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Abstract: Economists have long been interested in measuring distributional impacts of 

policy interventions. As environmental justice (EJ) emerged as an ethical issue in the 

1970s, the academic literature has provided statistical analyses of the incidence and causes 

of various environmental outcomes as they relate to race, income, and other demographic 

variables. In the context of regulatory impacts, however, there is a lack of consensus 

regarding what information is relevant for EJ analysis, and how best to present it. This 

paper helps frame the discussion by suggesting a set of questions fundamental to regulatory 

EJ analysis, reviewing past approaches to quantifying distributional equity, and discussing 

the potential for adapting existing tools to the regulatory context. 
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1. Introduction 

Economists have been interested in analyzing the distribution of environmental benefits for almost 

as long as they have been calculating the benefits themselves. While the tools for conducting benefits 

analysis are well developed, those for examining equity, or distributional effects, are less so.  
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Most OECD countries routinely perform a regulatory impact analysis of significant new 

environmental rules [1]. These analyses typically contain an estimate of monetized benefits and costs 

of options under consideration. They may also discuss how these benefits and costs are distributed 

across various subgroups, economic sectors, or regions. In the U.S., various Executive Orders (EO) 

require some distributional analysis (e.g., EO 13045 addresses children’s health, EO 13211 addresses 

energy issues). Relevant to this discussion, EO 12898, Federal Actions to Address Environmental 

Justice in Minority Population and Low-Income Populations, requires federal agencies to address 

“disproportionately high and adverse human health or environmental effects…on minority populations 

and low-income populations” [2]. To date, however, implementation of EO 12898 has been slow and 

inconsistent (see [3,4] for critiques of U.S. Environmental Protection Agency (EPA) implementation). 

To be useful in the policy-making process, distributional analysis should facilitate the ranking of 

alternative outcomes. Such rankings are inherently normative, and thus should reflect the views of 

society as opposed the views of the technical staff preparing the analysis. There is a tradeoff. Purely 

descriptive analysis such as pollution exposure rates by subgroup may be difficult to digest and 

interpret in a consistent manner. However, methods for aggregating the data into easily presented 

rankings have the potential for implicitly reflecting staff value judgments. Ideally, the analysis would 

be prepared in a manner that is easy to understand yet flexible enough to allow normative judgments to 

be imposed explicitly.  

In addition, for purposes of both decision-making and environmental justice there is a need for 

consistency and transparency. These concepts are related. Consistency implies that the decision-maker 

uses a similar framework to make decisions across rules. If a certain distribution of outcomes is 

preferred to another for one pollutant, then a similar ordering should be preserved for others. For the 

purposes of EJ, defined by the U.S. EPA to include “fair treatment and meaningful involvement,” 

transparency in decision-making is essential [5]. Interested parties should be able to identify the 

information and methodology used to make a decision is a way that is clear and accessible. In 

identifying methods for use in EJ analysis for regulatory policy we are cognizant of the need for both 

consistency and transparency.  

Here, we present various methods used in the (mostly) economics literature to quantify the 

distribution of environmental impacts, and evaluate their usefulness through the prism of how the 

results can be used to guide the environmental regulatory process. The few examples discussed here 

are not intended to be comprehensive (for recent reviews of the EJ literature see [6-8]). We begin 

Section 2 with a discussion of three fundamental questions that a distributional analysis of 

environmental policy options could address. In Section 3 we describe efforts in the literature to 

describe environmental or health outcomes for different subgroups. Since the objective of most of 

these studies is to describe existing distributions, we discuss how they may be adapted to the purpose 

of evaluating prospective policy options. In Section 4 we describe methods (Lorenz curves, 

concentration curves, and inequality indices) to aggregate this information in a way that allows one to 

rank policies in a transparent and consistent manner. In Section 5 we offer concluding thoughts and 

some potential steps forward. 
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2. Three Fundamental Questions for Regulatory EJ Analysis 

Environmental justice is a concern that certain subgroups, typically defined by race or income, have 

historically borne a disproportionate share of environmental burdens. In the context of new regulations 

it is important to outline a consistent set of questions a distributional analysis of environmental policy 

could address.  

With regulatory impact analysis the primary concern is distributional effects associated with options 

under consideration, as opposed to the causes of inequities typically investigated by the academic 

literature. The goal is to provide the decision-maker and public with information regarding the degree 

to which regulatory options under consideration remove or worsen previous disparities in 

environmental outcomes for vulnerable communities, or create new disparities where none existed. As 

such, it is important to analyze changes in distributions of environmental outcomes between baseline 

and various policy options, rather than just the distribution of changes (since an unequal distribution of 

environmental improvements may actually help alleviate existing disparities).  

Before turning to the questions to guide the analysis, it is important to identify the outcome to be 

measured. Options include pollution (e.g., parts per million of ozone), health effects (e.g., number of 

cases of asthma), and monetized benefits (e.g., willingness to pay for reductions in asthma cases). Here, 

we adopt the position dominant in the environmental justice community (if not the economic literature) 

that the distribution of physical outcomes (e.g., pollution or health effects), rather than their monetized 

value is most appropriate for regulatory analysis. 

Methods for attributing monetary value to environmental outcomes (such as health impacts) 

typically employ measures of individuals’ willingness to pay for a small improvement in 

environmental quality. These monetary values can be used to analyze the distribution of changes in 

environmental outcomes, but are not useful for comparing distributions of outcomes before and after a 

policy intervention. Such a comparison would require individuals’ total money-metric utility (i.e., not 

just the value of the change in utility), which current techniques generally do not calculate (for an 

overview of methods for monetizing environmental outcomes, see [9]). 

We also focus exclusively on the distribution of environmental outcomes, not the distribution of 

economic costs (e.g., higher prices or reduced employment) associated with a particular regulatory 

option. For a recent survey of the economic literature analyzing the incidence of the costs of 

environmental regulation (primarily by income group), see [7]. Whether to use pollution or health 

effects depends on data availability. Since they most directly affect human well-being, health effects 

are the most relevant outcome. When this information is unavailable, pollution exposure levels may be 

a useful proxy, followed by ambient pollution concentrations, plant emissions, and proximity to a 

source [10,11]. 

It is useful for the analysis to begin with an understanding of the baseline distribution of the 

environmental outcome of concern: 
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(1). What is the baseline distribution of the environmental outcome? 

Establishing a proper baseline distribution is crucial for two reasons. First, identification of a  

pre-existing disparity presents an opportunity to tailor policy options to address the disproportionate 

impact directly. Second, the baseline establishes a marker for determining distributional impacts of the 

policy itself. Once the baseline has been established, it is useful for the analysis to predict the ex-post 

distributional effects of the regulatory options under consideration. 

(2). What is the distribution of the environmental outcome for each regulatory option? 

While the options under consideration may be implemented uniformly (e.g., the same standard 

would apply to all individuals, geographic locations, or types of facilities), the distribution of the 

pollutant in the predicted post-regulatory scenarios may differ for several reasons. First, the type of 

regulation may affect the post-regulatory distribution. For example, a uniform rate-based standard 

(per unit of output) means that facilities with higher output will generally have higher post-regulatory 

emissions. Second, to the extent that different types of individuals (e.g., low-income) have different 

sensitivities to a given pollutant or different exposure pathways, some individuals will experience a 

different post-regulatory scenario than others. Answering this question for prospective options requires 

the capacity to model alternative outcomes. Finally, it is important to assess the degree to which 

various policy options create or remove disproportionate impacts. 

(3). How do the policy options being considered improve or worsen the distribution of the 

environmental outcome with respect to vulnerable subgroups? 

Answering this question requires a methodology for comparing the answers to the first two 

questions in order to determine whether a regulation represents an improvement to the status quo and 

other considered options, and ideally an indication as to how much.  

Responses to these three questions can be presented in conjunction with net benefits arising from 

the policy options. This combination of information would enable policy makers to understand the 

possible tradeoffs between environmental justice and overall economic efficiency implicit in the 

decision-making process. It is important to note that there may be limited opportunities within the 

policy design itself to address any post-regulatory distributional effects. Regardless, clear 

documentation and acknowledgment of those effects is informative to the decision-maker and the 

public, and may help guide future policy. 

These three questions provide a basic framework to inform the distributional analysis for 

environmental regulatory policy. This framework also enables analysts to identify if and how existing 

disparities may be addressed through the regulatory context, recognizing that legal, political, and 

enforceability constraints may prevent any action in this regard. 

Note that such an analysis may not always be feasible. Data constraints may prevent the 

identification of existing or post-regulatory disparities. The geographic distribution of the pollutant 

may be unknown, for example. While advances in air monitoring and modeling allow for more 

detailed assessments of how pollutants are dispersed, such analytical efforts require significant time 

and resource allocations. Some water pollutants are even more problematic as little is known about the 

fate of a pollutant after discharge. 
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Related to the issue of data constraints is the fact that both pollution dispersion models and 

demographic information are imperfect. Regarding pollution there is uncertainty in the models or 

monitoring or sampling used to generate baseline and control scenarios. The quality of the data is also 

likely to vary across pollutants. With respect to demographic information, data such as income levels 

are typically publicly available only at an aggregated level. The U.S. Census, for example, reports 

median income at the block group level. As it is beyond the scope of this article to develop tools for 

incorporating uncertainty, decision-makers’ risk preferences, and other practical implementation issues 

into the distributional analysis, we leave these topics for future research. Other authors have examined 

related issues, however. Hubbell et al. [12], for example, discuss the role of error in air pollution 

dispersion models. For a discussion of methods for incorporating sampling error into inequality index 

analysis, see [13-15]. For a methodology to address the bias introduced by assigning median income to 

all residents of a Census block group, see [16]. 

Moreover, answering these three questions is by no means sufficient for addressing all EJ issues. 

For example, analysis that focuses on a single pollutant typically does not account for the contribution 

of cumulative effects from other pollutants or multiple exposures from sources outside the scope of the 

proposed rule. Disproportionately affected communities may suffer from multiple stressors that have 

accumulated over decades. One specific pollutant may show little impact or may even be distributed 

fairly evenly. In an area with multiple waste sites or polluting facilities, however, the marginal effect 

of a particular pollutant may be greater than in a community without such stressors.  

Related to this point, analysis focusing on pollution concentrations or exposure levels, rather than 

health outcomes may also fail to account for baseline differences in health risks across racial and 

ethnic groups and income categories. Such differences may exist due to genetic, cultural, or other  

un-accounted factors. There is increasing evidence that the same exposure affects people differently, 

and those effects can vary along racial and ethnic lines and socioeconomic status. In addition, 

individuals with low incomes have less access to averting behaviors and resources, like medical care, 

alternative water sources, or housing options that allow them to avoid exposures. Thus, assuming that 

exposure affects everyone in the same manner may be misleading. 

With these caveats in mind, we now discuss ways to present information in a way that is helpful for 

addressing these three questions.  

3. Describing Distributions 

A tradeoff exists between providing information in a way that is useful to policy makers and 

imposing ethical assumptions on the part of the analyst. This section describes quantitative methods 

that have been used to describe the distributional effects of various environmental outcomes with a 

minimum of ethical input.  

Distributional effects are quantified in a variety of ways in the academic literature. While a 

consensus has not been reached on how best to analyze, quantify, and present the results of an 

environmental justice analysis, a suite of methods has emerged over the last few decades that can be 

categorized as visual displays, summary statistics, and regression results. The variation in methods 

both within and across these categorizes can be attributed to author preference or expertise, as well as 
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the research question at hand. In this section we survey key methods for quantifying distributional 

effects and evaluate their effectiveness in addressing the policy questions outlined above. 

3.1. Visual Displays 

The use of charts, graphs, and maps can be useful to provide an overview of the data and results 

used in analysis. Beginning with the earliest study in our review, Dorfman [17] examines the 

distribution of benefits and costs of environmental programs. Results are shown graphically as a 

percent of household income. Shadbegian et al. [18] reported one of the few distributional analyses of 

a specific rule. They show the distribution of monetized benefits and costs from the SO2 trading 

program across U.S. regions. Results are presented using tables and maps.  

The graphical displays, as well as those that use maps to present information (e.g., [18-21]) are a 

useful complement to other quantifiable information. Geographic Information System generated maps 

are useful for suggesting trends, showing the general location of where pollution is greatest or 

disparities are most pronounced. However, in terms of analyzing the baseline or ex-post distribution of 

pollution, such displays are suggestive at best, and lack the level of detail required in a  

decision-making context. In particular, they can be effective at conveying differences between 

baselines and policy options if the differences are stark. For more subtle changes, however, they are 

less useful. 

3.2. Summary Statistics 

Summary statistics are a key component of any empirical analysis, providing the reader with an 

important overview of the data used in the study. These statistics typically include information on the 

number of observations associated with a particular variable, some measure of central tendency, such 

as the mean or median, and a measure of dispersion, such as the standard deviation. Although they are 

quite simple, these statistics can provide useful insights into the patterns of disparities regarding 

environmental outcomes. In addition, summary statistics can be applied consistently across regulatory 

scenarios and are typically transparent to the reader. Information on the quantity of a particular 

pollutant across income quintiles or racial groups, for example, gives insight into whether or not the 

pollutant is evenly distributed, and this may be accompanied by some measure of statistical 

significance. With respect to the questions outlined above, these statistics are useful for establishing 

baseline incidence of environmental burdens, and can be used to measure both post-regulatory 

incidence and changes in incidence. 

Asch and Seneca [22] and Harrison and Rubenfield [23] are two early studies of the distribution of 

pollution in the U.S. Both studies examine the distribution of air pollution across various demographic 

variables, including income and race. Relevant for the policy questions we pose, the authors analyze 

both the baseline and the changes in air pollution due to current regulations. Asch and Seneca [22] find 

that the baseline distribution of particulate matter was regressive. Using the correlation between seven 

categories of income and particulates in 284 U.S. cities they find that z-statistics show a positive 

correlation for the lower income groups and that regulations helped ameliorate these effects. 

Harrison and Rubenfield [23] show baseline and control scenario exposure to NOx concentrations 

for seven income groups in Boston. They show the concentration levels across the income groups for 
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the baseline and control scenarios and make some qualitative statements about the results (e.g., the 

distribution of baseline concentrations is fairly even across income groups, but the poor receive more 

benefits from reductions).  

More recently, Brajer and Hall [24] examine changes in ozone and particulate matter with respect to 

various demographic variables for the Los Angeles basin for 1990–1999. The data are presented as 

“population weighted pollution levels” by county, race and income. A Spearman rank correlation 

analysis shows correlation between pollution and socio-economic variables. They find that pollution 

has fallen over the decade in the region, but the air quality gains are not evenly distributed.  

While this brief review is not comprehensive, it provides a sense of the type of information 

summary statistics convey in the literature. The methods are straightforward and easily understood, 

and are useful for answering the first two questions in Section 2. They provide useful baseline 

information regarding outcomes across subgroups, as well as the correlation between group 

characteristics and environmental outcomes. When combined with models that predict pollutant 

responses, they could provide similar information for alternative regulatory options.  

Summary statistics are unlikely to contain sufficient information regarding the third question, 

however. They are not useful for evaluating the relative merits of regulatory options (including the 

status quo) since they do not reflect distributions within subgroups. Such information can be important 

since the impact of a pollutant may be more of a concern if it is concentrated in a hotspot among a 

relatively small group of individuals than if it is evenly spread across the sub-population. In such 

situations, focusing on averages or correlations can be misleading since a low average exposure may 

mask very high exposure for a subset of individuals within a group. There may be an undetected EJ 

problem if such hotspots occur primarily in vulnerable subgroups. 

In addition, these statistics do not provide a clear, systematic ranking of alternatives. Different 

policy options may involve tradeoffs between total improvements across all groups and reducing the 

disparities among groups. Simple averages or correlations provide no guidance regarding a transparent 

way to resolve these conflicts within one regulatory analysis, much less consistently across rules. 

3.3. Regression Analysis 

Regression analysis is a cornerstone of empirical economic analysis. It allows researchers to use 

data to provide internally consistent, unbiased hypothesis testing. In terms of environmental justice, 

regression analysis is frequently used to identify the existence and causes of various environmental 

outcomes across subgroups. By controlling for confounding factors, researchers can identify impacts 

of key independent variables on measures of interest. There are numerous ways to conduct regression 

analysis in the context of EJ; here we highlight a few.  

A common framework is to use a probability-based model to account for the fact that not all 

locations experience a particular outcome (e.g., toxic releases or facility siting), and there may be 

systematic differences between areas with and without the release. Baden et al. [25] conducted an 

analysis of Superfund sites using a logit model and control for location characteristics, such as 

population density, population size, and state fixed effects. Results show a significant and positive 

relationship between the percent Black and Hispanic and the probability of having a Superfund site, 

and that the higher the income the less likely the area has a site. 
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Downey et al. [26] examine toxicity-weighted U.S. air pollution Risk-Screen Environmental 

Indicators data and their distribution across race and ethnicities. The authors assign each of six race 

and ethnic groups within metropolitan areas a score based on exposure to air pollution. They use a 

logit model to examine how income affects the probability of receiving a high score, controlling for 

community characteristics, such as density, employment, region, etc. They find a strong link between 

income and disparities in releases across 329 metropolitan areas, but the link with race is less significant. 

Wolverton [27] uses a conditional logit model to examine plant siting decisions by using of 

community characteristics at time of siting, rather than after construction. This distinction is important 

since facility siting can cause housing prices or wages to change in affected areas, which in turn can 

lead to migration that alters a location’s demographic characteristics. Controlling for several variables 

including property values, wage rates, education, employment, etc., she finds that income, but not race, 

affects location decisions. 

Arora and Cason [28] use a Tobit model to examine the effect of neighborhood characteristics on 

Toxics Release Inventory emissions by ZIP code for 1990. They first estimate the probability that a 

geographic area has a facility with releases, and estimate the size of the release in a second stage. The 

authors find that there is a significant coefficient on race variables in the Southeast. The coefficients 

suggest that areas with more non-white residents are more likely to have higher emissions. Income 

follows an inverted U-pattern; emissions initially increase with income until reaching a point after 

which emissions fall as income rises.  

Fowlie et al. [21] use a difference-in-difference approach to examine the relationship between 

emissions of facilities participating in the California Regional Clean Air Incentives Market and 

demographic variables. Their model allows them to examine emissions before and after 

implementation of the emission trading, controlling for county attainment status, community, and 

demographic variables. They compare effects of the trading policy with the counterfactual of 

traditional command and control regulation. They find that neighborhood demographic characteristics 

are not a statistically significant predictor of changes in emission levels.  

In general, regression analysis is useful for teasing out causal factors behind relationships between 

socio-economic variables and environmental outcomes. However, for purposes of an EJ regulatory 

analysis most (with the exception of [21]) do little to inform the question of baseline and  

post-regulatory scenarios. Conducting careful regression analysis is time and data intensive. 

Consequently, it is likely to be beyond the resources available for regulatory impact analysis. 

Moreover, while studies such as [21] are able to indicate effectiveness of race or income as a predictor 

of emissions for different policy alternatives, they are not designed to rank these alternatives. 

4. Ranking Distributions 

While the methods described in the previous section are useful for addressing many important 

questions, they do not rank outcomes in a way that answers our third question in a transparent manner. 

Fortunately, a set of tools for ranking distributions is relatively well developed in the context of 

income and health outcomes. The literature on applying these methods to rank environmental policy 

outcomes by their distributional impacts is still in its infancy, however.  
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In this section, we outline how this literature has been adapted to address environmental justice 

questions, identifying some shortcomings and suggesting some steps forward. We begin with a set of 

visual ranking tools, Lorenz and concentration curves, which allow one to determine easily if one 

distribution of outcomes is more “equitable” than another. These tools are only applicable, however, 

for a small set of possible distributional comparisons. 

We then discuss several inequality indices, the Gini coefficient, the concentration index, the 

Atkinson index and the Kolm-Pollak index. Unlike the visual ranking tools, these indices permit the 

analyst to rank any set of distributions. This universal applicability comes at the expense of imposing 

additional normative assumptions, however. This tradeoff can be most easily seen with the Gini 

coefficient and concentration index. Although these two indices can be derived respectively from  

the Lorenz and concentration curves, they do not provide identical information as the curves. The 

indices can rank distributions that the curves cannot, but they require the analyst to impose stronger  

normative restrictions. 

4.1. Visual Ranking Tools 

We begin with two visual ranking tools, the Lorenz curve and the concentration curve. These tools 

have the advantage of imposing relatively few ethical standards on an ordering; however, they are 

unable to provide a complete ranking of distributions. In addition, they do not provide much useful 

information regarding distribution of environmental outcomes across subgroups, limiting their 

applicability to EJ analysis.  

Lorenz Curves. If one accepts the ethical premise that it is always desirable to transfer a unit of 

pollution away from a highly exposed individual to a lesser exposed one, then Lorenz curves provide a 

means of ranking policy outcomes. Some hypothetical Lorenz curves for distribution of a pollutant are 

depicted in Figure 1. The horizontal axis of the graph indicates percentiles of the population ranked by 

pollution exposure: 10 corresponds to the ten percent of the population least exposed to the pollutant, 

50 corresponds to the half of the population least exposed to pollution, etc. The vertical axis represents 

the percent of pollution exposed by percentile. The black diagonal line depicts a perfectly equal 

distribution of exposure: the lowest 10 percent of the population experience 10 percent of the exposure 

the lowest 50 percent of the population experience half the exposure, etc. 

Curves A, B, and C represent three hypothetical Lorenz curves in which pollution is not distributed 

equally. In curve A, for example, the least exposed half of the population is exposed to 30 percent of 

the pollution, while in curve B the least exposed half experiences only 10 percent of the pollution. 

Lorenz curves have the useful feature that the farther away the curve is from the diagonal, the less 

equal is the distribution. This property can form the basis of a ranking system. Suppose A and B 

represent the predicted distributions of two regulatory options. For now, let us suppose that the two 

policies result in the same amount of pollution per capita. Option A results in a more equitable 

distribution than Option B. The only value judgment that needs to be imposed to make a preference 

ranking is that one care at all about distributional equity. It does not matter how much one cares about 

exposure at the top or bottom of the distribution. As long as one prefers a more equal distribution to a 

less equal one, a curve that is closer to the diagonal (such as A) is preferable to a curve that is farther 

(such as B). 
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Figure 1. Lorenz curves.  

 

 

Although Lorenz curve analysis imposes minimal value judgments on the part of the analyst, it has 

several drawbacks that limit its practical usefulness. First, it is only a partial ordering, meaning that it 

can only draw meaningful comparisons for options whose Lorenz curves do not cross. A policy 

generating curve C, for example, cannot be compared with curves A and B since it is closer to the 

diagonal for some range of the population, but farther for others. This property is particularly 

problematic if one is interested in several options since the more curves being analyzed the more likely 

that some will cross.  

Second, Lorenz curve analysis is ordinal; one can say that A is preferred to B, but not by how much. 

This ordinal property is related to a third issue. Lorenz curve analysis ignores differences in average 

exposure levels. For example, if we abandon the assumption that each distribution has the same 

average pollution level, the exposure levels of the most highly exposed individual in distribution B 

may be lower than the least exposed in distribution A. It may be undesirable to conclude that A is 

preferred to B simply because the exposure is more equitably distributed. Lorenz curves do not provide 

any means of evaluating a tradeoff between lower average exposure levels and a less equitable 

distribution. (The generalized Lorenz curve developed by Shorrocks [29], however, does allow a 

partial ordering of distributions with different means.) 

Finally, for purposes of environmental justice analysis, Lorenz curves have the shortcoming that 

they are not easily disaggregated by population subgroups. It is straightforward to use Lorenz curves to 

compare distributions of pollutants within a sub-group (e.g., define the population and exposure 

percentiles in terms of individuals below a poverty threshold). It is not so easy to use Lorenz curves to 

evaluate distributions across subgroups (e.g., to make statements to the effect that a regulation causes 

pollution to be more equitably distributed across racial groups). Although Lorenz curves can be 

decomposed by subgroup [30], this decomposition does not allow one to rank distributions as in the 

aggregate Lorenz curve analysis. 
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Concentration Curves. Like the Lorenz curve, the vertical axis of the concentration curve displays 

the share of an outcome variable experienced by a population. The horizontal axis displays the 

cumulative percent of the population ranked by socio-economic status (typically income). A Lorenz 

curve, in contrast, would display the population ranked by exposure. The height of the concentration 

curve indicates the share of the outcome experienced by a given cumulative proportion of the 

population. Figure 2 displays hypothetical concentration curves. A perfectly equal distribution of 

outcomes corresponds to a concentration curve along the 45° line. Kakwani [31] first developed this 

analysis to study income tax progressivity. Wagstaff et al. [32] proposed its use in measuring the 

equity of health outcomes. 

Figure 2. Concentration curves.  

 

Unlike Lorenz curves, concentration curves can cross the 45° line, and even lie completely above it 

if lower income is correlated with higher outcomes. Concentration curves can rank distributions in a 

manner similar to Lorenz curves; for a good outcome, a higher curve is socially more desirable. 

Concentration curve rankings implicitly employ social preferences such that it is always desirable to 

transfer a good environmental outcome away from a relatively rich individual towards a poorer one, 

even if the poorer individual is slightly poorer and significantly healthier [33]. Note that this normative 

judgment may be more controversial than the corresponding assumption used for Lorenz curve 

analysis (that it is socially desirable to shift good health outcomes to the relatively ill). 

Concentration curve analysis suffers from the same shortcomings as Lorenz curve analysis. It is 

unable to rank distributions whose curves cross, thus providing only a partial ordering. It is ordinal, 

and ignores differences in average exposure levels. It is also unable to evaluate changes in distributions 

between subgroups (other than those based on income). 

In general, both visual ranking tools have some advantages over the visual displays discussed in the 

previous section. In some cases, both Lorenz and concentration curves allow comparisons across 



Int. J. Environ. Res. Public Health 2011, 8         

 

 

1718 

policy alternatives. In addition, concentration curves provide information regarding equity of an 

environmental outcome with respect to one demographic variable of interest, income. However, both 

curves share the main shortcomings of the other visual displays; they are only effective at comparing 

distributions if there are sufficiently stark differences. If the curves for different policy options cross, 

this analysis provides no effective ranking methodology.  

4.2. Inequality Indices 

An inequality index is a mathematical tool for converting a distribution into a single number. That 

number can then be used to generate an ordering for any set of outcomes, thus addressing the partial 

ordering issue inherent in the Lorenz and concentration curve analyses. For example, a distribution 

with a higher inequality index number is less equal, and hence less preferred than one with a lower 

number. Moreover, some inequality indices can be decomposed in a manner that allows one to 

evaluate inequality both within and between subgroups of interest. An index value can also have 

cardinal (rather than just ordinal) significance, i.e., the magnitudes, not just the rankings, contain 

useful information. However, these useful features come at the cost of imposing subjective value 

judgments. In addition, their usefulness for evaluating distributions of bads can be problematic. 

Here, we focus on four families of inequality indices: the Gini coefficient, the concentration index, 

the Atkinson index, and the Kolm-Pollak index. For a discussion of other index numbers in the context 

of income distribution, see [34]; in the context of environmental outcomes, see [10]. These indices can 

be divided into the categories of relative (Gini coefficient, concentration index, and Atkinson index) 

and absolute (Kolm-Pollak index) indices. Relative indices are unaffected by proportionate changes in 

the outcome variable. They are therefore convenient for analysis of variables using different units of 

measurement (e.g., currencies for income analysis). In contrast, absolute indices are unaffected by a 

uniform shift in the outcome variable (i.e., the addition of a constant to every individual’s outcome). 

These properties are mutually exclusive, and there is no unambiguous reason to choose one category of 

index over another. As argued by [35], however, relative indexes can be misleading. Suppose the 

income of both members of a population of two individuals doubles. If prices do not change the 

difference in purchasing power between the two would also double, suggesting that the new 

distribution is less equal. An absolute inequality index would increase to reflect this change, while 

relative index would not. 

Blackorby and Donaldson [36,37] show that relative and absolute indices that depend only on one 

variable have an associated ordinal social evaluation function (the proofs do not apply to the 

concentration index since it depends on two variables, environmental outcome and income). The 

equally distributed equivalent (EDE) value of a distribution is the amount of the outcome variable that, 

if given equally to every individual in the population, would leave society just as well off as the actual, 

unequal distribution. The EDE thus embodies a set of social preferences and is a measure of social 

welfare that enables rankings of distributions with different means. The Gini coefficient, Atkinson 

index, and Kolm-Pollak index can all be expressed as functions of their associated EDEs. 

Choosing a specific type of index with which to rank policies is thus equivalent to choosing a 

particular social evaluation function on which to base the policy decision. Since the values of the 

associated social evaluation function do depend on the average value of the outcome variable (not just 
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the distribution), they provide an additional tool with which the analyst can compare policy outcomes 

that differ in both mean and distribution in a logically consistent manner. 

Although the social evaluation functions are ordinal, the associated inequality indices are cardinal. 

A relative index answers the question, “What percent of the average amount of the good would society 

be willing to sacrifice if the remainder were allocated evenly across the population?” An absolute 

index answers the question, “What is the amount of the good per capita society would be willing to 

sacrifice if the remainder were allocated evenly across the population?” Thus, magnitudes, not just 

ranking of the indexes are significant. 

Gini Coefficient. The Gini coefficient is the most widely used inequality index. Its popularity is 

likely due more to the fact that it is easily understood as an increasing function of the area between a 

Lorenz curve and the diagonal line representing perfect equality than to desirable theoretical properties. 

The Gini coefficient has the undesirable feature that the effect of a transfer on the index number 

depends on the individuals’ ranks, not the difference in outcomes. In contrast to the widely accepted 

principle that an inequality index should place greater weight on transfers among the relatively worse 

off, for a typical bell-shaped distribution a transfer between individuals in the middle of the 

distribution will have a higher effect on the Gini coefficient than a transfer between two similarly 

distanced individuals at either tail [38]. There are ways of modifying the Gini coefficient to introduce 

flexibility in the weights placed on different segments of the population [39,40]. These techniques are 

rarely used in practice, however. 

The Gini coefficient also has the undesirable property that the effect of a transfer on the index 

depends on the endowment of a third individual; if that individual is ranked between the first two, the 

transfer will have a greater impact than if not (since there will be a greater rank difference between the 

first two individuals in the former case). Finally, and particularly troublesome for EJ analysis, the Gini 

coefficient cannot generally be used to decompose aggregate inequality into within and between group 

components in an internally consistent manner [34]. Specifically, constructing an EDE for each 

subpopulation and then using these to construct an aggregate EDE for the entire population does not 

yield the same result as calculating the aggregate EDE directly. 

Although it is a simple matter to compute a Gini coefficient if the outcome of concern is a bad 

(rather than a good), the resulting measure does not have a sensible associated social evaluation 

function (since it would be increasing in the bad). It is an ordinal ranking of dispersion, but loses the 

cardinal interpretation of a relative inequality measure since the EDE is smaller than the mean (for a 

bad it should be larger). Thus, it does not indicate the percent increase in average pollution that could 

be tolerated in exchange for a perfectly equal distribution. Consequently, the Gini coefficient can 

provide useful comparisons for distributions with the same mean level of a bad, but cannot be used in 

conjunction with a social evaluation function to rank distributions with different means. Moreover, 

using the Gini coefficient in this way can be misleading since it can generate different policy rankings 

if one uses a bad as the outcome variable versus its complementary good. Calculating the Gini 

coefficient for ambient concentrations of parts per billion of an air pollutant, for example, yields a 

different ranking of policy outcomes than using the same data to calculate a Gini coefficient for parts 

per billion of “clean” air. 

There are several examples of applications using the Gini coefficient to analyze distributions of 

health and environmental outcomes. Among the first were [41], who used a Gini coefficient to track 
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evolution in age at death (a good) over time in Great Britain. Heil and Wodon [42] use a Gini 

coefficient to examine the distribution of predicted CO2 emissions across countries grouped by income. 

Millimet and Slottje [43] use the Gini coefficient to compare distributions of pollution across states 

grouped by income class. Since the Gini coefficient does not satisfy consistency in aggregation both of 

these studies required a group overlap term in addition to between and within group terms. Millimet 

and Slottje [44] use the Gini coefficient to evaluate the effect of regulatory compliance costs on the 

distribution of toxics reported in the U.S. Toxic Release Inventory across U.S. states and counties. 

They combine regression results with Spearman correlations between demographic characteristics and 

emissions to argue that policies that increase inequality as measured by the Gini coefficient increase 

racial disparities. In these studies, the Gini coefficient has been used primarily as an ordinal measure of 

dispersion, without attendant welfare implications. 

Concentration Index. The concentration index is similar to the Gini coefficient, being an 

increasing function of the difference between the 45° line and the concentration (rather than Lorenz) 

curve. For details on the practical use of the concentration index, see [15]. Its value ranges from −1 (the 

entire outcome is borne by the poorest individual) to 1 (the entire outcome is borne by the wealthiest 

individual). Since the concentration curve can cross the 45° line, zero either indicates perfect equality or 

that the area above the curve is exactly equal to the area below it. As with the Gini coefficient, the effect 

of allocating a unit of the outcome variable to an individual is weighted by the individual’s rank. With 

the concentration index, the relevant rank is income, rather than the outcome variable.  

The concentration index can provide a complete ordering in the sense that lower values are always 

more “pro-poor” (for distribution of a good) than higher values. The cardinal relationship between 

magnitudes of concentration index numbers lacks the clear intuition of the other three indices 

considered here, however. This is not to say that there is no intuitive interpretation. Koolman and van 

Doorslaer [45] provide a link between the index value and the proportionate amount of the outcome 

variable that would need to be redistributed from the richest to the poorest half of the population in 

order to attain an index value of zero (not necessarily equality). 

Like the Gini coefficient, the concentration index value depends on individuals’ ranks, not absolute 

differences. It also shares the trait that ordering based on the concentration index can be sensitive to 

whether the outcome variable is expressed as a good or its “bad” complement [46]. It inherits from the 

concentration curves the questionable normative assumption that transfers of a good environmental 

outcome from rich to poor is always desirable [47]. 

Atkinson Index. The Atkinson index satisfies several desirable theoretical properties lacking in 

other relative indices [35,36,38]. Among these are that it is a function of individual allocations rather 

than rank, and it can be disaggregated into subgroups in a consistent manner (see also [48]). 

In its formula, the Atkinson index explicitly incorporates ethical considerations with an inequality 

aversion parameter that ranges from zero to infinity. This parameter introduces some flexibility, 

allowing the analyst to specify the amount society is willing to trade a reduction in the outcome 

variable for one individual for an increase for another. A value of zero implies that society is 

indifferent between transfers between any two individuals. The higher the parameter’s value, the more 

weight society places on transfers to individuals with lower outcomes. Since the choice of a parameter 

value is entirely normative, it is common to calculate Atkinson indexes for several values to determine 

how sensitive rankings are to the choice. 
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Although the Atkinson index has many desirable properties when used to analyze distributions of 

goods, it is not so convenient for analyzing bad outcomes. As with the Gini coefficient, inputting a bad 

into the Atkinson formula removes any cardinal welfare significance since the associated social 

evaluation function would be increasing in the bad. It also causes the index to place more weight upon 

the most well-off individuals (those with low outcomes), rather than the worst off. The Atkinson index 

is generally not defined for negative numbers, thus precluding a simple redefinition of bads in that way. 

Even for examples in which negative values are defined, the Atkinson Index generates the perverse 

result that a progressive redistribution reduces social welfare [49]. 

Transforming a bad into a good by replacing it with its complement (e.g., parts per billion of a 

pollutant to parts per billion of “clean” air, or the probability of not dying from cancer) may have the 

undesirable result of rendering an index value so small as to be within rounding error. To put this in 

perspective, consider the relative income distribution of a society of billionaires who differed in wealth 

by only a few dollars. It would be almost perfectly equal, with the value of the corresponding Atkinson 

index being extremely close to zero. Note that this does not mean that the distributional effects are 

insignificant. If the good were clean air or probability of not dying from cancer the percent reduction 

society would be willing to give up for an equal distribution might be quite small, but the value of that 

reduction might be significant. Nonetheless, presenting the results in a manner such that a regulation 

changes the Atkinson Index by a miniscule amount may not be easy to interpret. 

Although the Atkinson index is commonly used in income distribution analysis, it has rarely been 

used to measure environmental or health outcomes. Waters [50] used an Atkinson index to analyze 

distribution of access to health care (a good) in Ecuador. Levy et al. [20] used the Atkinson index to 

evaluate the distribution of mortality risk resulting from alternative power plant air pollution control 

strategies in the United States. Levy et al. [51] used the Atkinson index to analyze reduction in 

mortality risk from particulate matter reductions from regulating transportation. Each of these studies 

used the Atkinson index as a measure of dispersion without welfare significance.  

Kolm-Pollak Index. The Kolm-Pollak index shares the desirable theoretical properties of the 

Atkinson index [35,37,48]. It also uses an inequality aversion parameter to specify the relative 

importance of allocations to different segments of the population. Higher values correspond to greater 

weight being placed on the worse off and zero indicates complete indifference to the allocation. 

In contrast with the other indices examined here, the Kolm-Pollak index readily accommodates bad 

outcomes. It is inappropriate to input bad values directly into the index. However, one can simply 

multiply them by minus one and add them to some arbitrary benchmark. This operation preserves the 

appropriate social evaluation function ranking and is equivalent to measuring the distribution of a 

complementary “good.” The property of an absolute index that adding the same amount to everyone in 

the population does not change its value helps in this regard; the value of the index is independent of 

the benchmark level. To date, the Kolm-Pollak index has not been used in the analysis of environment 

or health outcomes, and there are few examples of its application in income analysis (an exception  

is [52]). 

In general, the Atkinson and Kolm-Pollak inequality indices have the potential to inform all three 

questions posed in Section 2. They can provide a concise snapshot the dispersion of environmental 

outcomes for baseline and policy scenarios, both within and across population subgroups. In terms of 

ranking outcomes, they can be used to determine whether policy alternatives improve the dispersion of 
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outcomes, holding the total amount of the outcome constant. For good outcomes the social evaluation 

functions associated with both indices can also be used to rank alternatives for which both the 

dispersion and total amount of pollution vary. Only the Kolm-Pollak index appears suitable for 

evaluation of bad outcomes, however. 

5. Conclusions  

For at least the past thirty years, the academic literature has used a variety of methods for 

quantifying the relationship between environmental quality and vulnerable sub-populations. In general, 

methods have been chosen with respect to their usefulness in answering questions posed by a particular 

study. As a result, there has been little attempt to develop a consistent framework to be used across 

studies, much less one suitable for the questions likely to be important for regulatory analysis. While 

use of a common environmental justice metric would be convenient for making comparisons and 

drawing conclusions across academic studies, it is essential for undertaking regulatory impact analysis 

in a consistent and transparent manner across different rules. In this section we discuss how well the 

tools presented in Sections 3 and 4 address the questions for regulatory EJ analysis posed in Section 2.  

Visual displays, whether GIS maps, Lorenz curves, or concentration curves have the advantage of 

illuminating sharp disparities. Maps, for example, can be effective at indicating situations in which 

pollution levels are highly concentrated in locations with large numbers of residents belonging to 

vulnerable subpopulations. They are less useful for analysis of alternatives in which differences are 

less pronounced and not obvious to the naked eye. Nor do they suggest a means of ranking tradeoffs 

between total pollution reductions and reductions in disparities. Similarly, Lorenz and concentration 

curves are most helpful when there are sharp differences in policy options. They are not as informative 

if policy alternatives generate curves that cross. In general, visual displays have the disadvantage that 

they are not easily comparable across many alternatives, whether for an analysis of several options for 

implementing a given rule, or a comprehensive analysis across rules. 

Subgroup summary statistics such as mean exposure rates have the advantage of being simple to 

calculate and easily understood. They provide useful information regarding baseline conditions, 

potentially providing a signal if vulnerable subgroups are more highly exposed.  

These statistics have two important shortcomings, however. First, they do not provide detailed 

information regarding distribution of outcomes within a group. This information can be important 

since the impact of a pollutant may be more of a concern if it is concentrated in a hotspot among a 

relatively small group of individuals than if it is evenly spread across the sub-population. Second, they 

do not provide a clear ranking of alternatives in a systematic way. Different policy options may 

involve tradeoffs between total improvements across all groups and reducing the disparities among 

some groups. Simple averages do not provide a transparent way to resolve these conflicts. 

Regression analysis can be effective in determining causality (e.g., if race is a determining factor in 

pollution exposure). This approach can be useful for identifying existing baseline disparities and for 

conducting retrospective studies. It does not appear to be well suited, however, for ranking impacts of 

hypothetical regulatory options.  

Inequality indices seem to be a promising tool for addressing all three questions posed in Section 2. 

They provide a means of evaluating the distribution of environmental outcomes both within and across 
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subgroups at baseline. Inequality indices can use model simulation results to predict distributional 

effects of various regulatory alternatives. Moreover, due to their associated social evaluation functions, 

they provide a transparent and consistent means of ranking alternatives for which both total pollution 

levels and their relative distributions vary. They do so at the cost of imposing restrictive value 

judgments on the analysis, especially with respect to the level of inequality aversion. Sensitivity 

analysis over a range of inequality aversion parameter values can moderate this normative influence. 

Inequality indices have the advantage of a robust theoretical literature describing their properties as 

well as many practical applications in the context of income distribution analysis. Two of the most 

commonly used indices in that context, the Gini coefficient and the Atkinson index, have undesirable 

theoretical properties if used to measure the distributions of a “bad” like pollution, rather than a “good” 

like income. Specifically, the corresponding social evaluation functions are not well behaved, thus 

invalidating their potential for ranking options that have different tradeoffs between total 

improvements and reducing disparities. The concentration index, commonly used to evaluate health 

outcomes by income levels, has a relatively weak theoretical foundation; the corresponding social 

evaluation function is not as well understood. Perhaps more importantly for EJ analysis, however, is its 

inability to evaluate distributions across subpopulations that are not defined by income. 

In contrast, the Kolm-Pollak index shares desirable theoretical traits of the Atkinson index while 

being able to accommodate evaluation of distributions of bads. In contrast with the other indices, 

however, it has a thin record of empirical applications in the context of income distribution and, to our 

knowledge, no published applications in the context of environmental outcomes. 

Where does this leave the analyst in terms of determining a consistent and transparent method for 

evaluating distributional effects in regulatory analysis? Inequality indices show potential for meeting 

the needs of consistency in a regulatory analysis. Data are likely to be available across regulatory 

settings to estimate a Kolm-Pollak index, which shows the most promise for evaluating adverse 

environmental outcomes. This index could thus enable the decision maker to evaluate EJ consistently 

for a variety of rules. In addition, visual displays, summary statistics, and regression analysis provide 

useful supplementary information that can contribute to a richer understanding of potential EJ issues 

than a set of index numbers alone. 

The two main impediments to using a Kolm-Pollak index in an EJ component of regulatory analysis 

are the lack of peer-reviewed applications and its lack of familiarity among policy-makers and the 

public. For it to become a useful policy tool, both of these issues need to be addressed by further 

academic research and pilot applications. Research regarding an appropriate range of values for the 

inequality aversion parameter is particularly important. This research may involve initial costs 

associated with both mastering practical techniques involved in its calculation, as well as costs to the 

user in terms of understanding the output. Such costs are likely to be small, however, compared to the 

relative advantage of a better understanding the distributional effects of environmental policy. 
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