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Abstract: For carbon capture and storage (CCS) to be a truly effective option in our efforts 
to mitigate climate change, it must be sustainable. That means that CCS must deliver 
consistent environmental and social benefits which exceed its costs of capital, energy and 
operation; it must be protective of the environment and human health over the long term; 
and it must be suitable for deployment on a significant scale. CCS is one of the more 
expensive and technically challenging carbon emissions abatement options available, and 
CCS must first and foremost be considered in the context of the other things that can be 
done to reduce emissions, as a part of an overall optimally efficient, sustainable and 
economic mitigation plan. This elevates the analysis beyond a simple comparison of the 
cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors 
(such as water, NOx, SOx, biodiversity, energy, and human health and safety, among 
others) which must also be considered if we are to achieve truly sustainable mitigation. The 
full life-cycle cost of CCS must be considered in the context of the overall social, 
environmental and economic benefits which it creates, and the costs associated with 
environmental and social risks it presents. Such analysis reveals that all CCS is not created 
equal. There is a wide range of technological options available which can be used in a 
variety of industries and applications—indeed CCS is not applicable to every industry. 
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Stationary fossil-fuel powered energy and large scale petroleum industry operations are 
two examples of industries which could benefit from CCS. Capturing and geo-sequestering 
CO2 entrained in natural gas can be economic and sustainable at relatively low carbon 
prices, and in many jurisdictions makes financial sense for operators to deploy now, if 
suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired 
power plants, however, is more expensive and technically challenging, and the economic 
sustainability of post-combustion capture retrofit needs to be compared on a portfolio basis 
to the relative overall net benefit of CCS on new-build plants, where energy efficiency can 
be optimised as a first step, and locations can be selected with sequestration sites in mind. 
Examples from the natural gas processing, liquefied natural gas (LNG), and coal-fired 
power generation sectors, illustrate that there is currently a wide range of financial costs 
for CCS, depending on how and where it is applied, but equally, environmental and social 
benefits of emissions reduction can be considerable. Some CCS applications are far more 
economic and sustainable than others. CCS must be considered in the context of the other 
things that a business can do to eliminate emissions, such as far-reaching efforts to improve 
energy efficiency. 

Keywords: CO2; greenhouse gas; CCS; geosequestration; LNG; climate; sustainability; 
economics 

 

1. Introduction 

1.1. Background—Technology, Policy, Economics 

Carbon capture and storage (CCS) is one of a host of technical solutions that are currently available 
for reducing global emissions of greenhouse gases (GHG) to the atmosphere, and thus curb the longer 
term effects of anthropogenic climate change. However, the barriers to solving the world’s climate 
change challenge are not, in the main, technical. There is now widespread scientific consensus on the 
major causes of climate change [1], the overall planetary risks of inaction, and even on the 
combinations of measures which will be required to deliver the emissions reductions required to 
eliminate the worst of the future risks posed by an earth system in flux [2]. Reductions in emissions 
will be required in a wide range of sectors, including from land-use changes (forest clearing and 
agricultural practices), building design and operation, transport, and notably electrical power 
generation [3]. Research and technical development has been underway in all of these areas for many 
years now, and a wide range of technically viable and workable solutions already exists in each of 
these sectors.  

Indeed, the broad scientific and policy-making community has been aware of the risks of climate 
change, and the solutions available, for well over two decades [4]. However, during that same period, 
on a global scale, the tangible effects of actions taken to reduce emissions of greenhouse gases (GHG) 
have been minimal. Not only has the world dramatically increased its consumption of all kinds of 
energy over the last thirty-five years, our energy mix has also remained essentially unchanged [5]. The 
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proportion of overall energy requirements provided by fossil fuels has actually increased over this 
period, despite full and growing knowledge of the risks posed by climate change. On a global scale, we 
have, in effect, done little so far to combat it. Why? 

Climate change is a global issue, and does not respect national boundaries. Nor does it care about 
public opinion. We understand the science of the problem, at least in overall terms, if not in detail. We 
have the technology now to significantly reduce emissions. What has been lacking, so far, is the 
political, social, and economic will to deploy these existing technologies at scale. Action has been 
slow and insufficient because we do not want to pay the price of action. So we wait for the cost of 
abatement to drop, hoping that a new low-cost technology will be developed which can do the job. But 
there is a fundamental difference between the value of something and its price. Dealing with climate 
change may come at a relatively high price. But what matters are the benefits that result from that 
expenditure, not only to the emitters, but to society as a whole. 

1.2. The Economics of Climate Change 

Recently, there have been several attempts to quantify a global perspective on the economics of 
action and inaction on climate change. These studies have considered the costs of action to reduce 
emissions, and the economic costs that would result if climate change is allowed to take its course 
unhindered. A summary of the results of recent studies is provided in Table 1.  

Table 1. Costs and benefits of acting to mitigate climate change. 

Study Costs of Action Benefits of Action Comment 
Stern (2006) [6] +1 to −1% Global Product to 

2030; approximately USD 
250 bn/year over this period 

Prevention of the loss of 
5 to 20% of Global 
Product now and forever 

Costs to the global economy of 
inaction are permanent, 
irreversible, and catastrophic 

Garnaut (2008) [7] −0.8% initial change in 
annual Australian Gross 
National Product (GNP), 
followed by−0.2 to −0.0% 
change in annual Australian 
GNP to 2050 

0.0 to 0.2% increase in 
annual Australian GNP 
in second half of this 
century. 

From 2050, mitigation adds to the 
growth rate of the Australian 
economy, as, at the margin, more 
new climate change damages are 
avoided than new mitigation costs 
added. By the end of the century, 
Australian GNP is higher than it 
would have been without 
mitigation. 

IEA and OECD 
(2009) [8] 

USD 4.1 tn over the next 
20 years 

Savings in fuel costs 
alone of over USD 7 tn; 
stabilisation of GHG 
concentrations in the 
atmosphere above 
550 ppm CO2e 

Significant expenditure on R&D 
expected to bring overall cost  
of stabilisation down; CCS  
to play key role in overall 
mitigation globally 

These studies largely focus on the benefits (as damage avoided) to the man-made economy of 
climate change mitigation. Associated benefits from the elimination of other types of air-emissions that 
would occur as part of GHG reductions (lower emissions of particulates, soot, NOx and SOx from 
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power plants, for instance), and the value of benefits of biodiversity and ecosystem protection, for 
instance, are rarely considered, but could be significant. 

Nevertheless, it is clear, from a macro-economic perspective, that the world is far better off with 
concerted action to achieve deep cuts in GHG emissions than it would be otherwise. However, our 
global economic system is not set up to either measure or reward firms (or individual countries) for 
acting in the common good. Firms of all kinds must seek to maximise profit so that they can remain in 
business and deliver shareholder returns. Society, and the governments that represent them, must 
therefore regulate the activities of the market to achieve desired social outcomes. Hence, widespread 
discussions are currently underway worldwide to put in place mechanisms which will effectively put a 
price on carbon emissions to the atmosphere. 

Reducing emissions from electrical power generation is one of the most important steps than can be 
taken in an overall GHG mitigation effort. Electricity production contributes approximately 25% of the 
total of direct man-made GHG emissions today [9]. The widespread adoption of coal-fired power, 
especially in the rapidly developing economies of China and India, is predicted to significantly 
increase the overall emissions from this sector over the next twenty years. Given coal’s abundance and 
low cost, it is unlikely that its use can be radically curtailed any time soon, no matter how quickly 
climate change affects the planet, or how rapidly the world responds. 

On this basis, there is now significant agreement among policymakers in many countries that carbon 
capture and geo-sequestration (CCS) has a vital role to play in the overall efforts to reduce GHG 
emissions worldwide. In particular, our ability to retrofit existing coal-fired power plants, and to retro-fit 
other types of high-emission facilities with post-combustion capture, will be essential if we are to meet 
desired atmospheric stabilisation targets. The problem is that capture and geologic storage of CO2 is 
generally considered to be expensive. 

2. CCS in Perspective 

CCS has been widely identified as a significant potential contributor to global strategies aimed at 
reducing emissions of GHG to the atmosphere. Much of the focus on CCS to date has been in the area 
of government funded research and development, both in terms of capture technology, and in studying 
the long term fate and mobility of CO2 in various subsurface environments. In particular, CCS has 
been seen as a way to significantly reduce the GHG impacts of the widespread global use of coal for 
electrical power generation. On this basis, governments in several developed nations (such as the USA, 
Canada, Australia and some in Europe) continue to fund a range of demonstration projects designed to 
prove the technology, develop operational experience, and spearhead the drive to  
cost-efficiency. The technical feasibility of each of the individual components of CCS (capture, 
transport and geological sequestration) is well understood. In the gas industry, amine systems for 
removing entrained CO2 in raw gas have been widely used for years. The basic technology is mature 
and robust. Equally, the transport of CO2 via pipeline is well understood. Thousands of kilometres of 
CO2 pipeline systems have been laid and operated, much of it associated with dedicated enhanced oil 
recovery operations. The geo-sequestration element of CCS is the least well-developed of the three 
components, but nevertheless the petroleum and waste management industries have decades of 
experience in injecting fluids of all types into geological formations for long-term storage. 
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Nevertheless, there continues to be significant public opposition and concern about the risks associated 
with long term CO2 leakage from storage sites [10]. It is perhaps in the combination of all of these 
elements into a fully-integrated project that the main challenges for CCS arise. 

Globally, there are 62 active or planned commercial scale integrated CCS projects, comprising 
capture, transport and sequestration elements, sequestering over 1 Mtpa CO2 [11]. Of these, however, 
only seven projects are currently in the operational stage; the remainder are in the evaluation, 
definition, or execution stages. To date, it has been in the petroleum industry that much of this  
full-scale operational application of CCS has occurred: six of the projects are at natural gas processing 
facilities and, of those, two are offshore. As will be discussed below, much of the reason for the 
leadership of the gas sector in CCS is that the marginal cost of applying CCS in this sector is generally 
significantly lower than in other sectors, particularly coal-fired power generation [12]. 

3. CCS Economics 

The overall life-cycle environmental, social and economic sustainability of CCS is examined 
through considering three different applications: managing the CO2 entrained in reservoir gas in the 
natural gas sector; retro-fit of CCS to stationary fixed coal-fired power generation; and reducing the 
GHG footprint of a liquefied natural gas plant (LNG). In these examples, the Environmental and 
Economic Sustainability Assessment (EESA) method is used, in which various options are considered 
by not only examining conventional financial costs of abatement, but also explicitly valuing the 
environmental and social externalities affected by each option [13]. While carbon emissions to 
atmosphere are clearly the major externality, other external costs and benefits also exist. In this 
analysis, a sustainable and economic solution is one which generates more benefit than cost, to all 
stakeholders, when all environmental, social and economic factors are considered across the full  
life cycle.  

3.1. Managing CO2 Entrained in Natural Gas 

The natural gas industry currently leads the commercial scale application of integrated CCS 
(>1 Mtpa) worldwide. Two of the largest and most successful projects have been offshore, both in 
Norway, where a significant and long-standing carbon pricing mechanism (since 1991) has helped to 
drive development of CCS. 

The Snøvit project, led by Statoil, has been in production since October 2007 and currently 
produces approximately seven billion cubic metres of gas per year from an offshore field. CO2 is 
removed from the gas stream and piped about 150 km back to the field for injection through a 
dedicated well. Since April 2008, around 0.7 Mtpa of CO2 has been safely injected and stored in the 
Tubåen sandstone (some 2,600 metres beneath the seabed). A monitoring program has been set-up to 
investigate the behaviour of CO2 underground. 

The Statoil Sleipner project, also in the North Sea off the coast of Norway produces natural gas 
with about 9% CO2, which is too high for customer requirements. By capturing some of the CO2 from 
the reservoir gas, the CO2 level is reduced to 2.5% to meet export and customer specifications. The 
Sleipner capture and storage gas processing facility, operational since 1996, is one of the global 
pioneers of CCS. It is the world’s first fully operational offshore gas field with CO2 injection. It is also 



Int. J. Environ. Res. Public Health 2011, 8         
 

 

1465

the world’s first CO2 storage project in a geological formation 1000 metres below the sea floor. 
Approximately 1 Mtpa of CO2 is separated from produced gas and injected into a saline aquifer above the 
hydrocarbon reservoir zones. Maximum injection is planned for 20 Mt, with 8 Mt injected to date. 

Recent reviews have shown that the cost of CCS for CO2 entrained in the raw reservoir gas is low 
compared to other applications. The Global Carbon Capture and Storage Institute found that on 
average, CCS increased the cost of production for stationary power production by between 39% (for 
IGCC) and 78% (for supercritical pulverized coal plants). However, in natural gas processing, CCS 
increased cost of production on average by only 1% (the lowest of all sectors). CO2 capture is inherent 
in the design of gas processing facilities where the reservoir gas contains carbon dioxide, so the 
marginal cost of CCS is only in the transport and sequestration components, which typically represent 
less than 20% of the total cost of CCS. Pipelining costs for a single facility are typically in the range of 
USD 3 to 4/t CO2 (depending of course on the distances involved), and geo-sequestration costs are in 
the order of USD 3 to 8/t CO2. Initial reservoir identification and characterization costs are typically in 
the range of USD 25 m to 150 m. The overall costs of CCS are likely to come down in future as CCS 
is more widely deployed worldwide. 

For an offshore natural gas facility operating in Australia with 12% CO2 in reservoir gas, CCS was 
examined as part of a wider GHG management strategy. The availability of a well characterized down-
dip part of the producing reservoir for geo-sequestration added significantly to the overall technical 
feasibility of CCS. The average cost of CCS at this facility was estimated to be in the order of  
USD 15 to 25/t CO2 over the project life-cycle. Other recent studies have suggested that CCS for CO2 
in gas processing ranges from about USD 18/t CO2 to as much as USD 40/t CO2. Given that the 
Australian Carbon Pollution Reduction Scheme (abandoned in 2008) was predicted to generate an 
effective carbon price of as much as USD 40/t CO2e by 2010, and that the current government is 
discussing the imposition of a carbon tax in the near future, and considering that the current social cost 
of carbon is likely in the range of USD 50 to 100/t CO2e right now, CCS for this application may 
already be economic (from society’s perspective), and is very likely to be financially advantageous for 
project proponents within the near to medium term (in this discussion, economic refers to the full 
environmental, social and financial perspective, while financial refers only to the costs and benefits to 
the project proponent). 

3.2. Coal-Fired Power Station Retrofit 

An existing coal-fired power station in Australia was examined in a detailed engineering, economic 
and sustainability feasibility study to determine the practicality of applying CCS to dramatically 
reduce GHG emissions. The 25-year old 425 MW facility currently produces about 2 Mtpa of CO2. 
Two capture scenarios were investigated: A 5500 tpd system which would capture the balance of 
emissions at typical operating loads, and a second, larger system (8200 tpd) designed to capture 100% 
of flue gas when the plant’s boilers are operating at maximum continuous rate. The analysis considered 
all aspects of the retrofit, including plant layout and access, capture technology selection, transport of 
CO2, and identification of suitable disposal sites, within a context of what can be achieved today, with 
existing technology, knowledge and resources. 

 



Int. J. Environ. Res. Public Health 2011, 8         
 

 

1466

3.2.1. Capture 

A wide range of currently available capture technologies was considered. As shown in Table 2, not 
all are applicable to post-combustion capture, and not all are commercially available. On this basis, 
and because of the limited process information available for most of the other technologies, the study 
was based on a monoethanolamine capture technology, which is both commercially available through 
a number of vendors, and is fully applicable to the large-scale retrofit being considered. Installation of 
the CO2 capture system and compression at the plant will require an area of about 3,000 m2 for the 
smaller option, and 4,500 m2 for the larger capacity option. 

Table 2. Capture technologies considered. 

Technology Technology Type Application to PCC Commercial Status
Monoethanolamine Chemical solvent Yes Commercial 
Chilled Ammonia Chemical solvent Yes Pilot 
KS Solvents Chemical solvent Yes Pilot 
Aqueous Ammonia Chemical solvent Yes Pilot 
Methyl Diethanolamine Chemical solvent No Commercial 
Diethanolamine Chemical solvent No Commercial 
Selexol Physical solvent No Commercial 
Sulfinol Mixed chemical-

physical solvent 
No Commercial 

3.2.2. Performance 

Installation of the capture system has a significant effect on the performance of the plant. The 
monoethanolamine system puts a significant additional energy demand on the plant. Table 3 exhibits 
one of the ironies of CCS in this application: to capture CO2, significantly more coal must be burned. 
Nevertheless, option 2 reduces overall annual emissions from 2 Mt to about 0.25 Mt. 

Table 3. Capture performance. 

Option 
Emissions to 
Atmosphere 
(Mtpa CO2e) 

Net Power Output at 
Boiler MCR (MW) 

Emissions Captured 
(Mtpa CO2e) 

Base case (Current operations) 2.0 425 0 
Option 1 (5,500 tpd) 0.8 325 2.0 
Option 2 (8,200 tpd) 0.25 275 2.7 

3.2.3. Transport and Storage 

A permitted and available geo-sequestration site was assumed to exist approximately 500 km from 
the power station. Transport of CO2 overland by pipeline was assumed. Pipeline is the established 
method for moving large volumes of CO2 over long distances. Most of the current expertise in CO2 
transport lies in the petroleum industry, where CO2 is widely used for enhanced oil recovery. Over 
4,000 km of dedicated CO2 pipelines are currently in operation in the USA [14].  
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Two scenarios were considered: one where a dedicated pipeline transports 3 Mtpa of CO2 to the 
sequestration site, and another where several operators share a larger 12 Mtpa transport and 
sequestration system and share the associated economies of scale. Compression power of 40 MW is 
provided at the plant. 

3.2.4. Cost Analysis 

The total capital outlay for this CCS retrofit was estimated to range between about USD 0.5 bn and 
USD 1 bn, paid out over a seven-year construction period. Table 4 shows the range of estimated unit 
costs per tonne of CO2 avoided for CCS retrofit, in present value terms over an assumed operations life 
of 25 years, using a 10% discount rate. The least preferred scenario included dedicated infrastructure, 
poor sequestration reservoir performance, and high estimates for capture costs, while the preferred 
scenario involved shared infrastructure (with unit costs approximately one-third lower than dedicated 
infrastructure), low-end estimates of capture costs and optimal reservoir performance. Of these 
aggregated unit costs, about 80% of the cost was for capture, 10% for transport and 10% for 
sequestration. It is also important to note that the highest uncertainty in cost was associated with the 
sequestration component. The range of unit cost estimates reflects the commercial and engineering 
uncertainty inherent in delivering a complete CCS project at the present time. 

Table 4. Financial cost summary, CCS retrofit (millions 2008 USD/tCO2e). 

 Option 1 Option 2 
Least-preferred scenario 120 145 
Preferred scenario 71 90 

3.2.5. External Costs and Benefits 

This analysis, for a real facility, using technology available now, shows that under present policy 
positions, retrofitting existing coal-fired power stations is a not financially viable proposition for 
operators. The main benefit of employing CCS is to create and environmental and social benefit 
associated with reducing carbon emissions to the atmosphere. The value of this benefit is expressed as 
the social cost of carbon, or the real value of the damage caused to society by each additional tonne of 
GHG emitted to the atmosphere. Using high estimates of the social cost of carbon, such as Stern’s 
USD 85/t CO2e, this CCS retrofit would be marginally beneficial using option 1 of the preferred 
scenario. If the social cost of carbon were to rise over time (as it will if global emissions are not 
curbed), then preferred scenario retrofit becomes increasingly beneficial from society’s perspective.  

However, until an effective price on carbon exists, operators have no financial incentive to deploy 
CCS. In this example, carbon price would have to reach at least USD 75/t CO2e, or the costs of CCS 
would have to drop dramatically, before this operator could justify a CCS retrofit. A much more 
advantageous approach for this operator in the near term would be to examine other alternatives to 
removing carbon emissions from its overall portfolio, where this can be achieved at lower cost. This 
might include examining new build plants using more efficient super-critical designs, and  
pre-combustion options located closer to disposal sites.  
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While carbon emission reduction is the chief benefit of CCS, removal of other air pollutants such as 
oxides of nitrogen and sulphur, particulates, and even heavy metals, may also occur as a result of 
capturing and treating effluents. The valuation of these additional atmospheric benefits is discussed in 
more detail in the following example.  

In addition, there is also a range of potential external costs associated with deep geological disposal 
of CO2. Risks associated with geo-sequestration of CO2 include gas leakage to surface in populated 
areas (7% to 10% CO2 in air is sufficient to cause immediate danger to human life and health), 
acidification of groundwater supplies, and geological instability [15]. Any of these eventualities could 
generate significant external social and environmental costs. The likelihood and magnitude of these 
risks will vary considerably depending on the geological conditions of the reservoir, location, nearby 
population density, and the vulnerability of nearby aquifers [16]. Proper sequestration site selection, 
design and monitoring can significantly reduce the risk of leakage and the severity of impact should 
leakage occur [17]. All of these external costs would make CCS more costly from an overall 
environmental, social and economic perspective, over the long term. Only if the social cost of carbon 
is sufficiently reflected in an effective price for carbon, and if it rises significantly over time, will the 
operator, in this example, be able to justify deploying CCS.  

3.3. Reducing the GHG Emissions from LNG Manufacture  

LNG operations release GHG emissions at various stages of production, shipping, re-gasification, 
storage and distribution, including consumption. This example focuses on CCS applied to managing 
CO2 emissions from a typical LNG plant. Given the predominance of cost associated with carbon 
capture, this discussion focuses on the capture element only, and assumes that CO2 can be readily 
disposed of into suitable geological formations close to the facility. Offshore disposal into a depleted 
natural gas field would also reduce concerns over external costs associated with possible long term 
leakage of CO2 from the reservoir. 

3.3.1. Technical Overview of Options 

In this analysis, seven CCS cases were examined and compared in terms of effectiveness and cost, 
and put into a larger context by including four other ways of reducing GHG emissions from the facility. 
CCS options involve various combinations of pre-versus post-combustion capture, central power 
station and direct drive, and retrofit versus new build installation. Table 5 lists each case along with a 
median estimate of the total capital and operational costs for the facility as equipped. For retrofit 
options, these figures include lost revenue from down-time, and assume a retrofit date of 2021. As 
shown, the capital expenditure associated with each case varies considerably. The most expensive of 
the cases represents a capital cost increase of about 60% of the total installed cost of the  
business-as-usual reference facility design. 
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Table 5. GHG management cases and cost data (million US $ 2010). 

Case Description CAPEX Annual OPEX
Ref. Standard LNG facility currently in operation,  

business-as-usual, no CCS fitted 
4,400 160 

1 Carbon capture from the reservoir gas only + CCS 4,500 160 
2 Retrofit post-combustion capture (liquefaction),  

aero-derivative gas turbine drive + CCS 
5,700 160 

3 Retrofit natural gas combined cycle (GTCC) central 
power generation, post-combustion capture, electric  
motor compressor drives in liquefaction trains + CCS 

6,000 250 

4 Option 3, but greenfield 5,500 160 
5 Retrofit local pre-combustion capture,  

aero-derivative gas turbine drive + CCS 
6,000 160 

6 Retrofit central GTCC, pre-combustion capture,  
electric motor drives in liquefaction trains + CCS 

6,500 230 

7 Option 6, but greenfield  6,100 160 
8 Local combined cycle power, best-in-class energy 

efficiency, additional gas turbine waste heat recovery + 
part steam turbine direct compression drives 

4,600 170 

9 Central combined cycle power, best-in-class, electric 
motor compressor drives in liquefaction trains 

4,800 160 

10 Surplus power generation, exporting to grid, and 6,000 165 
11 Buy power from de-carbonised grid. 5,200 160 

Figure 1 shows the annual CO2 emissions of each case. Note that all of the CCS cases significantly 
reduce emissions and improve GHG emissions intensity performance. The reference plant is estimated to 
produce about 0.25 tCO2/t LNG, whereas the CCS designs achieve in the range of 0.03–0.13 tCO2/t LNG. 
Syngas production and pre-combustion capture (Cases 5, 6 and 7) by steam methane reforming have the 
highest fuel gas use, highest CAPEX and a much poorer emission performance than the  
post-combustion capture cases (Cases 2, 3 and 4). 

Figure 1. Annual CO2 emissions of each case. 
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3.3.2. Life Cycle Environmental and Economic Sustainability Assessment (EESA) 

Using the EESA methodology discussed above, the full life cycle environmental, social and 
economic sustainability of various CCS and non-CCS cases was evaluated, by considering all of the 
usual financial parameters (CAPEX, OPEX, energy costs), but also by including the value of various 
emissions to the atmosphere, notably CO2, NOx and SOx. This type of analysis explicitly recognises 
the key issues associated with a project, and using the common metric of money, allows trade-offs 
between parameters to be examined across a wide range of possible future conditions. Cases which 
result in a net overall positive benefit to society as a whole (including the operator), within the limits 
of the study (in this case LNG production only, not including other parts of the LNG life-cycle) are 
deemed economic and sustainable. If a case produces less overall benefit to all stakeholders, over its 
life-cycle, than it costs, when all relevant environmental, social and financial aspects are considered, 
then it is uneconomic, and unsustainable (even if it is financially profitable to the operator). 

Specific assumptions used in the analysis are listed in Table 6. For sensitivity analysis, high and 
low ranges are also provided for each key parameter. A base case value of USD 25/t CO2e was 
selected For CO2, based on the long term average European Trading System price. The high estimate is 
based on the Stern Review, which set the social cost of carbon at approximately USD 85/t CO2e. 
Nitrogen oxides (NOx) and sulphur oxides (SOx) emissions result in dis-benefits such as respiratory 
illness and acid rain. Markets for NOx and SOx emissions limit the volume of NOx and SOx released 
and allocate the emissions in an economically efficient manner. The largest markets and auctions for 
these gases are in the USA. Recent EPA spot market prices for SOx and NOx emissions are USD 520/t 
and USD 640/t, respectively [18]. Clean Air Conservancy are offering offsets for SOx and NOx at 
approximately USD 1653/t and USD 2646/t respectively [19]. Given the range of recognised values 
above, median values for SOx and NOx were chosen as USD 521/t and USD 637/t respectively. The 
analysis was conducted over a 40-year planning horizon, matching the estimated useful life of the 
facility. Retrofit was assumed to occur in 2021 in all cases. All values are in real 2010 dollars; 
inflation is not included. 

Table 6. Assumptions for key parameters. 

Parameter Low Value Base Value High Value 
Discount rate 3.0% 3.5% 10% 
Fuel gas price USD 1/mmbtu USD 3/mmbtu USD 5/mmbtu 
LNG price - USD 7.50/mmbtu - 
Power on-sale price (Opt 10) USD 40/MWh USD 50/MWh USD 100/MWh 
Power purchase price (Opt 11) USD 50/MWh USD 62.50/MWh USD 125/MWh 
Carbon cost USD 0 /tCO2e USD 25/tCO2e USD 85/tCO2e 
SOx price USD 0/t USD 521/t USD 1,860/t 
NOx price USD 0/t USD 637/t USD 2,360/t 

3.3.3. Base Condition Results 

The results of the base assessment are presented in Figure 2, with net present values (NPVs) for 
each option compared to the reference case. Where an option shows positive NPV, it performs that 



Int. J. Environ. Res. Public Health 2011, 8         
 

 

1471

much better than the reference case, over the 40-year life cycle. The results cover the full economic 
analysis (inclusive of financial and social costs and benefits, and with transfer payments removed). 
This is a marginal assessment – the revenues generated by the sale of LNG are not included; only the 
differences associated with GHG management are considered. Options are listed in order of increasing 
CAPEX from left to right. 

Figure 2. Base condition results—economic NPV compared to reference case (2010 USD m).  
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Under base conditions, only two of the six options were more economic than the reference  
case—Case 8 (best-in-class energy efficiency option; NPV + USD 268 million) and Case 1 (CCS of 
CO2 from the reservoir gas stream: NPV +USD 5 million). Case 1 achieves carbon reduction benefits 
with greater value than the financial costs of achieving them. Case 8 also achieves significant carbon 
reduction benefits, though the majority of the benefits for this case are from fuel cost savings from 
more efficient plant design; the combination of these benefits far exceeds the financial costs of 
achieving them.  

It should be stressed that the costs included for the CCS Cases 1–7 are for capture only—and do not 
include any of the sometimes significant costs for CO2 transport and disposal. Equally, none of the 
potential external costs of sequestration are included (all of which would make CCS less attractive, 
from a full life-cycle environmental, social and economic perspective). Under base conditions, CCS is 
not economic, even using a low social discount rate and a reasonable median estimate for cost of 
carbon. In this case, the costs of implementation are simply too high to provide value for society—in 
fact, all CCS cases, retro-fit and greenfield, are more than a billion dollars worse, in present value 
terms, than business-as-usual under base case conditions. This is before the financial and social costs 
of sequestration are included. The inference is that society should find other ways of reducing GHG 
emissions before CCS is deployed on LNG facilities, other than for reservoir CO2 stripped from the 
raw natural gas.  
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3.3.4. Sensitivity Analysis 

Any analysis of this type is inherently subject to uncertainty. Capital and operating costs are 
planning level estimates suitable for comparison purposes but subject to change. The valuation and 
estimation of external benefits and certain costs are subject to even larger variations, especially over a 
40-year horizon. However, the key to the EESA is to reveal not absolutes in terms of dollars, but better 
and worse decisions overall, compared to the range of possible decisions that could be made. 

From this perspective, sensitivity analysis is important because it allows the overall conclusions of 
the analysis to be tested across a wide range of parameter inputs. If a decision is favourable or 
economic over a wide range of parameter inputs, compared to other possible decisions, then despite 
the overall uncertainty in the actual dollar figures, the decision can be identified as superior among its 
competitors. This is particularly useful when examining the sustainability of options. By definition, 
sustainability is concerned with the future, which is inherently uncertain. By varying key input 
parameters over a wide but reasonable range, the implications of a range of possible futures can be 
examined. The ranges of values for key parameters for this assessment are presented in Table 6. 

A fully interactive real time analysis tool, EcoNomics™ DELTΔ2™ [20], has been used to examine 
the effect of key parameters, across their full range, for each option. The NPV results are calculated for 
each value of each parameter, discretised across its full range, against every other possible 
combination of the other values, for each case. This in effect provides a database of every possible 
NPV result for each case, in which each result is considered to be equi-probable. 

Table 7 shows the proportion of all conditions where a case is the most economic, or second most 
economic case, considering all possible combination of all values across their full range. Under 
approximately 92% of all possible combinations of conditions, Case 8 is the most economic, followed 
by Case 1 which is the most economic option under approximately 8% of all possible combinations of 
conditions. Case 1 is the second most economic option under over 73% of all possible combinations  
of conditions. 

Table 7. Proportion of conditions where a case is the most economic. 

Option Best case 2nd Best case
Option 8 91.6% 8.4% 
Option 1 7.5% 73.0% 
Option 10 1.0% 2.9% 
Option 9 0.0% 15.7% 

Fuel gas savings are the most significant contributor to the positive economics of Case 8, far 
exceeding the financial costs of achieving them. Associated benefits from GHG reductions are also 
significant. Increasing energy costs and a higher cost of carbon further increase the positive NPV 
achieved by this case. Case 1 is also economic under a wide range of possible future conditions, 
mostly driven by the GHG reductions achieved by this option compared to the reference case. It is the 
cheapest way to reduce GHG emissions. NOx and SOx values did not contribute significantly to the 
costs and/or benefits of each option. 
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3.3.5. Implications 

For this facility, the analysis reveals that the environmentally, socially and economically optimum 
approach would be to implement Case 8 (best-in-class energy efficiency design across the facility) and 
Case 1 (CCS of CO2 contained in the reservoir gas), either alone or in combination. The combined 
base condition economic NPV of these cases is USD 272 million better than business as usual. With 
rising energy costs and the increasing likelihood of rising carbon costs, each of the cases assessed 
delivers increasing overall economic benefits to society. This is an important finding with respect to  
longer-term capital investment decisions. Further insight can be had from examining narrower ranges 
of future possible conditions. In a “socially-minded” world, where carbon is assumed to be priced at 
greater than USD 50/tCO2e, and where the maximum discount rate considered is 6%, Case 8 is best 
under 95% of conditions. In a more “commercially-minded world”, where carbon price is assumed to 
be always lower than USD 50/tCO2e, and discount rate is higher than 6%, Case 8 is still the most 
economic and sustainable under 79% of the remaining range of conditions over 40 years. 

3.3.6. Option Value of Being Carbon Capture Ready 

Making LNG plants carbon capture ready enables retrofitting at a lower cost at some point in the 
future, at the expense of a relatively small upfront investment [21-23]. The main requirements for 
being carbon capture ready are that sufficient space and access are provided for future deployment of 
capture equipment and systems. Figure 3 shows the difference in NPV over 40 years, at base values, 
between the CCS retrofit options on a capture ready plant and on a plant that is not capture ready  
(a plant where no provision for retrofit has been made), of similar overall design. Clearly, retrofitting a 
capture ready plant with CCS technology is more economic than on a carbon capture unready plant, no 
matter what year the retrofit is made. As shown above, Case 2 is the best of the CCS retrofit options. 

Figure 3. Base NPV differences between capture ready retrofit and capture unready plants. 
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The option value of being capture ready was also examined (the value of the capture ready  
pre-investment in implementing retrofit in a given year). Figure 4 shows the option value for being 
capture ready in implementing Case 2 (the best of the retrofit CCS options). As shown, the capture 
ready case value is highly dependent on carbon price and the timing of the retrofit. The longer one 
waits to undertake the retrofit, the less the option is worth, as one approaches the end of life of the 
facility (retrofitting in 2049 leaves only one year of carbon cost savings to recoup the investment). 
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Figure 4. Option value of being capture ready for Case 2, base conditions. 

 

3.3.7. Carbon Price Trigger Points for CCS 

The analysis provides an indication of the threshold carbon price at which the decision to 
implement various carbon reduction measures would occur. Under base conditions, assuming social 
(3.5%) and commercial (10%) discount rates, the carbon price thresholds (in 2010 USD) that would 
trigger action are shown in Table 8. Note than in each sense, the first two cases to be deployed are 
Cases 8 and 1. Case 8 should be done now—it is already economically positive. The best of the CCS 
cases (Cases 4 and 2) are not economically or socially viable unless carbon prices/values are higher 
than USD 100/tCO2e. Also recall that the financial and external costs of transport and storage would 
have to be added to the figures shown, which would in all cases raise the threshold value for CCS 
implementation. In the context of current estimates of the social cost of carbon, CCS does not appear 
to be viable for managing emissions from facility liquefaction and compression. 

Table 8. Carbon price threshold for capture. 

Case 
Social  
(i = 3.5%) 

Commercial  
 (i = 10%) 

8 – Energy efficient design USD 0 USD 0 
1 – CCS reservoir CO2 USD 20 USD 25 
9 – Centralised power, efficient design USD 38 USD 120 
10 – Surplus power generation USD 85 USD 100 
2 – Post-combustion CC retrofit USD 100 USD 145 
4 – Greenfield NGCC post-combustion retrofit USD 116 USD 150 

4. Discussion 

The examples presented above examine the wider environmental and economic implications of 
applying CCS in various applications. CCS is an expensive proposition, no matter how it is applied, 
both in terms of up-front capital costs, and in terms of the significant amounts of energy required to 
capture CO2. Because of this, it is important that CCS performance be compared to other ways of 
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reducing GHG emissions within a plant or portfolio of assets, if they exist. Strategically, this serves to 
put CCS into overall context as just one of many possible ways that the GHG intensity of an operation 
can be reduced.  

In the case of existing coal-fired power stations, CCS may be one of the only options available for 
substantially reducing GHG emissions. In this case the question becomes which of a wide variety of 
CCS options available provides the best long term environmental, social and financial outcome. As the 
world moves to take action on climate change, and carbon prices rise in future, CCS will become 
increasingly attractive from a financial perspective. In other industries, such as LNG, a number of 
other alternatives are available for carbon emission reduction. Designing for energy efficiency and 
including maximum use of waste heat, may provide distinctly economic and sustainable alternatives. 
Under a wide range of future likely conditions, sequestering CO2 from reservoir gas makes good 
economic sense and is a sustainable proposition today.  

The analysis presented herein suggests that while all CCS options are not created equal (some are 
far more economic and sustainable than others), overall, CCS (other than capturing CO2 directly from 
the raw reservoir gas) is unlikely to be economic or sustainable at carbon prices much below about 
USD 75/t CO2e, which is close to current estimates of the social cost of carbon. At Stern’s  
USD 85/t CO2e estimate, CCS is an economic choice right now for certain types of applications, as far 
as society is concerned. However, operators will have little incentive to deploy CCS unless the social 
value of carbon is wholly or partially reflected in a regulated price on carbon.  

From a financial perspective, CCS costs need to come down significantly to make it viable in the 
near future for most applications, even as carbon prices are put in place around the world. Increased 
funding for research and development of new breakthroughs in carbon capture technology could 
substantially improve the viability of CCS in the coming years. Carbon sequestration also carries with 
it significant long-term cost and legislative and environmental risks which would also have to be 
factored into a complete analysis. 

In some jurisdictions, there is the possibility that CCS will be required, by law, policy or regulation. 
If, for instance, a company self-regulates and sets a policy of zero carbon emissions, CCS may become 
one of the only ways to achieve this. It is also possible that carbon prices may rise to the kinds of 
levels which are needed for CCS to be justified from an overall environmental, social and economic  
cost-benefit point of view. The social cost of carbon continues to increase with each year of global 
inaction, as the concentrations of GHGs in the atmosphere steadily rise. As the social cost of carbon 
rises, CCS becomes an increasingly more economic proposition.  

If we must retrofit, retrofitting a capture ready plant is a significantly more economic proposition 
than retrofitting a carbon capture ignorant plant. The cost savings of being carbon capture ready (with 
a relatively minimal pre-investment cost), compared to having to retrofit a plant that is not capture 
ready, are significant. 

5. Conclusions 

While there are many different ways for the power and energy industries to eliminate carbon 
emissions to atmosphere, they come at radically different costs, and produce different benefits to 
society. Worldwide, CCS is being intensely examined as a way of reducing emissions from fossil-fuel 
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burning or producing operations. While full-scale deployment of CCS globally is still in its infancy, 
several successful long-term projects are underway (notably in the natural gas sector), and a suite of 
demonstrations projects have begun in various parts of the world, in various industry sectors. A wide 
variety of capture technologies are available, with widely differing capital costs, operational costs, 
energy requirements, and performance. Safe long-term geological sequestration requires detailed 
understanding of reservoir characteristics and appropriate long term institutional controls and 
monitoring. The external social and environmental costs of large scale releases from storage sites 
could be significant, if these eventuate, but thorough risk management in terms of site selection, 
monitoring and reservoir design have proven capable of significantly if not completely reducing the 
likelihood of such releases. The environmental and economic sustainability of CCS is a function of 
many factors, including the timing of deployment, the value placed on carbon, fuel and energy prices, 
the costs of disruptions to the business during retrofit, and the external costs of other associated air 
emissions and possible releases from storage sites. Analysis of three examples shows that all CCS is 
not created equal, and that industries should examine CCS in the context of other alternatives that exist 
to reduce emissions within their business, either at individual facilities or within a larger portfolio of 
assets. In addition, the wider external costs and benefits must be taken into consideration if the real 
value, and therefore the environmental and economic sustainability, of the action is to be understood. 
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