and roads). All sites were located with GPS in order for further investigation. 

Investigation results of the sample plots’ surrounding environment, such as geographical and geological 

conditions, hydrological distributions, and neighboring pollution sources, were recorded. The soil 

managing conditions including the cultivation time, fertilization frequencies and quantities were  

also investigated. 

Figure 1. Map of urban, suburban and rural regions distribution. 

 

2.3. Sample Treatment and Data Analysis 

Each soil sample consists of 35 sub-samples random collected from the sampling plot of about  

200 m × 200 m. At each sampling point, the top-layer sample (0–15 cm of the soil) and sub-layer 

sample (15–30 cm) was taken separately using a stainless steel sampling tube. The soil samples were 

then placed into polyethylene bags, and returned to the laboratory. All these samples were air dried at 
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room temperature and sieved through a 0.850 mm nylon sieve to remove coarse debris. The soil 

samples were then ground with a agate pestle and mortar until all particles passed a 0.150 mm nylon 

sieve. For the total heavy metal content analysis, Total Zn, Pb and Cr contents in soils were 

determined by an Atomic Absorption Spectrophotometer after digesting in HNO3–HF–HClO4. The 

total Cu contents in soils were determined by the Atomic Absorption Spectrophotometer after 

digesting in HNO3–HCl–HClO4 mixture. Total Hg contents in soils were digested in H2SO4–KMnO4 

mixture and determined by a Cold Atomic Absorption Spectrometer (CAAS). 

Pearson’s correlation coefficients and Principle Component analysis (PCA) of heavy metal 

elements in top-layer and sub-layer were calculated and one-way ANOVA method to test the 

significant differences of heavy metals content in urban, suburban and rural regions was employed by 

SPSS software for Windows, version 13.0 (SPSS Inc., USA).  

3. Results and Discussion  

3.1. Top-layer Heavy Metals Variation Along the Urban-Rural Gradient 

The results showed that the top-layer (0–15 cm) heavy metal levels in the soil varied greatly in urban 

(0–4 km), suburban (4–7.5 km) and rural regions (7.5–15 km) (Table 1). Except for Zn, the mean values 

of all heavy metals were degressive from urban to rural environment. All heavy metal contents, including 

Zn, were higher in urban sites than those in suburban and rural sites. Analysis of variance (ANOVA,  

p < 0.05) showed that there were significant differences in heavy metals between the urban and suburban 

areas for Pb, Zn, Hg, and Cu, whereas no significant difference was found between suburban and rural 

region. There were no significant differences among the 3 types of regions for Cr. 

Table1. One-way ANOVA of top-layer soil heavy metal contents. 

Heavy metals Location N Mean S. D. Range 

Pb Urban 5 65.23 a,* 17.46 45.95–83.54 
(mg/kg) Suburban 5 36.61 b 1.16 35.07–38.14 
 Rural  4 32.10 b 5.98 26.70–38.68 

Zn Urban 5 224.75 a 36.35 191.78–282.54 
(mg/kg) Suburban 5 122.11 b 20.14 99.67–150.07 
 Rural  4 144.69 b 46.80 81.40–191.66 

Cr Urban 5 67.49 7.50 58.22–74.88 
(mg/kg) Suburban 5 60.09 13.07 43.58–77.42 
 Rural  4 53.98 14.10 40.10–68.71 

Hg Urban 5 0.494 a 0.146 0.281–0.622 
(mg/kg) Suburban 5 0.176 b 0.040 0.122–0.233 
 Rural  4 0.136 b 0.058 0.094–0.224 

Cu Urban 5 50.17 a 13.43 38.67–72.40 
(mg/kg) Suburban 5 29.27 b 4.94 23.35–35.35 
 Rural  4 24.93 b 4.89 20.20–31.38 

* a and b denote they have statistical significance at probability levels of <0.05; a and a  
or b and b denote they have no statistical significance. 
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3.2. Vertical (Soil Profile) Variation of Heavy Metals along the Urban-Rural Gradient 

Many researchers concluded that heavy metal pollution in soil is mainly concentrated in the upper 
layer (0–10 cm）of the top ploughed layer (0–15 cm) of the artificial cultivated soil profile [22-24]. 

Therefore, comparing the heavy metal contents in top-layer and sub-layer soils show the heavy metal 

distribution in the soil profiles. The mean levels were calculated by subtracting the sub-layer (15–30 cm) 

from the top-layer (0–15 cm). According the subtracted results, Significance tests (ANOVA in 

probability levels of <0.05) were done and the results are shown in Table 2. The mean contents of heavy 

metals, which were calculated by the top-layer (0–15 cm) subtracting the sub-layer (15–30 cm), are all 

above zero and large in absolute value in urban areas, but in suburban and rural areas the means are all 

near zero and small in absolute value. There are no significant differences between different regions. 

Table 2. Significance test (ANOVA) of subtracted results along with the gradient. 

Heavy metal  Urban(n* = 5) Suburban (n = 5) Rural (n = 4) 

Pb (mg/kg) 13.05 1.91 −1.74 

Zn (mg/kg) 55.44 −2.72 11.1 

Cr (mg/kg) 15.06 −1.75 −3.1 

Hg (mg/kg) 0.087 −0.041 0.051 

Cu (mg/kg) 6.68 −0.61 −4.39 

* n is the number of the sample. 

3.3. Identification of the Potential Pollutant Sources which Accumulate Heavy Metals 

This research suggests that almost all investigated heavy metals accumulated in the top-layer in 

vegetable soil in urban areas where, as we know, there is relatively more industrial activity and more 

automobile emission sources than in suburban and rural areas. Variations of heavy metals along the 

urban-rural gradient in soil profiles indicate a distribution pattern in urban areas unaffected by regional 

background sources, mainly controlled by local sources.  

Industrialization and urbanization as major sources of heavy metal pollution are known by many 

authors [25,26]. Nanjing is one of the fastest economic growth areas and is in the process of rapid 

urbanization and industrialization [27]. Generally, the proximity of vegetable plot soil to urban areas 

could increase pollution from irrigation with polluted waters, fertilization with contaminated manure, 

atmospheric particle fall from industrial dust, combustion of fossil fuels and road traffic. But which 

were the main pollution sources? 

3.3.1. Pollution source analysis 

According to further analyses, we find that urban heavy metal accumulation in soil depends on how 

long the vegetable-growing soil is cultivated. As Table 3 shows, the cultivation time for most urban 

sample plots was much longer than suburban and rural plots. The literature also indicates that top-layer 

heavy metals are increasing evident as the cultivation time increases [28,29]. It suggests that urban heavy 

metals in vegetable-growing soil could be caused by long-time vegetable cultivation and corresponding 
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operation. Contaminated manure, water irrigation and intensifying use of fertilizers are the main pollution 

sources of heavy metal in soil [30]. But in all the agro-measurement, which are major pollution sources?  

Table 3. Vegetable farming period in different area. 

 Urban Suburban Rural 

Site no. 1 3 4 5 6 2 8 9 10 12 7 11 13 14

Cultivated time (year) 20 20 40–50 10–20 20–30 2 20–30 2 3 10 5–6 10 5–6 2 

Another research report can give some indications of major pollution sources in Nanjing [20]. The 

study area was located 5 km east of Nanjing. Compare to the places which we had sampled, the places 

which they had sampled was limited to urban areas, which were comparable to the urban places we 

had researched. Some of the results serve to explain some of our results, especially for urban sampled 

soil pollutions in our investigation. In their paper, the concentrations of heavy metals in irrigation 

water, chemical fertilizer, and organic wastes (cow manure) were investigated. It found that the 

concentrations of all heavy metals measured in irrigation water samples in Nanjing were much lower 

than the most stringent grade of the Chinese environmental quality standards for surface  

water—National standard I [31]. It also found high concentrations of heavy metals such as Cu and Zn 

in cow manure, but none of the chemical fertilizers contained high concentrations of heavy metals. All 

these indicated that much of soils heavy metals in vegetable-growing land originated from heavy 

applications of cow manure. 

Could the soils were accumulating heavy metal from industrial, transportation, atmospheric 

sedimentation and the other sources? Suspended particulates (TSP) in the atmosphere of Nanjing 

compared with the background values of soil indicated that atmospheric dustfalls have elevated heavy 

metal concentrations as a whole, except those of Cr which mainly derived from soil particles [32].  

Pb (46%–64% in total)and Cu (49%–73% in total) were residual fraction, whereas Zn (31%–69% in 

total) mainly in the oxidizable fraction in soils in suburban of Nanjing [33],which indicate that 

majority Zn was mainly from artificial contaminant, a majority of Cu and Pb were mainly from soil 

parent material. Another research implied that Pb mainly accumulates from heavy traffic, Cu mainly 

accumulates from cow manure, and Zn accumulate by irrigation with sewage and urban surface  

water [34]. All these suggested that different metal varied in main contaminant sources.  

3.3.2. Correlation coefficient analysis in heavy metals 

It has been confirmed in our research that the concentrations of most soil heavy metals are 

significantly higher in urban than suburban and rural areas. And there were no significant differences 

between suburban and rural regions (Table 1). Therefore, Pearson’s correlation coefficients of heavy 

metal elements in top-layer and sub-layer were calculated in two groups (1) urban and (2) suburban 

and rural regions. They are summarized separately in Tables 4, and 5. 
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Table 4. Pearson’s correlation matrix for the metal concentrations of top- layer of soil. 

  Urban   Suburban and rural area  

Element Pb Zn Cr Hg  Pb Zn Cr Hg  

Pb           
Zn 0.843 *     0.045     
Cr −0.767 * −0.397    0.634 0.543    
Hg 0.874 * 0.892 ** −0.606   0.240 0.363 0.318   
Cu 0.888 ** 0.939 ** −0.608 0.857 *  0.570 0.124 0.818 * 0.209  

The left lower part is the correlation coefficient; the right upper part is the significance level.  
* P < 0.05 (2-tailed); ** P < 0.01 (2-tailed). 

Table 5. Pearson’s correlation matrix for the metal concentrations of sub-layer of soil.  

  Urban   Suburban and rural area  

Element Pb Zn Cr Hg  Pb Zn Cr Hg  

Pb           
Zn 0.202     0.772 *     
Cr −0.590 0.011    0.885 ** 0.553    
Hg 0.903 ** 0.057 −0.416   −0.176 0.026 −0.322   
Cu 0.422 0.307 0.298 0.278  0.723 0.594 0.468 −0.010  

The left lower part is the correlation coefficient; the right upper part is the significance level.  
* P < 0.05 (2-tailed); ** P <0.01 (2-tailed). 

From Table 4, in the top-layer of urban soil, Pb, Zn Cu, and Hg are significantly positively 

correlated, which may suggest a common origin, while Cr is negatively correlated with the other 

metals, reflecting different sources of Cr from other elements. No significant differences were found 

among the 3 types of regions (urban, suburban and rural) for Cr (Table 1), which indicated that no or 

little artificial contaminant accumulated Cr. All these suggested that Cr probably derived from soil 

parent material in urban soil. In the top-layer of the suburban and rural regions, there are no significant 

correlations among Pb, Zn Cu, and Hg, while there is a significant positive correlation between Cr and 

Cu. From Table 5, in the sub-layer of urban soil, Pb and Hg are significantly positively correlated, 

while in the suburban and rural regions, Pb are significantly positively correlated with Zn and Cr. 

Many researchers indicated that heavy metal pollution in soil is mainly concentrated in the upper layer 

(0–10 cm) of the top ploughed layer [22-24]. Correlation coefficient of sub-layer of our research 

induced that Pb, Zn and Cr were likely from soil parent material in suburban and rural regions.  

3.3.3. Principle Component Analysis (PCA) in top-layer and sub-layer 

PCA and cluster analysis (CA) are the most common multivariate statistical methods used in 

environmental studies [35,36]. In order to identify the heavy metals relationship, heavy metal elements 

in top-ayer and sub-layer were calculated separately by PCA method. 2-D plots of the PCA loadings in 

top-lay and sub-layer are presented in Figure 2. (Because two factors can account for 92.93% of the 

total variance in top-layer, and 81.93% in the sub-layer, 2-D plots (PC1 vs. PC2) of the PCA  

were draw.) 



Int. J. Environ. Res. Public Health        

 

 

1812

Figure 2. PCA loading 2-D plots (PC1 vs. PC2) for 5 heavy metals. 

 

The relationships among the five heavy metals are readily seen in Figure 2. In the top-layer plot,  

Cr and a group (Zn, Cu, Hg and Pb ) are separated by a large distance in the 2-D PCA loading plot, 

which may suggest that the two are poorly correlated and have different sources. In the sub-layer plot, 

Cr, Pb, Hg and a group (Zn, Cu) are separated clearly in the 2-D PCA loading plot, which may suggest 

they have different sources. 

3.4. Land-Use Planning Concerned with Heavy Metal Pollution  

As the above analyses show, almost all heavy metals’ mean are degressive along with the urban to 

rural gradient, and vegetable soils were contaminated with Zn, Pb, Hg and Cu, especially in urban 

region [5]. Urban farmland soil pollution with heavy metal has been reported in many cities in the 

world. Heavy metals can exert detrimental effects on human health and on the environment in big 

cities [26]. Pb, Zn, Cr, Cd and Hg, which are considered very toxic elements, are of primary concern in 

soil and food contamination in recent literature [11,37-39]. Data had demonstrated that both Pb, Cd 

and Hg in vegetables posed substantial risk to local residents in China [40,41]. Heavy metals, such as 

Pb and Zn from heavy traffic, Hg from thermoelectricity power stations and combustion of fossil fuels, 

accumulated in most big cities in China. However, in the current study, regions near to urban and the 

suburban primarily plant vegetable and are the main vegetable production areas of cities, because that 

planting vegetables in urban and the suburban is more convenient transportation and better economic 

benefit than rural regions. Metal concentrations in vegetables and vegetable consumption through the 

foodchain poses a substantial risk to local residents, although the actual risks to local populations 

remains to be examined. The procedures of soil remediation are expensive and sometimes difficult to 

perform. Therefore heavily polluted soils have to be excepted from food production [42] and land use 

planning should be based on heavy metal pollution in the soil. Generally, we should avoid production 

of leafy vegetable and root plants in polluted areas, whereas leguminous plants and fruit plants could 

be grown under certain conditions [43]. Further investigation should be done to determine whether and 

what kind of agricultural production could be established in areas in close proximity to urban areas. 

Heavily polluted areas, such as urban regions, should avoid food production according to relevant 

reference standards and should be altered to non-agricultural land-use (recreation areas, construction 

sites, trade and industry areas, etc.). 
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4. Conclusions 

The conclusions show that: (1) In soil used for vegetable production, the contents of heavy metals 

decrease gradually from urban to rural areas; the contents of main heavy metals in urban areas are 

significantly higher than suburban and rural areas; (2) the means of the levels of heavy metals, which 

were calculated by subtracting the sub-layer (15–30 cm) from the top-layer (0–15 cm), are all above 

zero and large in absolute value in urban areas, but in suburban and rural areas, the means are all near 

zero and small in absolute value. The findings presented here indicate that the location and the time 

frame of cultivation are important factors in determining the extent of heavy metal levels. Almost all 

heavy metals’ means are degressive along the urban-rural gradient, and vegetable soils were severely 

contaminated by Zn, Pb, Hg and Cu, especially in urban regions. Land-use planning should be 

considered as a good choice to avoid vegetable consumption posing substantial risk to local residents.  
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