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Abstract: This paper aims to provide direct and indirect evidence on setting up rules for 

applications of the empirical Bayes shrinkage (EBS), and offers cautionary remarks 

concerning its applicability. In epidemiology, there is still a lack of relevant criteria in the 

application of EBS. The bias of the shrinkage estimator is investigated in terms of the sums 

of errors, squared errors and absolute errors, for both total and individual groups. The study 

reveals that assessing the underlying exchangeability assumption is important for 

appropriate use of EBS. The performance of EBS is indicated by a ratio statistic f of the 

between-group and within-group mean variances. If there are significant differences 

between the sample means, EBS is likely to produce erratic and even misleading 

information. 
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1. Introduction  

 

There have been widespread interest in and applications of “shrinkage” estimators in epidemiology 

and demographic analysis for the purposes of smoothing spatial fluctuations, stabilizing estimates, and 

reducing sampling and non-sampling errors [1-4]. Prior researches have also demonstrated that the 

coefficient shrinkage is potentially useful for selection of epidemiological models and control of 

multiple confounders using modern hierarchical modeling techniques [5,6]. The term shrinkage refers 

to a statistical phenomenon that the posterior estimate of the prior mean is shifted from the sample 

mean towards the prior mean [7]. The Bayesian approach to the shrinkage estimation is to use the prior 

distribution and the likelihood (based on the data) to determine the posterior distribution. It has been 

regarded as empirical Bayes shrinkage (EBS), when there is no information for the prior, and the 

observed data are employed to postulate the prior distribution, assuming the sample means were drawn 

from the same population [8]. 

The shrinkage estimator was first proposed by Stein [9] in the 1950s as an alternative to the 

ordinary least squares (OLS) estimator i.e. the sample mean to produce smaller mean squared errors. In 

epidemiology, the EBS has been increasingly used for stabilizing disease incidence, prevalence and 

mortality estimates, as well as improving reliability of the estimates [10-14]. Although the underlying 

principles of the EBS estimator are still controversial [15-17], it is generally believed to provide an 

improvement over the OLS for reducing error risk in decision making [18]. Nevertheless, the EBS is 

subject to bias, error and arbitrary judgment [6]. Evidence also exists that this dedicated statistical 

technique has been misused without due considerations [15,19,20]. Recently, the Australian Bureau of 

Statistics applied the EBS estimator to adjust the Indigenous population estimates for Australian states 

and territories in an attempt to reduce standard errors, resulting in 9% and 4% reductions in the 

magnitude of population estimates for the states of Western Australia and Northern Territory 

respectively and increase of 9% for Victoria and Tasmania [21]. This methodology has substantial 

repercussions for Indigenous services funding allocation, and needs to be justified.  

Dating back to Efron and Morris in the early 1970s, the high risk of EBS estimation has been 

recognized for individual parameters far from the mean of the prior distribution [22,23]. Since then, a 

series of improved Stein estimators have been developed to overcome the deficiency, including limited 

translation, positive-part and generalized Bayes estimators [e.g., 24-26], see [27] for a review of 

historical details. Another strategy to reduce the risk is estimation preceded by testing, known as 

preliminary-test estimator, to determine whether it is efficacious to shrink or not [28-32]. In 

epidemiological and demographic practice, these caveats appear to be largely overlooked.  

In light of ongoing debate among mathematicians and statisticians on how to improve EBS and its 

applications, there is a lack of relevant criteria for assisting decision-making in the possible application 

of EBS in epidemiological settings. This paper provides empirical evidence on setting up rules for the 

EBS, and offers cautionary remarks concerning its applications. In the next section, the EBS is briefly 

reviewed and the problems concerning the EBS are specified. A statistic is proposed to determine its 

applicability and simulation studies are conducted to investigate and illustrate its properties. In 

particular, the nature of bias in the estimator is explored. Two illustrative examples are then presented, 

followed by discussions.  
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2. Methods 

 

2.1. Empirical Bayes Estimator 

 
Consider an ensemble of k group parameters kj  ,,,,, 21   to be estimated with n independent 

observations ),,,,,( 21 njijjjj yyyyY  , kj ,,1  , ni ,,1  , where ijy  is normally distributed with 

jjYE )(  and 2)( jYVar . In analogy with [9], the EBS for j  is: 

jj yByBx )1(        (1) 

where 
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)(  is the overall sample (grand) mean, 
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 is the sample mean for 

group j and B is a shrinkage factor valued between 0 and 1 inclusive. Here, B = 0 represents that the 

sample means should not be ‘shrunk’ to the grand mean, whereas B = 1 indicates that the sample 

means should be fully ‘shrunk’ to, and replaced by the grand mean. Estimation of B is  

straightforward [33,34]:  
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If the within-group mean variance is small relative to the between-group mean variance, the 

shrinkage factor will be small, and vice versa. An iterative estimating procedure has been developed 

for the unequal variance situation [34]. The EBS is believed to be an optimal combination of the 

sample mean and the grand mean, and increases reliability of the estimates because of its smaller sum 

of squared errors (SSE):  

2

1
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.    (4) 

The definition of risk by the quadratic lost function provides a useful means for risk minimization 

in decision making [35]. In the simulation study below, the bias (or accuracy) of the estimators will be 

evaluated in terms of the sum of errors (SE), defined as )ˆ(
1

j

k

j
j  



, the precision (or reliability) will 

be assessed using the SSE and the sum of absolute errors (SAE), defined as 



k
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ˆ  , analogous to 

the elaboration by Hastie et al [36]. Because the task is to estimate j , the performance of the 

estimator is assessed for each j  by:  
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where Ql ,,1  with Q being the total number of simulations. If the SEj is close to zero, the bias is 

small for j . Unlike SSEj and SAEj, the SEj can be either positive or negative.  

 

2.2. Problem with the EBS Estimator 

 

Two examples from the literature [33,34] suggested that the EBS method can produce smaller SSE 
than the sample mean, i.e., 

jjjj yx
SSESSE




 ˆˆ , when the expected value of parameter j  is assumed 

to be the remainder average, jy~ , where: 





N

ni
ijj nNyy

1

)(~ ,      (8) 

with the total number of observations N>n being finite. Referring to the basketball example [34], N is 

the total number of 82 games, n = 10 and jy~  is the average score for the remainder 72 games.  

This opens up two questions. Firstly, what happens to the SSE if, instead of the remainder average, 

the total average jY  (the final score in the examples) is used, which is really the matter of concern. The 

use of jy~  for the assessment standard j  in the SSE equation (4) is problematic, especially when N is 

not excessively large, because when Nn  , jj Yy   and 0ˆ 
 jj y

SSE


. Unless the assessment 

standard kYYY  21  or B = 0, the EBS estimate jx  will not approach jY  when Nn  . 

Secondly, a small SSE does not necessarily reflect either good accuracy or high precision for all 

groups. This begs more questions: how are the errors distributed across groups and how will the EBS 

behave if SE and SAE criteria are adopted rather than SSE?  

 

2.3. Simulation Study and Analysis of Variance 

 
Simulation study uses computer intensive procedures to provide insights about the appropriateness 

and accuracy of a statistical method under particular assumptions [37]. The objectives of the 

simulations are (i) to see if the EBS generally outperforms the OLS; (ii) to investigate under what 

condition the EBS will perform better; and (iii) to explicitly demonstrate the discriminative feature of 

the EBS estimator in terms of bias for individual groups. A large number of simulations were 

undertaken with all combinations of the following parameter values being considered: n = 20, 40, 80; 
2 = 0.0025, 0.01, 0.04, 0.25, 1, 4, 25, 100, 400; N = 100; k = 9; j = 1,...,9; j = j/10, j, 10j; 

).,(~ 2 jij Normaly  These settings are devised to cover a wide range of possible combinations of 

differences between within-group and between-group variances. The OLS was chosen for comparison 

partly because of the ease of computation and partly because the OLS corresponds to the maximum 

likelihood estimator under a normal distribution, which is common in epidemiological settings. In the 

simulations, 2
y  is always estimated by 2ˆ y , even though 2 is known.  
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The performance of jx  is then analysed using the ratio f of the between-group mean variance and 

the within-group mean variance:  
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as given by Everson [34], and: 
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which further leads to the ratio statistic: 

f = (k3)/[(k1)B] ~ ),1( knkkF  .    (12) 

This statistic is similar in spirit to Sclove, Morris and Radhakrishnan [29]. Note that the f statistic is 

inversely proportional to B.  

 

3. Results 

 

3.1. Simulations 

 

The number of replications Q is set to 1,000, which is considered sufficient (>500) for detecting a 

0.02 permissible difference (one-fifth of the difference between the minimum group means), given the 

variance 0.25, n = 20, type I error 0.05 and the power 0.95 [37]. The first part of the study is to 

compare SSE and SAE of the EBS estimator with those of the OLS estimator. Note that SE is excluded 

because 
jjjj yx

SESE



 ˆˆ . The proportions of the 1,000 simulations for which SSE of the EBS 

estimator is smaller than its OLS counterpart are recorded in Table 1. The simulation results show that 

the EBS estimator can outperform the OLS estimator (proportion > 50%) when the parameter j  and 

the remainder average jy~  are used for assessment when 2 is large and the differences between 

sample means are small (j = j/10 or j = j). The EBS estimator, however, performs slightly worse than 
the OLS estimator when the total mean jY  is used for assessment and n is large, and particularly when 

2  is large. The performance of jx  appears to be related to both 2  and variance between sample 

means )(2
jVar

j
  . It does not outperform the OLS estimator when 2  is small relative to 2

j
 .  
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Table 1. Proportions (%) of 
jjjj yx

SSESSE



 ˆˆ  based on Q = 1000 replications. 

   Assessing  2   
  n standard 0.0025 0.01 0.04 1 25 100 400
 =j/10
f 600.0 150.0 37.50 1.500 0.060 0.015 0.004
 
 20

j 50.4 54.4 61.7 82.5 93.9 93.0 94.2
 jY 49.3 52.5 59.8 74.4 87.5 84.6 85.2
 

jy~ 49.6 53.4 61.5 79.7 92.5 90.3 91.0
 40

j 51.1 52.9 56.1 79.7 93.7 93.2 93.7
 jY 51.7 50.7 54.3 61.5 74.1 71.9 68.9
 

jy~ 52.1 52.0 56.1 73.1 89.6 88.3 87.8
 80

j 52.2 50.9 54.0 74.1 92.6 92.0 93.9
 jY 52.4 48.2 50.0 50.3 49.6 47.0 48.7
 

jy~ 53.5 49.4 53.6 66.6 83.9 83.3 82.7
 =j 
f 60 000 15 000 3750 150.0 6.000 1.500 0.375
 
 20

j 50.4 54.4 61.7 49.7 69.7 83.9 90.7
 jY 49.3 52.5 59.8 49.8 63.5 75.3 82.3
 

jy~ 49.6 53.4 61.5 49.9 68.1 80.8 88.7
 40

j 51.1 52.9 56.1 50.1 66.5 77.6 86.2
 jY 51.7 50.7 54.3 50.8 56.8 60.8 65.2
 

jy~ 52.1 52.0 56.1 50.9 62.8 73.0 80.2
 80

j 52.2 50.9 54.0 48.5 62.9 71.2 85.5
 jY 52.4 48.2 50.0 51.0 46.7 48.8 49.1
 

jy~ 53.5 49.4 53.6 51.0 54.5 65.4 74.2
 = 10j      
f 6 000 000 1 500 000 375 000 15 000 600.0 150.0 37.50
 
 20

j 49.9 49.0 49.3 49.7 52.9 54.5 60.2
 jY 49.3 50.3 49.8 49.8 50.9 51.9 56.5
 

jy~ 49.3 50.3 49.8 49.9 51.3 52.6 57.8
 40

j 48.4 49.0 49.5 50.1 52.1 53.0 54.5
 jY 50.7 48.9 49.1 50.8 51.0 51.8 51.2
 

jy~ 50.7 48.9 49.2 50.9 51.8 53.2 53.6
 80

j 50.1 49.3 49.3 48.5 52.7 52.2 54.6
 jY 50.2 50.0 50.3 51.0 49.7 50.3 47.3
 

jy~ 50.2 50.0 50.3 51.0 50.8 52.2 51.1

 
It is evident that the performance of jx  closely relates to the f value. If the group j ’s were equal, f 

would be small and the between-group mean variance would be close to the within-group mean 

variance. The simulation results show that when f is small, the EBS estimator is more likely to 

outperform the OLS estimator. In the baseball example of Morris [33], the EBS estimator performed 

well, because f = 1.12 did not exceed the F distribution 5% cut-off value of 1.64. In contrast, if the 
group j ’s were not equal, the between-group mean variance would be large (relative to the within-
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group variance), and thus would inflate the f value. If f is large, for example, ),1(05.0 knkkFf  , the EBS 

estimator will not outperform the OLS estimator in terms of SSE criteria. This implies that the 

underlying exchangeability assumptions of the EBS do not hold and the group means should not be 

shrunk. Table 1 lists the f values when n . The results confirm that when f < 1.94 ( ),8(05.0 F ), the 

EBS estimator performs better than the OLS estimator, i.e., the proportion of 
jjjj yx

SSESSE



 ˆˆ is 

much greater than 50%. Simulation results for SAE are broadly consistent with SSE results and not 

presented for brevity.  

Table 2. The sum of errors (100SEj) by groups with j = 1, 5, 9 

n  2 0.01 1 100 

  j 1 5 9 1 5 9 1 5 9

  j 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

20 jy   −0.008 0.037 −0.007 0.786 −0.200 −0.227 8.479 −6.425 1.004

 xj  0.191 0.037 −0.205 13.475 −0.219 −12.996 29.164 3.062 −24.211

40 jy   0.019 0.016 −0.019 0.510 0.578 0.321 3.751 −7.531 0.067

 xj  0.119 0.016 −0.119 8.204 0.483 −7.498 28.719 −1.757 −28.441

80 jy   −0.012 0.017 −0.011 0.271 0.161 −0.017 −1.264 −5.765 −0.045

 xj  0.037 0.017 −0.061 4.683 0.170 −4.397 29.172 −1.436 −30.025

  j 1 5 9 1 5 9 1 5 9

20 jy   0.023 0.039 −0.080 0.871 −0.426 −0.976 1.489 4.195 0.162

 xj  0.043 0.039 −0.100 2.856 −0.425 −2.961 129.271 2.284 −126.039

40 jy   −0.013 0.046 −0.041 0.515 −0.934 −0.286 3.159 3.994 −3.299

 xj  −0.003 0.046 −0.051 1.513 −0.932 −1.283 82.075 2.813 −82.005

80 jy   −0.040 −0.002 −0.036 0.142 −0.924 −0.200 2.332 −0.916 −1.153

 xj  −0.035 −0.002 −0.041 0.641 −0.923 −0.699 46.580 −0.904 −45.703

  j 10 50 90 10 50 90 10 50 90

20 jy   −0.089 −0.008 −0.025 −0.956 0.198 −0.331 2.691 8.139 −3.101

 xj  −0.087 −0.008 −0.027 −0.756 0.198 −0.531 22.794 8.100 −23.191

40 jy   −0.092 −0.083 −0.083 −0.772 −0.084 −0.298 −1.020 7.342 −3.903

 xj  −0.091 −0.083 −0.084 −0.673 −0.084 −0.398 8.977 7.322 −13.890

80 jy   −0.066 −0.020 −0.030 −0.496 −0.012 −0.293 −1.948 4.893 −6.302

 xj  −0.065 −0.020 −0.030 −0.447 −0.012 −0.343 3.043 4.886 −11.284

 

The errors are next assessed for individual j  in the second part of the simulation study. The 

individual SEj, SSEj and SAEj analyses unveil some undesirable features of the EBS estimator. Table 2 

shows that the EBS estimator has a positive bias for groups with sample means far below the grand 

mean, for example, j = 1. Meanwhile, the EBS estimator tends to have a negative bias for groups with 

sample means far above the grand mean, for example, j = 9. The EBS estimator introduces a statistical 

bias towards the grand mean, which is skewed against marginal values. This is clearly illustrated in the 

results of the simulations shown in Figure 1. Panel (a) of Figure 1 shows that the SE1 for EBS estimate 

x1 is skewed positively, the SE5 for x5 has a symmetric distribution, whereas x9 is skewed negatively. 
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By comparison, panel (b) clearly indicates that regardless of the magnitude of the means, the 

distributions of SEj for all three OLS estimators 951 and, yyy  are overlapping and symmetrical. These 

plots confirm the presence of bias in the EBS estimator and the lack of bias in the OLS estimator. 

Furthermore, this bias from EBS is negatively correlated with the marginal position of the parameter in 

relation to other parameters.  

 

Figure 1. Error distribution for groups with minimum, medium and maximum values.  

(a) Sum of Errors (SEj) for j = 1, 5, 9 for Empirical Bayes Shrinkage Estimates; (b) Sum of 

Errors (SEj) for j = 1, 5, 9 for Ordinary Least Square Estimates. 
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Table 3 presents the SSEj by groups. It is evident that the EBS estimator performs well under certain 

conditions corresponding to the top-right corner of Table 3 (2 = 100; j = 0.1, 0.5, 0.9; f = 0.015), 

where the EBS SSEj is smaller than the OLS SSEj. As is shown in most other cases of Table 3, for 

groups with value far away from the grand mean (e.g., j = 1, 9), the EBS SSEj is larger than the OLS 

SSEj. For groups with value close to the grand mean (e.g., j = 5), the EBS SSEj is smaller than or equal 

to the OLS SSEj. The results indicates that the EBS estimator reallocates sum of squared errors 

unevenly across the groups, less for the central values and more for the minimum and maximum 

values. Again, simulation results for individual SAEj are generally in agreement with those for SSEj 

and thus are omitted for brevity.  

In view of the above results, the EBS estimator may not increase the reliability of the estimates. 

When f is small, the EBS estimator can increase the reliability more for those means close to the grand 

mean, but less for those means far away from the grand mean. When f is large, the EBS estimator 

actually decreases the reliability especially for the means very different from the grand mean. The 

overall smaller SSE for which the EBS is designed does not necessarily lead to an increase in precision 

for all groups. It is very likely for the marginal groups that the EBS will produce both greater bias and 

less precision if the f value is large. When f exceeds ),1(05.0 knkkF  , the EBS estimator ceases to be 

preferable to the OLS estimator given the statistical bias introduced. In this case, potential 

confounder(s) need to be identified, and further divisions of ensembles or stratifications are necessary 

to ensure the f value is not exceedingly large when EBS is applicable.  

Table 3. The sum of squared errors (100SSEj) by groups with j = 1, 5, 9. 

n  2  0.01   1   100  

  j 1 5 9 1 5 9 1 5 9 

  j 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 

20 jy   0.0479 0.0497 0.0477 5.0400 5.1221 4.8391 509.64 502.83 462.32 

 xj  0.0482 0.0493 0.0479 5.5647 2.8272 5.2105 181.62 178.89 186.64 

40 jy   0.0248 0.0244 0.0245 2.6060 2.4557 2.5326 248.01 256.36 247.09 

 xj  0.0249 0.0242 0.0246 2.8567 1.7153 2.6752 95.284 86.476 94.234 

80 jy   0.0128 0.0119 0.0128 1.2761 1.1932 1.2172 119.23 123.92 111.17 

 xj  0.0128 0.0119 0.0128 1.3926 0.9717 1.3115 49.919 40.804 52.251 

  j 1 5 9 1 5 9 1 5 9 

20 jy   0.0517 0.0491 0.0510 5.0175 5.2305 5.4695 485.60 495.86 530.51 

 xj  0.0517 0.0491 0.0511 5.0747 5.1849 5.5320 537.33 267.53 548.56 

40 jy   0.0244 0.0249 0.0271 2.5130 2.6806 2.8059 233.65 241.30 239.03 

 xj  0.0244 0.0249 0.0271 2.5281 2.6687 2.8173 265.57 162.31 269.45 

80 jy   0.0128 0.0125 0.0137 1.2054 1.3085 1.3438 118.80 129.07 119.67 

 xj  0.0128 0.0125 0.0138 1.2080 1.3055 1.3471 130.91 104.15 132.15 



Int. J. Environ. Res. Public Health 2010, 7         

 

 

389

Table 3. Cont. 

  j 10 50 90 10 50 90 10 50 90 

20 jy
0.0479 0.0486 0.0469 4.7860 4.9156 5.0841 501.95 497.18 503.44

 xj
0.0479 0.0486 0.0469 4.7825 4.9152 5.0854 504.31 492.75 507.06

40 jy
0.0255 0.0261 0.0229 2.5097 2.5017 2.6234 253.43 243.67 251.46

 xj
0.0255 0.0261 0.0229 2.5082 2.5016 2.6240 253.71 242.56 252.78

80 jy
0.0120 0.0132 0.0120 1.2461 1.2779 1.2834 126.39 116.47 118.15

 xj
0.0120 0.0132 0.0120 1.2456 1.2779 1.2837 126.36 116.21 118.92

 

3.2. Examples 

 

Two examples using real data are provided below to demonstrate instances where the OLS 

estimators generate a lower SSE than the EBS estimators. In both these examples the inadvisability of 

using the EBS estimator is suggested by the f statistic criterion.  

 

Example 1: Mumps 
 

The first application concerns mumps notifications per 100,000 by State/Territory from the 

Australian National Notifiable Diseases Surveillance System [38]. The data from 2001 to 2007 are 

taken to predict the 2008 notification rate, and the year-to-date 2008 notification rate is used to 

evaluate the EBS estimate; see Table 4. Suppose the notification rates follow a normal distribution and 

the EBS is applicable. Because of the difference in population size between State/Territories, unequal 

variances are considered appropriate and the shrinkage factors are estimated iteratively [34]. The 

estimated shrinkage factors and corresponding EBS estimates for the 2008 notification rates by 

State/Territory are listed at the bottom rows of Table 4. The SSE for the EBS estimator is 267.6, much 

greater than the SSE of 202.5 for the OLS estimator. The EBS estimators do not provide better 

estimates than the OLS estimators (in terms of SSE) in this situation. Here f = 13.09 is much greater 
than )56,7(05.0F  = 2.18 and therefore the EBS estimator is not recommended.  

Table 4. Australian mumps notification rate (per 100,000 population). 

 State/Territory*  

 ACT NSW NT Qld SA Tas Vic WA 

2001 0.3 0.4 0.5 0.1 0.8 0.4 0.8 1.5 

2002 0 0.4 0.5 0.2 0.7 0 0.2 0.7 

2003 0.6 0.5 0 0.3 0.8 0 0.1 0.7 

2004 0.9 1 0 0.4 0.3 0 0.1 0.5 

2005 0.3 1.6 3.4 1.7 0.5 0 0.4 1.1 
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Table 4. Cont. 

2006 0.3 2.3 3.3 1.4 1.3 0 0.3 0.8 

2007 1.2 4.7 28.8 1.1 1.4 0.4 0.3 5.2 

2008 (year-to-date)  0 1 19.1 0.6 0.9 0.4 0.3 4.5 

jy  0.5 1.6 5.2 0.7 0.8 0.1 0.3 1.5 

Bj 0.11 0.01 0.17 0.01 0.03 0.08 0.01 0.02 

xj 0.6 1.6 4.6 0.7 0.8 0.2 0.3 1.5 

* ACT: Australian Capital Territory; NSW: New South Wales; NT: Northern Territory; Qld: Queensland; 

SA: South Australia; Tas: Tasmania; Vic: Victoria; WA: Western Australia. 

 

Example 2: Birth Weights 

 
The birth weight data are taken from the perinatal data collections from 2003 to 2007 in the 

Northern Territory, Australia. There are seven districts in the Northern Territory, namely Alice Springs 

Rural, Alice Springs Urban, Barkly, Darwin Rural, Darwin Urban, East Arnhem and Katherine. The 

annual average birth weights from 2003 to 2006 are used to estimate the true average birth weight for 

each region over the period 2003–2007, as shown in Table 5. The f value of 34.30 is much greater than 

)21,6(05.0F = 2.57, and the EBS performed badly with SSE = 648, much greater than the SSE = 601 of the 

OLS estimator. Then we stratify the birth weights by identifying and separating out non-Aboriginal 

infants. The f value decreases to 3.71, indicating the performance of the EBS estimator has improved 

substantially. In accordance with the f statistic criterion, the EBS is still not applicable after 

stratification, indicating further potential confounders (such as rurality) may operate. Due to the small 

number of districts, further division of the ensemble based on rurality is not performed.  

Table 5. Birth weights (grams) by regions, 2003–2007, Northern Territory, Australia. 

     District*     

  ASR ASU BD DR DU EA KD Total 

NT†      

2003-2006 jy  3,182 3,381 3,137 3,058 3,326 3,121 3,186 3,198 

 SD‡ 33.3 27.1 72.5 26.3 8.0 27.4 46.8 113.8 

2003-2007 j 3,187 3,386 3,145 3,051 3,331 3,141 3,189  

 xj 3,182 3,377 3,139 3,060 3,323 3,122 3,186  

NT non-Aboriginal     

2003-2006 jy  3,494 3,421 3,322 3,324 3,347 3,504 3,320 3,390 

 SD‡ 119.8 25.9 162.7 33.6 8.7 73.8 53.1 108.0 

2003-2007 j 3,494 3,433 3,371 3,324 3,351 3,494 3,324  

 xj 3,476 3,415 3,335 3,336 3,355 3,484 3,333 

* ASR: Alice Springs Rural; ASU: Alice Springs Urban; BD: Barkly District; DR: Darwin Rural; DU: Darwin 

Urban; EA: East Arnhem; KD: Katherine District; † NT: Northern Territory; ‡ SD: standard deviation. 
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In the above two examples, the relative merits of the EBS and OLS estimators are reversed 

compared with the sport examples advocating the EBS estimator [33,34].  

 

4. Discussion 

 

The EBS estimator is sometimes considered as a possible solution to the problem of unstable 

estimates and a way to reduce standard errors. This study demonstrates that when the variance ratio 

statistic f is large, the EBS estimator offers little reduction in standard errors for all groups, but instead 

it can potentially increase standard errors and bias for marginalized groups.  

The EBS rests on some important implicit assumptions such as unimodal probability distribution 

and exchangeability [17]. To make the assumptions explicit, for the EBS to be valid, the groups within 

each ensemble have to be “similar”, exchangeable random quantities from the same prior bell-shaped 

distribution. If the f value indicates that they are unlikely similar groups from the same distribution, 

then the underlying assumptions are violated. A remedy to this problem is to stratify or partition the 

data into credible ensembles according to confounders in order to satisfy these assumptions. In doing 

so, each ensemble will have its own model prior distribution with little between-group heterogeneity 

relative to within-group sampling error. Alternatively, if additional covariate or potential confounder 

information is available, hierarchical regression, multilevel model or mixed model appear more 

appropriate to allow the prior parameters to vary at more than one level and enable structural prior 

information to be incorporated into parameter estimates [39-41]. The multivariate coefficient 

shrinkage, rather than EBS, seems to be the answer to address the confounding and collinearity  

issues [5]. Forcing EBS without consideration of exchangeability may lead to loss of most of the 

statistical gains [42]. 
The rationale behind shrinkage was to minimize the risk by considering a prescribed loss function, 

rather than unbiased estimation for the parameter. The improvement in the risk is significant if the 

individual components are close to the point towards which these estimators shrink and the ensemble 

point estimator is of primary interest [23]. Many authors have contributed to improving both ensemble 

and individual properties for the shrinkage estimators, including the preliminary test  

approach [29-31,43]. The main advantage of the EBS estimator is a sacrifice of unbiasedness for 

improved precision. The f value plays a role in suggesting those situations under which this trade-off is 

beneficial and those under which it is not. When f becomes large, the benefits of improved precision 

appear to be diminishing and offset by unacceptably large bias and a greater degree of volatility for 

marginal groups. This process can be interpreted as a preliminary test for exchangeability. At first, the 

null hypothesis k  21  is tested with the f statistic. If ),1( knkkFf   , the hypothesis is rejected 

at the significance level , j’s are not really exchangeable and EBS is not indicated to be suitable. 

Epidemiologists and practitioners may not be fully aware of the possible problematic and 

differential nature of both bias and volatility resulting from EBS estimation; with benefits being 

directed towards the ones having a large population while disadvantaging those having a small 

population and sample size. Such differential shrinkage is often counter-intuitive. The arbitrary and 

unjustified shrinkage may be regarded as unfair or merely data manipulation by those being evaluated, 

especially when the precisions for individual group estimates are of equal interest, as distinct from the 

general research situation when the overall precision is of primary interest.  
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In summary, the purpose of the EBS estimator is to reduce “risk” in terms of SSE. To apply the EBS 

estimator appropriately, epidemiologists need to assess the underlying exchangeability assumption. If 

there are significant differences between the sample means, EBS is likely to produce erratic and even 

misleading information.  
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