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Abstract: This paper has two aims: (1) to summarize various geographic information 

science methods; and (2) to provide a review of studies that have employed such methods. 

Though not meant to be a comprehensive review, this paper explains when certain methods 

are useful in epidemiological studies and also serves as an overview of the growing field of 

spatial epidemiology. 
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1. Introduction 

 

In this paper, we review the use of Geographic Information Systems (GIS) and spatial analysis in 

environmental epidemiology and public health research. Spatial epidemiologists, health geographers, 

and others using geographic methods have made significant contributions to understanding potential 

exposure pathways in space and time, mechanisms that may influence effective biological dose, 

modeling of the social distributions of pollutants, and finally the assessment of health effects from 

environmental contaminants. There has also been considerable attention paid to the perceptions of 

environmental risk and how this may in turn condition biological responses to pollutants or lifestyle 

factors such as smoking, which may affect subsequent individual-level susceptibility.  
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The focus here is on the quantitative aspects of environment risks and how health geographers and 

others have approached the assessment of risks arising from environmental exposures. Our emphasis is 

on methods used to study environmental exposures, susceptibilities, ways of adapting, and ultimately 

the health risks of environmental exposures to human populations. Although we touch upon some of 

the historical aspects of the use of spatial analysis in public health research, we have drawn 

specifically on recent research published between 2005 and 2008 to emphasize innovations and 

emerging trends in the field. Interestingly, this review suggests extraordinarily rapid growth in the use 

of advanced geographic information science and spatial modeling for addressing questions of 

environmental risk. The growth in the field has meant that much of the application of spatial analysis 

has been conducted increasingly by people from disciplines beyond the field of Geography.  

To illustrate the utility of specific methods, we draw examples related to environmental justice, 

atmospheric pollution, and climate change. We aim the paper to a broad audience who may be 

unfamiliar with epidemiology and spatial analysis; therefore, some technical details are omitted. 

Numerous references are given on the statistical models for readers interested in operationalizing these 

methods, as well as specific examples. 

2. An Operational Framework for Spatial Epidemiology and Public Health 

Here we translate Mayer’s [1] conceptualization of health and place into an operational framework 

that includes three underlying geographies: exposure, susceptibility, and adaptation. In many instances, 

health geographers have explored single domains, but in others they have sought to understand areas 

of maximal overlap where two or more of the circles in the Venn diagram (see Figure 1) converge to 

geographies of risk [2]. The analytic framework we use hinges on four related concepts: (1) geography 

of susceptibility; (2) geography of exposure; (3), geography of adaptation, and (4) points of 

intersection between these three, which we call the geography of risk. We discuss how each concept 

encompasses many lower-level issues such as meteorological dispersion of pollutants, time-space 

activity patterns, behavioral changes in relation to perceived or real danger, and population 

distributions of susceptible individuals in time and space. Environmental health geography often 

focuses on understanding the overlap of two or more of these spheres of influence.  

Modeling combines both visualization and exploration techniques, and the statistical analysis 

assesses whether spatial patterns apparent in the data have occurred by chance or whether they display 

significant departures from random or control expectation. Spatial modeling usually focuses on data in 

the following forms: points (e.g., the location of individuals who have died in a given period), point 

attribute (e.g., estimates of pollution at a fixed-site monitor), areal form (e.g., a census tract polygon 

with an age-adjusted mortality rate), or continuous surface form (e.g., surfaces of pollution 

interpolated from estimates of fixed-point attributes). Point pattern maps are referred to as “dot” or 

“dot density” maps. Areal data maps are called “choropleth” maps. Maps displaying continuous 

surfaces are usually referred to as “contour”, “isoline” or “isopleth” maps [4,5]. Four processes and 

associated methods underlie most spatial modeling: autocorrelation tests, interpolation, point pattern 

analysis, and spatial correlation and regression. Each of these processes is discussed in turn with 

examples below (portions of the paper have been adapted from Jerrett et al. 2003 [6]). 
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Figure 1. Extended Conceptual Framework for Spatial Analysis in Epidemiology and 

Public Health (Adapted from Jerrett, Gale and Kontgis, 2009 [3]). 

 

3. Spatial Modeling for Public Health 

Overlay Analysis 

Overlay analysis is the simplest form of spatial modeling, and consists of stacking different 

thematic maps on top of one another. This method was employed by Lindley et al. [7] to consider 

conurbation-scale risk and adaptation assessment methods to study the response of the greater 

Manchester urban area to climate change. This new, explicitly spatial method was developed to 

address the lack of information needed to adapt to climate change.  

Conurbation-scale risk assessment was performed to evaluate an entire urban-system as well as 

provide a basis for neighborhood-level analyses. Similar to the conceptual framework introduced 

earlier, the authors defined risk to be an interaction between hazard, exposure, and vulnerability. This 

methodology uses GIS to create separate maps of various risk elements (i.e., population), hazards (i.e., 

maximum August temperatures), and the urban-system (i.e., urban morphology types). A layer that 

maps the current vulnerability of the region is then created by merging the risk element layers to the 

urban-system layer, and a layer that projects future exposure is created by merging the hazard layer to 

the urban-system layer. Finally, the projected exposure layer and current vulnerability layer are 

merged to create a final risk layer (see Figure 2).  
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Figure 2. Application of conurbation-scale risk assessment. 

 

Lindley et al. overlay several different input values for climate change to develop a risk map to 

show areas most affected by climate change in Manchester, UK. 

 

To demonstrate the method, the authors used conurbation-scale risk assessment to analyze how 

socio-economic change will affect the risk of heat stress (see Figure 3). This case study led the authors 

to make several policy suggestions that could help mitigate overall risk to heat stress in the Greater 

Manchester area, UK. To increase an individual’s personal adaptive capacity, the authors propose 

longer working lives to provide health coverage and to create stronger social networks. Additionally, 

the authors recommend urban densification and an improved transport system so that the region can 

grow without increasing social deprivation. Finally, the authors encourage increased greenspace cover 

to reduce the heat hazard. 

The authors reported this methodology to be valuable for several reasons. Firstly, since each risk 

element is represented as a separate layer, it is possible to modify each element individually to  

re-assess the final risk layer. This allows planners to easily evaluate different adaptation strategies to 

determine how best to mitigate the risk faced by urban areas due to climate change. Secondly, by 

developing this GIS method it is possible not only to identify current areas where adaptation is most 

necessary to deal with the risks posed by climate change, but also possible to identify areas that are 

most at risk in the future. Finally, to perform the conurbation-scale risk assessment, the authors used 

previously generated data to create the various GIS layers. By using the best available data, it was 

possible to produce results rapidly, which will become increasingly necessary in order for urban areas 

to adapt swiftly to climate change. 
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Figure 3. Using conurbation-scale risk assessment to analyze heat stress risk. 

 

This figure is adapted from Lindley, et al. (2007) to show the projected greenspace and residential 

characteristics for Manchester, UK in the 2050s in maps (a) and (b). These characteristics are based on 

different socio-economic scenarios with map (c) representing the baseline in 2001. For more details 

regarding these methods, refer to Lindley et al. (2007). 

 

By employing conurbation-scale risk assessment, the authors demonstrated the usefulness of 

visualization and cartographic overlay. This assessment is efficient and can be completed relatively 

quickly since it utilizes the best available spatial data rather than creating new data. It also allows 

researchers to easily compare various risk scenarios to discern the proper adaptive approach to  

climate change. 

Other research uses overlay analysis to identify areas of environmental justice concern. 

Environmental justice occurs when a certain social group is disproportionately impacted by harmful 

land uses. This has become an increasingly important topic in the study of health disparities. 

Researchers have recently sought answers to the health risks of residential racial segregation. In the 

paper titled Separate and Unequal, authors Morello-Frosch and Jesdale implement a GIS model across 

the US to examine area-level factors, racial segregation, and estimated cancer risk associated with 

exposure to ambient air pollution [8]. While poverty can be intertwined with racial segregation, there 

is an independent relation between racial segregation and disparities in exposure to harmful pollutants. 

This analysis has expanded the idea of segregation through the exploration of several different 

racial/ethnic groups and the thoughtful adjustment for factors confounding racial inequality. 
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Autocorrelation 

First we will discuss methods for assessing autocorrelation among observations. Tobler’s [9]  

oft-cited first law of geography captures the essence of spatial autocorrelation: “everything is related to 

everything else, but near things are more related than distant things”. In other words, spatial 

autocorrelation means attribute values (say mortality) of proximal entities (say metropolitan areas) will 

likely be more clustered or share similar values than distant ones. This is similar to time series data 

where we would expect to see mortality rates, for example, that are one day apart to be more similar 

than mortality rates three months in the future. Although similar, spatial autocorrelation tends to be 

more complex than serial autocorrelation in time series. First, temporal processes can only move in 

one direction (i.e., from present to future), whereas spatial processes are two-dimensional (i.e., involve 

area and direction around a compass). They may also have a third dimension (e.g., the area and depth 

of a ground water aquifer). Second, the metric used to measure distance can vary (e.g., Euclidian 

distances or functional distances such as travel time or monetary cost) [10]. Thus the two factors, 

dimensionality and functional distance, make analysis of spatial autocorrelation more complex to 

model than its temporal counterpart. 

Using ambient air pollution as an example, we might expect pollution levels to be more similar 

between Pittsburgh and Johnstown (a nearby city) than between Pittsburgh and Seattle. This may occur 

because of similarities in the underlying social and economic processes that cause pollution (e.g., 

manufacturing base) or atmospheric processes that suspend pollutants over large distances and 

disperse pollutants from region to region (e.g., prevailing wind patterns). Usually the level of spatial 

autocorrelation would diminish as a function of distance between the two regions, unless there is some 

reason for similarity due to industrial structure or some other factor associated with the pollution 

phenomenon such as transportation emissions. Autocorrelation tests use point, line, or area features 

that have attribute values attached to them. One important distinction in these tests is whether they 

measure global or local autocorrelation. 

Global autocorrelation tests measure the tendency, across all data points, for higher (or lower) 

values to correlate more closely together in space with other higher (or lower) values than would be 

expected if the data points were drawn from a random distribution. Several tests of global 

autocorrelation are available, with the Moran’s I being the most common. Positive values of the 

Moran’s I [4] with significant p-values (i.e., p < 0.05) suggest high values in region i tend to depend on 

values in adjacent regions j (i.e., higher values will cluster in space with other high values). Negative 

values would suggest that high values tend to associate with low values, similar to a checker board 

pattern. To understand how autocorrelation tests work, it is useful to distinguish spatial autocorrelation 

from ordinary correlation. Autocorrelation is defined for observations lagged in time or space with a 

single sequenced variable, whereas ordinary correlation refers to the joint observation of two or more 

variables [11]. In global tests for autocorrelation, it is assumed that the relationship between nearby or 

otherwise connected observations will remain the same everywhere in the study area (referred to as 

“stationarity” or “structural stability”). For example, the spatial autocorrelation between mortality rates 

in metropolitan areas of the United States would be the same at all places in the country, meaning the 

relationship between the areas was purely a function of distance between the areas and not relative 

location. A positive autocorrelation suggests that like values tend to be located nearby one another. 
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Sometimes global relationships are of less interest than local relationships or clusters that may 

display non-stationarity. Local indicators of spatial association (LISA), such as the local Getis-Ord (G) 

and local Moran’s I statistics, can assess clustering in small areas to identify clusters or “hot spots” of 

high or low values (see [121–126] for computational details). These local statistics usually break the 

study area into smaller regions to determine if local areas have attribute values that are higher or lower 

than would be expected based on the global average or a random expectation for the entire study area. 

Using the G statistic to investigate mortality in the American Cancer Society (ACS) Cancer Prevention 

II Study in 1982 on approximately 550,000 subjects followed for vital status until 1989, we found a 

significant mortality cluster in the lower Great Lakes area (see Figure 4) [17]. This corresponds 

roughly to the high mortality-high pollution area shown in Figure 5.  

 
Figure 4. Local Mortality Cluster as Measured by the Getis-Ord Statistic (from ACS cohort). 

 

Residual mortality unexplained by 44 individual risk factors (e.g., smoking) with a significant 

cluster of high residual mortality shown in the darker pink color with the yellow outline as 

estimated by the Getis-Ord Autocorrelation Statistic.  
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Figure 5. Sulfate Air Pollution and All Cause Mortality Overlay Map (from ACS cohort). 

 

 

Overlay showing intersection between the residual mortality discussed above in Figure 4 and 

tertiles of sulfate particulate air pollution. The overlay is suggestive of an association between high 

residual mortality not explained by individual risk factors such as smoking and high air pollution. 

 

A major issue in the assessment of global or local spatial autocorrelation is the selection of a 

“spatial weights” or “connectivity” matrix. To assess autocorrelation, it is necessary to assign a matrix 

that formalizes the potential for spatial dependence. The simplest form of connection is the nearest 

neighbor approach using a series of polygons such as the census tracts in Figure 6 [18]. With this 

approach, we would assign a value of one for those neighbors that are connected to each other (i.e., 

shared a boundary) and a value of zero for those that did not have a connection. The other way to 

define the weights matrix is with distance. Most distance matrices rely on Euclidian distance, although 

many modifications are possible if there is prior knowledge about the spatial process in question (e.g., 

travel time instead of straight line distance). To assign a more complex and realistic spatial weights 

matrix, it is essential to have prior knowledge about the processes that may have generated the spatial 

autocorrelation (e.g., population exchanges between cities based on commuting flows may result in a 

shared exposure to a harmful environmental contaminant and resulting higher mortality rates). 

Unfortunately, this information is often lacking, so spatial analysts must resort to some arbitrary 

spatial weight matrix such as the nearest neighbor or Euclidian distance. Other methods are available 

to assist with selecting an appropriate distance [19]. In the absence of prior information to define the 

weighting matrix, sensitivity analysis using different weight matrices can be used. If autocorrelation is 
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robust to different assumptions about the connections between places, we have stronger evidence that 

the results of the autocorrelation tests reflect some real effect and are not an artifact of the assumptions 

made about spatial dependence in the weight matrix.  

 

Figure 6. Comparative Mortality Figures for Men Ages 0−74 in Hamilton (1985−94). 

 

Comparative mortality figures allow for age standardization using methods similar to a 

standardized mortality index (see Fleiss 1981 [20] for more detail).  

 

Other methods can examine more than one type of event and multiple confounding variables at 

once, yielding a more informative control for confounding and assessment of autocorrelation. The 

generalized linear mixed models, generalized additive models (GAM), and Bayesian models are some 

techniques that allow for adjustment of spatial confounding (e.g., residential clustering by age and  

race) [4]. As applied to the above example, these approaches would enable the study to assess the 

effect of pollutant exposure and control for other confounding variables such as age or smoking status.  

In an example from the literature, Webster, et al. [21] use a GAM to examine the spatial 

distribution of breast cancer cases in Cape Cod, MA, and determine if there is clustering of the disease. 

The GAM was applied to case-control data to minimize spatial confounding as well as the bias that 

arises from mapping diseases with long latency periods [21]. To map the cancer distribution on Cape 

Cod, Webster et al. condition on several variables including residential history, age and race. Figure 7 

illustrates (a) the crude, unadjusted odds ratios (OR) with a span or smooth function of 35% of the 

data, (b) the adjusted model with race, (c) the crude ORs with a 15% span, and (d) the adjusted model 

showing spatial confounding by race with a 15% span. 
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Figure 7. An example of maps created using Generalized Additive Modeling techniques 

by Webster, et al. 

 

 
Interpolation 

Interpolation is a process whereby known data points are used to infer values over a space between 

the points to create a continuous surface. For example, data from a network of pollution monitoring 

stations may be interpolated to estimate the most likely values between sample locations. There are 

several different types of interpolation, including kriging, inverse distance weighting, splining and 

Thiessen polygons [4]. Although such models are often used to predict likely values for exposure 

assessments, they can also form the basis of visualizing spatially continuous data. For example, Figure 

8a for the ACS study shows interpolated concentrations of ambient sulfates from fixed pollution 

monitors in 151 metropolitan areas of the United States. The high sulfate values in the lower Great 

Lakes region show a similar spatial distribution to the mortality rates in Figure 6. This pollution 

surface is the same one used to generate Figure 5. Some limitations to interpolation methods are the 

smoothing of local trends, the assumption that the surface is continuous, and that there are enough data 

points to make a valid prediction of the surface (i.e., lower accuracy with fewer data points). 
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Figure 8a. Modeled Mean Concentrations of Ambient Sulfates in the ACS Study. 

 

A special type of optimal interpolation known as “kriging” can be used to generate predicted values 

and their standard errors. These standard errors show where the interpolation tends to be less reliable. 

Kriging models exploit spatial dependence in the data to develop smoothed surfaces. The spatial 

dependence can be divided roughly into two broad categories. First-order effects measure broad trends 

in all the data points such as the global mean, whereas second-order effects measure local variations at 

shorter distances between the points [4,22]. Kriging models are considered optimal interpolators 

because they supply the best linear unbiased estimate (BLUE) of the variable’s value at any point in 

the study area [22]. Figure 8b shows the standard errors of the interpolated sulfate surface of Figure 8a. 

From this map, we can see that estimates are more reliable in areas where the cities with monitoring 

stations are denser, especially in the Northeast and Midwestern regions. Errors in the estimates are not 

often shown with interpolations, and this can lead to incorrect interpretations. In addition, it must also 

be kept in mind that the data set will determine the results. The sulfate pollution maps shown here 

depict spatial variation in the ACS sample of 151 metropolitan areas and are not necessarily 

representative of the spatial pattern that would be found for all the United States in a more  

complete sample. 
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Figure 8b. Standard Estimation Error Associated with Interpolated Concentrations of 

Ambient Sulfate Using Kriging. 

 

 

Point Patterns 

A third type of modeling deals with the intensity of point patterns over space. This type of modeling 

addresses the hypothesis that the intensity of point clustering in a given area differs significantly from 

a random (or control) pattern observed in the entire study area [23,24]. The concern here is with the 

location and the presence or absence of a disease or condition. For example, we might investigate the 

clustering of a specific disease known to be linked to an environmental contaminant. This helps 

identify disease or mortality clusters that may appear in proximity to a pollution source or some other 

potential risk factor. One major limitation of point pattern models arises from the nature of the data. 

Point events by definition carry one dimensional information about the event (usually disease or death 

at that location) which cannot be adjusted easily for other confounding factors such as age. Given the 

important role age plays in health and survival experience, this is a major shortcoming. Though cluster 

analyses are an example of the autocorrelation of related points that can display disease patterns as 

well as exposure patterns and facilitate identification of environmental justice sites. Figure 9, taken 

from Fisher, et al. [25] shows point intensity estimates of Environmental Protection Agency (EPA) 

designated Toxic Releases Inventory (TRI) facilities in the San Francisco Bay Area. With three 

different spatial scales—regional, countywide, and citywide—the researchers evaluate the density of 

TRI sources and whether the clusters are statistically significant with a first-order intensity distribution 

and a second-order Ripley’s K function. Ripley’s K is a method that compares a given distribution of 

points to a homogeneous Poisson distribution that is characterized by complete spatial randomness 

(CSR). Deviations from CSR can then be evaluated for significance. Ripley’s K calculates the relative 



Int. J. Environ. Res. Public Health 2010, 7         

 

 

1314

distance between points by forming circles around randomly chosen points, and estimates the average 

number of points per unit area. Then the function compares the observed estimate to an expected 

estimate that is based on CSR.  

At the regional level, Fisher et al. [25] found many clusters in the whole San Francisco Bay Area 

with two large, statistically significant peaks in the East Bay. Further, at the county level, there was 

statistically significant clustering along the western portion of Alameda County. The researchers then 

used the city-wide data to identify West Oakland as a TRI source cluster and confirm their hypothesis 

that West Oakland is an environmental justice site because it has a statistically significant clustered 

distribution of TRI facilities. Figure 9b shows the location of the TRI clusters calculated with the 

intensity function, and Figure 9c illustrates that the city-wide cluster is outside of the random Poisson 

distribution or CSR envelope (represented by the upper and lower solid lines). The researchers go on 

to integrate social and economic characteristics from the census to explore other area-level 

demographics that make West Oakland an area for environmental justice concern. 

 

Figure 9. (a) TRI facilities in the city of Oakland, CA (b) Intensity distribution of TRI 

facilities in the city of Oakland, CA (c) Ripley’s K function for TRI facilities in the city  

of Oakland. 
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For certain types of disease analysis point pattern analysis can provide useful insights (e.g., the 

incidence of asthma among young adults 20−44 years old). Data for this example came from a 

respiratory health survey administered in 1993−94 [17]. Recently developed methods and software are 

available to interpolate point patterns into continuous surfaces [1]. In addition, it is possible to perform 

a point pattern analysis with multiple variables using a cross K-function [4]. With these methods, a 

regular lattice of points or the centroids of some existing lattice such as census tract centroids serves as 

the vehicle of aggregation. A buffer of a given distance, for example 1.5 km, is drawn around each 

point in the lattice. Within this buffer there will be a certain number of sampled cases (e.g., young 

adults 20−44 years old, some of whom will probably have asthma). A rate of asthma is then calculated 

based on the ratio of cases to the total sample (say, 30 cases over 100 sampled or a rate of 300 per 

1,000). The rates are then interpolated by a linear contour, with the result being a continuous surface of 

disease. Monte Carlo simulation is then used to assess statistical significance. With this simulation, 

each case is given an equal probability of having asthma and the point pattern is simulated many times 

(in this case 1,000) to generate a randomized surface. Rates for this surface serve to assess 

significance. If 950 of the 1,000 simulated surfaces have rates less than the one observed, we can say 

we are 95% confident that this rate could not have occurred by chance. Figure 10 shows a map for 

women aged 20−24 years in Hamilton randomly selected as part of a respiratory survey of some 3,300 

adults of both sexes in this age group in the city. As is evident on the map, there appears to be an 

association between higher asthma rates and proximity to a major industrial area that emits particulate  

air pollution.  

 

Figure 10. Overlay Map of TSP Exceedance Zone on Interpolated Female Asthma 

Indicator Rates. Areas within the red isolines indicate zones where the regulatory standard 

for total suspended particulate matter was exceeded. Areas showing in yellow 

hatching overlapping with the blue and purple shading indicated rates of asthma symptoms 

that exceed what would be expected by chance based on a Monte Carlo simulation. 
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In both examples above, we explored “first order” intensity or the tendency of some areas to display 

a higher density of point cases. Other point pattern analyses like Ripley’s K function seek to assess 

“second order” effects that measure spatial interaction between the points at various distances [13]. 

These tests can be useful for testing hypotheses about infectious disease transmission, and as discussed 

next, more advanced models can include a temporal component. 

 

Spatial Correlation and Regression 

 

A final type of modeling deals with spatial association or correlation between two or more attribute 

values at the same location. For example, we may wish to predict mortality rates in given areas with 

other attribute data such as socioeconomic, lifestyle, and pollution exposure variables. This approach 

then becomes similar to regression analysis (see, e.g., [19,26]). Predicting health outcomes from 

environmental exposure while controlling for other known risk factors leads to suggestive evidence of 

statistical (and potentially causal) associations. When epidemiologic investigations use health data 

from contiguous or nearby geographic areas, the data may not provide independent estimates of the 

dependent variable (e.g., relative risk of mortality). If we account for this lack of independence with 

covariates that are also spatially autocorrelated in a similar way, then bias and underestimation of 

statistical variability should be reduced because the error terms from such a model tend to be 

uncorrelated. If areas differ, however, in some unmeasured or unsuspected way that affects mortality, 

residuals are likely to be autocorrelated [27]. Careful examination and mapping of the residuals can 

also suggest geographic locations where the model fails to predict mortality accurately, and this may 

provide clues as to which factors explain some of the variation in mortality or morbidity. When 

autocorrelation in the residuals cannot be eliminated by adding new variables or changing the 

specification of the model, other techniques can be employed to avoid bias and inflated significance 

levels (see [28,29] for detailed conceptual and mathematical expositions of methods for dealing with 

autocorrelated residuals). Usually these techniques involve either filtering the spatial autocorrelation 

out of the model beforehand and running the filtered variables through ordinary or weighted least 

squares [19,30]; alternatively, autocorrelation can be built into the error term of the model, known 

generally as the “autoregressive” model [11]. The latter model has many forms, but the most common 

one is called a simultaneous autoregressive (SAR) model.  

In another recent study, Jerrett et al. [2] investigated the effects of particulate air pollution on 

mortality in Los Angeles, CA. Figure 11 shows the prediction surface from a land use regression  

model [31]. 
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Figure 11. Land use regression prediction surface of particulate matter less than 2.5 

microns in diameter (see Moore et al. 2007 [31] for more detail on the derivation of the 

land use regression model). 

 

The researchers found large significant associations between particulate air pollution and mortality, 

with especially elevated risks for ischemic heart disease. Risks using this intra-urban exposure 

assessment were more than two times greater than shown in earlier studies that were based on central 

monitoring data and used exposure contrasts between cities rather than within them.  

Importantly, the researchers were able to examine the residual mortality spatially through multilevel 

modeling. Figures below show the residual mortality pattern present when only the individual risks are 

included in the model with no pollution term (Figure 12), and the effect including pollution  

(Figure 13). There is a substantial reduction in residual mortality when pollution is included in the 

model. Further analyses in Figure 14 show how inclusion of a term measuring proximity to major 

freeways further reduced the residual mortality. Statistical tests confirmed significant reductions in 

residual mortality were associated with pollution, suggesting convincingly that pollution was 

associated positively with mortality.  
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Figure 12. Residual mortality in ZIP code areas after controlling for 44 individual 

confounders and age, race and sex. Rho represents a spatial autocorrelation term, which 

was set to zero in this example. 

 

 

Figure 13. Residual (relative risks of mortality) mortality in ZIP code areas after 

controlling for 44 individual confounders and age, race and sex with the PM2.5 pollution 

term or autocorrelation term included. Note the decline in the amount of and spatial pattern 

in the residual mortality. 
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Figure 14. Residual mortality in ZIP code areas after controlling for 44 individual 

confounders and age, race and sex with the PM2.5 pollution and freeway pollution terms 

included. Note the further decline in the residual mortality and the associated  

spatial pattern. 

 

These recent methodological advances, with the use of sophisticated Bayesian methods and with 

multilevel analyses, represent a major new direction in the field. In both instances, confidence in the 

observed health effects increased substantially with the examination of residual spatial patterns in the 

data. Removal of these patterns with inclusion of the environmental pollution variables provided 

stronger evidence that the associations did not occur by chance.  

 
4. Emerging Methods 

Mobility and Exposure 

Much of the current quantitative work in spatial analysis assigns estimates of exposure to the home 

address and occasionally to workplace or school locations. Exposure surfaces can be assigned through 

raster grid cells or as points in a vector-based lattice. The result is a high-resolution estimate of 

potential ambient exposure across the entire urban area that can be assigned to the subjects’ addresses 

through the geocoder file that converts alphanumeric street addresses to a longitude-latitude coordinate 

or equivalent projected coordinate system such as the Universal Transverse Mercator system.  

Although useful to use home or work locations, most studies have not assigned exposures based on 

the “activity space” occupied by individuals. Studies conducted by Kwan [32] indicate high variability 

in the likely distance away from home during the day. At this stage, much of the research has focused 

on residential address, but this will have differential levels of accuracy for commuters vs.  

non-commuters, for children being bussed or walking, and for retired vs. working individuals.  

Elgethun et al. [33] compared parent diaries to differentially corrected GPS units worn by children 3−5 

years old. There was 48% disagreement between the two instruments, with some areas of exposure 

being significantly underestimated (e.g., time in transit, time outdoors at home). Emerging 
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technologies such as GPS and related activity measures such as accelerometers offer possibilities of 

reducing such errors in the exposure assignment of individuals in health studies concerned about 

environment risk.  

Remote Sensing 

Remote sensing has emerged as an important innovation in the exposure sciences. Remote sensing 

can be defined as “the acquisition and measurement of data/information on some property(ies) of a 

phenomenon, object, or material by a recording device not in physical, intimate contact with the 

feature(s) under surveillance” [34]. The field encompasses the capture, retrieval, analysis and display 

of information on surface and atmospheric conductions that is collected using satellite, aircraft or other 

technologies designed to sense energy, light or optical properties at a distance. Here we review the 

potential uses of remote sensing for understanding the exposures from traffic pollution under three 

categories: (1) a means of estimating concentrations of pollutants, potentially generated by traffic, that 

may associate with health effects; (2) as a direct data input to models used to predict air pollution from 

land use, traffic, or other ground-level information; and (3) as a means of cross-validation for land or 

atmospheric data capture by ground or traditional meteorological devices.  

Remote Sensing for Predicting Surface Concentrations 

Because routinely collected satellite data capable of measuring parameters that estimate ground 

level concentrations are generally of coarser resolution than the 500 m distance selected as a guide for 

traffic impacts [35], we have few identified direct applications of remote sensing to estimating fine-

scale variations in traffic pollutants at resolutions relevant to health effects assessment. The Moderate 

Resolution Imaging Spectroradiometer, which operates from the Terra (EOS AM) and Aqua (EOS 

PM) satellites [36], currently has capacity to measure aerosol optical thickness (AOT), and when 

combined with appropriate processing and analysis, to predict particle concentrations in the 

troposphere. Some of the better retrievals and predictive models have been for relatively large areas on 

1 × 1 degree grids, which translate into about 110 km resolution at the Equator. The minimum grid size 

available currently from MODIS is 10 × 10 km grids, with global coverage on a two day cycle. Liu et 

al. [37] demonstrated a method for retrieving and reprocessing the MODIS images to a 1 km 

resolution, however, this method needs further development before being employed in epidemiological 

studies. Based on a three day comparison against 11−14 ground level measurements of PM10, 

correlations ranged from 0.55−0.86. While the predicted values are for areas slightly larger than the 

near-source influence zone, further refinements to scales useful to assessing health effects of traffic  

appear likely.  

The Multi-angle Imaging SpectroRadiometer (MISR) is another space-based instrument capable of 

estimating AOT. This instrument has a minimum grid size of 17.6 × 17.6 km, and temporal coverage 

of the Earth every nine days [38]. Recent studies have utilized MISR to predict PM10 surface 

concentrations within Beijing, China [39]. The authors found moderately high correlations between 

measured concentrations and MISR predictions in the Fall, Winter and Spring (r ranging from 0.59 to 

0.72), but a weaker correlation in summer (r = 0.32). Although the MISR predictions characterized the 

spatial pattern of AOT fairly well over the broad metropolitan area of Beijing, the authors noted that 
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the minimum grid size of 17.6 km may be insufficient for assessing spatial variation in areas with high 

levels of heterogeneity in particle concentrations within the city.  

Special studies using Light Detection and Ranging (LiDAR) have been used to augment other 

meteorological and ground-level data for understanding spatial and temporal dimensions of  

aerosols [40]. In theory, LiDAR may produce 1 m resolution images, but it has limitations in terms of 

oversensitivity to coarse particles (Brook, personal communication 2007) in estimating particle 

concentrations. Future studies using LiDAR may allow for highly refined estimates of exposure from 

traffic pollution.  

Remote Sensing as Data Input 

Increasingly land cover information is derived partly or wholly from remotely sensed imagery. For 

example, as mentioned earlier, the US Multi-Resolution Land Characteristics Consortium of federal 

agencies has purchased and processed Landsat 7 images to classify land cover for the National Land 

Cover Database, which encompasses the entire US [41]. This database provides land use data in a 

raster grid cell format at 30 m resolution. Earlier versions of this land cover data were used to calibrate 

a land use regression model in New York City for predicting small area variations in PM2.5 [42] and 

similar information is available at the national scale, which will enable large-area models of many 

cities to be calibrated where the pollution monitoring data exist or are collected for special studies.  

Processed images may also supply useful information as input to exposure models. As an example, 

the normalized difference vegetation index (NDVI) can be used to derive estimates of vegetative cover 

(see figure 15). These have been used as predictors in land use regression models, and because the 

green cover supplies an alternate estimate of those areas likely to have fewer mobile sources, future 

applications of the NDVI and other processed images may serve as important data inputs to traffic 

exposure assessments.  

 

Figure 15. Normalized Difference Vegetation Index for the Los Angeles Metropolitan 

Area based on Landsat Imagery. Compare to Figure 13 to see the similarities between areas 

of high pollution and low vegetation. 
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Remote Sensing for Cross-validation 

Many of the current exposure models used to predict pollutant concentrations at a fine scale utilize 

ground-based information on pollutant concentrations, land use and traffic. In some instances, the 

geographic accuracy of these ground data may be of variable or questionable quality. Remotely sensed 

imagery of high resolution can be used as cross-validation against which to compare these ground 

data. Some examples include the location of pollution monitoring stations operated by government 

entities. Although increasingly these sites are marked with GPS coordinates, some error in the GPS 

coordinates can occur and those that rely on coordinates assigned by paper maps may have large 

errors. Digital orthophotos or high resolution images from IKONOS or QuickBird images, at 1−5 m 

resolution, can increase the spatial accuracy of the data used as input to land use regressions (e.g., 

[42]). Similar comparisons can be done with land use classifications and with road networks. The 

advent of Google Earth and its extensions has made such cross-validation more accessible for many 

researchers, and reductions in spatial errors have probably increased prediction accuracy of ground  

level concentrations. 

 

5. Policy Implications 

 

Understanding the interface between scientific research and policy action is a complex and 

multifaceted undertaking. Prevention policies designed to protect public health usually involve the 

knowledge base, political will to act, and social strategy to accomplish change [43]. Undoubtedly the 

knowledge base plays a critical role in stimulating and supporting preventive actions to protect public 

health. The specific contribution, however, in each instance remains difficult to assess. We have 

selected three illustrations, each with some level of evidence, to demonstrate how the scientific 

knowledge base, specifically relying on GIS, influences public health prevention policies.  

Some studies have had direct impact on policy. For example, the aforementioned study by  

Jerrett et al. [44] is now being used by the EPA in the review of national ambient air quality standards 

for PM2.5. In addition, this paper was cited in the health burden assessment for the California Air 

Resources Board. Also, this study was cited by the majority of experts as part of a U.S. EPA expert 

elicitation on the causal effects of PM2.5 on mortality as one of the most influential studies in 

determining whether a causal relationship existed between PM2.5 exposure and mortality. Along with 

three other prominent studies, the Jerrett et al. study was used to assess median effect estimates of 

PM2.5 exposure on mortality [45]. The expert elicitation aimed to inform the EPA on the benefits of its 

air quality regulations, and specifically on the decrease in mortality rates that could be achieved with 

decreased PM2.5 exposure. This study therefore provides an example of direct linkage to and influence 

over public health protection policy that relied on a study using GIS and spatial modeling.  

The Office of Environmental Health Hazard Assessment (OEHHA) in California has formed a 

working group with the California Integrated Waste Management Board to assess cumulative 

environmental impacts and make policy recommendations in accordance with the Cal EPA 

Environmental Justice Action Plan. Members of this group titled the Cumulative Impacts and 

Precautionary Approaches (CIPA) Work Group come from industry, academia, and environmental and 

community groups to collaborate and develop feasible solutions to minimize the effect of adverse 
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environmental impacts. Moreover, environmental justice arguments are being heard in the California 

legislature with the passage of Assembly Bill (AB) 32, which, as a part of the Global Warming 

Solutions Act, requires California to reduce greenhouse gas emissions to 1990 levels by 2020. This bill 

specifically mandates that an Environmental Justice Advisory Committee convene and advise the 

California Air Resources Board on the development of the planning and implementation of AB 32. 

Although direct linkages to specific studies are hard to determine, the works of Rachel Morello-Frosch 

and Jesdale appear to have influenced the consideration of cumulative effects and environmental 

justice in California because both these scholars are now on the academic partner’s team of CIPA.  

 
6. Discussion of GIS Methods and Limitations for Future Public Health Research 

This paper has reviewed concepts and methods of spatial analysis used in spatial epidemiology and 

public health research. Examples from published and ongoing studies served to illustrate the strengths 

and weaknesses of different types of spatial analysis. We have supplied a reasonably complete 

summary of the field, but have omitted some point pattern and multivariate methods. For example, 

principal components analysis may be used to characterize neighborhoods by extracting closely related 

components of variables describing the social, economic, and demographic characteristics of 

neighborhoods. The component scores can be mapped and local autocorrelation statistics can be 

applied to assess hot spots of low socioeconomic status or other areas likely to experience poor  

health [18]. Information from these analyses can be used to target health surveys or public  

health messages.  

Through this review, we have underscored the key limitations of each method and approach. Other 

perennial issues related to spatial analysis in a health context deserve mention. First is the ecological 

fallacy. In deriving group rates for display and analysis in chloropleth form, aggregation from the 

individual to the spatial unit can lead to incorrect inferences about individuals (referred to as the 

“cross-level” bias). This issue has been examined in many studies, and while a thorough review is 

beyond the intent of this paper, ecologic bias may lead to incorrect inference about associations 

between risk factors and individual health [46]. This may not present a problem when interest lies in 

assessing determinants of population health on a geographic level. If the research focuses on 

population health relationships, analysts must then be weary of another aggregation issue, referred to 

as the “modifiable areal unit problem.” This problem arises due to the uncertainty induced by the 

aggregation process. Observed spatial patterns might be a function of the zones chosen for analysis 

rather than the underlying spatial pattern. In other words, spatially aggregated data display higher 

levels of uncertainty than the individual data on which those aggregations are based, and observed 

patterns may result from artifacts of aggregation [13]. Some analysts suggest that the smallest 

available unit of analysis should be used unless prior evidence indicates larger units will reveal more 

about the health effect in question [4].  

Relying on small units can lead to low counts of health data and subsequently unreliable rates, 

especially for rare diseases and events such as mortality. Various techniques have evolved for dealing 

with the "small numbers problem" in disease mapping [47]. Both frequentist and Bayesian methods are 

used for dealing with small counts in some of the spatial units. Most of these methods convey those 

spatial units that have small counts that would produce unreliable visualization or inference. For 
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example, some analysts have suggested using Bayesian adjustment procedures to produce rates that 

balance observed rates and some global or local mean value [48], with the latter receiving greater 

weight in the calculation when underlying population and event counts are small. Such methods have 

been criticized for distorting inherent spatial patterns [49]. Other methods involve weighting for 

estimation uncertainty, similar to the ones used in our spatial regression models presented earlier. 

None of these methods compensates completely for a lack of information due to small counts. An 

unavoidable tension always exists between minimizing aggregation bias and maintaining counts large 

enough to ensure reliable rates.  

Some of the point pattern techniques discussed earlier rely on simulated data and Monte Carlo 

distributions to overcome the problem of small counts by using data from larger areas created by 

buffers that circle a point representing a health outcome or the centroid of an existing administrative 

unit such as a census tract [50]. As noted, most of these models lack the ability to produce rates that 

control for confounders such as age, which is a considerable limitation. The question also arises as to 

what the rates mean when they are brought back into administrative units (e.g., census tracts) because 

data from outside the tract has been used to compute the rate. 

Finally, in most spatial analyses, controlling simultaneously for all known risk factors is 

problematic, and analysts may have to rely on both temporal and spatial methods. This is especially 

true for acute exposures that elicit a health response within a short time frame. For example, Poisson 

regressions of mortality counts on air pollution and weather variables, with appropriate adjustment for 

serial autocorrelation, build in automatic control for confounding because individuals experiencing 

health effects are unlikely to change their job, lifestyle, diet, and other risk factors within a short 

period of 1−3 days [51]. Investigating the same association between air pollution and mortality 

through spatial analysis would require control for many potential risk factors [17], and 

operationalizing such models without a high degree of collinearity is a difficult if not impossible task 

[26]. A thorough spatial analysis of the same relationships may still uncover useful information, 

including exposure mismeasurement within metropolitan areas that may not be apparent through the 

time series, the effect of specific confounders, and the influence of chronic exposure. Methods such as 

Cox regressions, GAMs, and Bayesian modeling can incorporate time and space as well as individual 

and ecologic effects. These and similar multilevel, multidimensional models may reveal insights 

unavailable from methods that focus on any one level or dimension. Seen from this perspective, both 

temporal and spatial methods assist researchers with triangulating on the etiology of disease. Thus, 

despite the numerous epistemological, methodological and data challenges to spatial methods, many 

environmental health investigations can benefit from the careful application of the spatial analysis. 

Given the potential of these methods, what are their prospects for future use in environmental health 

research? We will probably see further proliferation of spatial analysis as the methods become more 

familiar to researchers outside of medical geography and spatial epidemiology. The largest challenge 

to the expanded use of GIS and allied methods for health surveillance relates to data availability, 

consistency, and cost. In the United States, the myriad of private medical care suppliers will probably 

make the task of developing national level data capable of supporting spatial analysis even more 

difficult. Thus, while the knowledge and the technology are available to utilize spatial analysis in 

Public Health, the institutional structures for data collection, management, and dissemination are 

lagging. Until these structures are developed and put in place, spatial analysis will remain in the realm 
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of a specialized approach for specific studies where data are available. While the development of 

“infostructure” may seem costly, the expense amounts to a rounding error on the expenditures 

currently made in traditional medical care. 

 
7. Conclusions 

Through this review some central conceptual issues and trends have emerged. In examining the 

trends, there has been a remarkable growth in the use of advanced spatial modeling that appears an 

essential component of spatial epidemiology and public health. Use of GIS and spatial analysis is now 

commonplace in many research projects and health departments, oftentimes not involving traditional 

health geographers.  

On the assessment of health risks, the methodological advent of multilevel models and substantive 

idea of contextual influences on health have done much to increase the sophistication and insights into 

how environmental risks are both conditioned and confounded by numerous social and neighborhood 

factors. The use of multilevel models has elevated insights into health risks—in some of the more 

advanced models, the spatial approach has lead to much higher confidences in the empiric results and 

the demand for this kind of modeling in a field always at the interface between science and policy 

appears likely to grow.  

Other future trends are also apparent. GPS systems and activity monitors have given researchers 

capacity to move beyond relatively static geographies of risk, with exposures assigned largely to the 

home address, to characterize mobility and activity while in the exposure space or what Hägerstrand 

called the “hazard fields”. Interesting and counter intuitive findings are emerging from such studies. 

For example, Briggs et al. [52] recently demonstrated that exposures to air pollution were higher for 

children who walked to school in London, England, than for children who were driven in automobiles. 

While the promise of capturing a time-geography of risk has not yet been fully realized, it is much 

closer to reality now than ever.  

Although still in its infancy, remote sensing holds promise for studying environmental exposures 

and even for characterizing susceptibilities, particularly in poorer regions that may lack digitized 

mapping data. Remote sensing as presented through Google Earth has also awakened the geographic 

imagination in ways that go beyond the traditional academy and places where health geography is 

typically practiced. Numerous sites have now used Google Earth to map environmental exposures and 

risks. Combined with more systematic efforts of web-based mapping [53], Google Earth and similar 

applications appear destined to have a major influence on the field of public health sciences.  

This paper has reviewed the rationale for GIS and spatial analysis in environmental and public 

health research, with an emphasis on earlier arguments by Mayer [1] and on the data issues that often 

limit environmental epidemiology and public health. From there the paper adapted a “Geography of 

Risk” framework emphasizing that risks to human health often result from the overlaps among 

individual susceptibility, exposure to environmental toxins and (mal)adaptation to those exposures or 

the stresses they cause. Recent trends in the field were examined with a literature review covering 

20052–008. Through this review, progression toward more methodologically sophisticated methods is 

evident. GIS and allied methods are now essential components in the larger fields of epidemiology and 
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public health. This influence is evident with growing use of the scientific outputs for informing public 

health prevention policies and practices.  
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