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Abstract: The basic reproduction number, R0, a summary measure of the transmission 

potential of an infectious disease, is estimated from early epidemic growth rate, but a 

likelihood-based method for the estimation has yet to be developed. The present study 

corrects the concept of the actual reproduction number, offering a simple framework for 

estimating R0 without assuming exponential growth of cases. The proposed method is 

applied to the HIV epidemic in European countries, yielding R0 values ranging from 3.60  

to 3.74, consistent with those based on the Euler-Lotka equation. The method also permits 

calculating the expected value of R0 using a spreadsheet. 

Keywords: transmission; infectious diseases; basic reproduction number; epidemiology; 

statistical model; estimation techniques; HIV; AIDS 

 

1. Introduction 

 

1.1. The Basic Reproduction Number 

 

The basic reproduction number, R0, of an infectious disease is the average number of secondary 

cases generated by a single primary case in a fully susceptible population [1]. R0 is the most widely 

used epidemiological measurement of the transmission potential in a given population. Statistical 

estimation of R0 has been performed for various infectious diseases [2,3], aiming towards 

understanding the dynamics of transmission and evolution, and designing effective public health 
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intervention strategies. In particular, R0 has been used for determining the minimum coverage of 

immunization, because the threshold condition to prevent a major epidemic in a randomly-mixing 

population is given by 1-1/R0 [4]. In addition, R0 gives an estimate of the so-called final size, i.e., the 

proportion of the population that will experience infection by the end of an epidemic [5,6]. 

 

1.2. Statistical Estimation of R0  

 

Methodological discussions concerning the statistical inference of R0 are still in progress, and it is 

recognized that the estimate is very sensitive to dispersal (or underlying epidemiological assumptions) 

of the progression of a disease [7]. When one estimates R0 using epidemic data of an emerging (or 

exotic) disease, the exponential growth rate, r, of infections during the initial phase of the epidemic is 

used [8,9]. Assuming that the generation time, i.e., the time from infection of a primary case to 

infection of a secondary case generated by the primary case [10], is known (or separately estimated 

from other empirical data), the growth rate r is transformed to R0 using that knowledge (see below). 

That is, the conventional estimation technique has required two statistical steps, namely, first estimate r 

and then convert r to R0. 

The estimation method can be illustrated by employing a simple renewal process which adheres to 

the original definition of R0 [1]. Let j(t) be the number of new infections (i.e., incidence) at calendar 

time t. Supposing that each infected individual on average generates secondary cases at a rate A() at 

time  since infection (where  is referred to as the “infection-age” hereafter), j(t) is written as: 

0
( ) ( ) ( )j t A j t d  



  . (1)  

Since R0 represents the total number of secondary cases that a primary case generates during the 

entire course of infection, the estimate is given by ([11]): 

0
0

( )R A d 


  . (2)  

When j(t) follows an exponential growth path, it is easy to extract the integral of A() from 

equation (1). Supposing that the incidence grows exponentially at a rate r, we have j(t) = kexp(rt) 

where k is a constant, and moreover, j(t − ) = kexp(rt)exp(−r). This simplifies (1) to the so-called 

Euler-Lotka equation: 

0
1 ( )exp( )A r d  



  . (3)  

Since the density function of the generation time, g(), represents the frequency of secondary 

transmissions relative to infection-age , we can write g() as: 

0 .
0

( ) ( )
( )

( )

A A
g

RA s ds

 



 


 

(4)  

Replacing A() in the right-hand side of (3) by that of (4), an estimator of R0 is obtained [9]: 

0

0 .

1ˆ

( )exp( )
R

g r d  





 
(5)  
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The estimation of R0 is achieved by measuring the exponential growth rate r from the incidence 

data and also by assuming that g() is known (or separately estimated from empirical observation such 

as contact tracing data [12,13]). It should be noted that the above mentioned framework has not been 

given a likelihood-based method for estimating R0 (i.e., a likelihood function used for fitting a 

statistical model to data, and providing estimates for R0, has been missing). Moreover, equation (5) 

may not be easily used by non-experts, e.g., an epidemiologist who wishes to estimate R0 using her/his 

own data. 

The purpose of the present study is to offer an improved framework for estimating R0 from early 

epidemic growth data, which may be slightly more tractable among non-experts as compared with the 

above mentioned estimator (5). A likelihood-based approach is proposed to permit derivation of the 

uncertainty bounds of R0. For an exposition of the proposed method, the incidence data of the HIV 

epidemic in Europe is explored. 

 

2. Methods 

 

2.1. Actual Reproduction Number 

 

In addition to R0, a different measurement of the transmission potential using widely available 

epidemiological data, the actual reproduction number, Ra, has been proposed for HIV/AIDS [14]. The 

concept of Ra is much simpler than R0 in that Ra is defined as a product of the mean duration of 

infectiousness and the ratio of incidence to prevalence [15]. The prevalence p(t) at calendar time t is 

written as: 

0
( ) ( ) ( )p t j t d  



   (6)  

where () is the survivorship of infectiousness, or probability of being infectious, at infection-age . 

Letting () be the transmission rate, which depends primarily on the frequency of contact and 

infectiousness at infection-age , the above mentioned A(), the rate of secondary transmission per 

single primary case at , under an assumption of a Kermack and McKendrick type model, is 

decomposed as ([16]): 

( ) ( ) ( )A     . (7)  

The actual reproduction number Ra is written as: 

0

0

( ) ( ) ( )( )

( ) ( ) ( )
a

j t dj t
R D D

p t j t d

    

  










 






. (8)  

where D is the mean generation time (or what was previously described as the mean duration of 

infectiousness [14,15]). If the transmission rate () is constant  (i.e., independent of  

infection-age), Ra = D. Moreover, from equation (2), R0 is given by: 

0
0

( ) ( )R d D    


  . (9)  
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Figure 1. The relative frequency of secondary transmissions of HIV as a function of the 

time since infection. A step function is employed to approximately model the frequency of 

secondary transmissions relative to infection-age. For d1 years shortly after infection, the 

frequency g1 is very high. Subsequently, for d2 years (i.e., during the asymptomatic period), 

g2 is persistently low, followed by a time period with high infectiousness g3 for d3 years 

until death or no secondary transmission due to AIDS. Following a statistical study [20], d1, 

d2 and d3 are assumed to be 0.24, 8.38 and 0.75 years. Assuming that the contact frequency 

does not vary as a function of time since infection, g1, g2 and g3 are estimated at 1.30, 0.05 

and 0.36 per year. 

 

 

Ra coincides with R0 as long as () is constant. Nevertheless, in many instances, the contact 

frequency and infectiousness (which may be partly reflected, for example, in the viral load distribution 

of the infected host) vary as a function of infection-age . The variation in () is particularly the case 

for HIV infection. Thus, although the usefulness of the incidence-to-prevalence ratio and Ra has been 

emphasized to have an application in HIV/AIDS [15], Ra tends to yield a biased estimate (if Ra is 

regarded as a proxy for R0), and the estimate of Ra is not as robust as that is obtained with equation (5) 

to objectively interpret the transmission potential [17,18].  

 

2.2. Correcting Ra 

 

Here, the above mentioned negative aspect of Ra is reconsidered by correcting the definition of Ra. 

The disease of interest in the present study is HIV. The frequency of secondary transmissions relative 

to infection-age  (i.e., the generation time distribution), approximated by a step function, is shown in 

Figure 1. As has been known for some time [19], the frequency of secondary transmissions is very high 

shortly after infection (for a duration d1 = 0.24 years), followed by a long asymptomatic period with a 

low frequency of secondary transmissions (for d2 = 8.38 years) [20]. Subsequently, the frequency rises 

sharply again resulting in a substantial number of secondary cases for a duration d3 = 0.75 years until 
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death or until the infected individual ceases risky sexual contact due to AIDS [20-22]. Assuming that 

the contact frequency does not vary as a function of infection-age, g1, g2 and g3 have been estimated at 

1.30, 0.05 and 0.36 per year [20]. Here, g() is the density function of the generation time, with a mean 

of 3.79 years.  

Here the concept of Ra is corrected. The equation (8) is rewritten as: 

0
.

( )
( )

1
( ) ( )

a

j t
R t

j t d
D

  





 

(10)  

The numerator represents the number of new infections at calendar time t, while the denominator 

was originally intended to represent “the total number of infectious individuals” who can potentially be 

primary cases with an equal chance at time t. Nevertheless, in order that the estimator of the actual 

reproduction number coincides with that of R0, the concept of the denominator is better replaced by 

“the total number of effective contacts (which can potentially lead to secondary transmissions with an 

equal probability)”. Therefore, the corrected Ra is better written as: 

'

0

( )

( ) ( )
a

j t
R

g j t d  





. 
(11)  

where g(), in the renewal equation with the Kermack and McKendrick type assumption, is written as 

the normalized density of secondary transmissions, i.e.,: 

0 .
0

( ) ( ) ( ) ( )
( )

( ) ( )
g

Rs s ds

     




 




 


 

(12)  

Replacing g() in the right-hand side of (11) by that of (12), we get: 

'

0

0
0

( )

1
( ) ( ) ( )

a

j t
R R

j t d
R

    


 


. 

(13)  

Thus, the estimator of corrected Ra in (11) is identical to that of R0. In other words, R0 can be 

estimated from the incidence data and the generation time without assuming exponential growth of 

cases during the early phase of an epidemic. It should be noted that the ratio of prevalence to mean 

generation time p(t)/D in the denominator of the right-hand side of (10) has been replaced by “the total 

number of effective contacts that have equal potential to generate secondary cases”.  

 

2.3. Data 

 

Here the epidemic data of HIV/AIDS in three European countries: France, the Western part of 

Germany (i.e., the former Western Germany) and the United Kingdom (UK) are investigated [23]. 

Figure 2A shows the yearly incidence in these countries from 1976–2000. During the observation 

period, a total of 23,243, 13,126 and 11,491 AIDS cases were diagnosed in France, Western Germany 

and the UK, respectively. Although the time of HIV infection is not directly observable, the HIV 

incidence has been estimated by employing a back-calculation technique and using the AIDS incidence 
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and the incubation period distribution of AIDS [23]. The present study does not discuss the details of 

back-calculation, but explanatory guides can be found elsewhere [24-26]. Figure 2B shows the 

enlarged HIV incidence curve during the initial phase of an epidemic. The peak incidence was 

observed in 1982 for Western Germany and 1983 for France and the UK. In the following, the time 

period from 1976 up to one year prior to the peak incidence is taken as the early growth phase. For the 

purpose of an exposition of the proposed method, the HIV incidence is assumed to have been in a 

single homogeneously-mixing population. 

Figure 2. Epidemic curves of HIV/AIDS in France, Western Germany and the United 

Kingdom (UK) from 1976–2000. A. The yearly number of new HIV infections (i.e., 

incidence) and new AIDS cases from 1976–2000. AIDS cases are the observed data, while 

HIV incidence is estimated by means of a back-calculation method used by Artzrouni [23]. 

B. The early growth phase of the HIV epidemic. The peak incidence was observed in 1982 

in Western Germany and 1983 in France and the UK. 

 

 

2.4. Statistical Analysis 

 

R0 is estimated using two different methods, one employing the estimator (5) and another using the 

corrected Ra. For the former approach, the exponential growth rate is estimated via a pure birth  

process [27]. Given that the cumulative incidence from year 0 to t − 1 is observed, the conditional 

likelihood of observing the cumulative incidence Jt cases in year t is proportional to ([28]): 

   0

1

0

exp 1 exp
t

t
J J

i

i

r J r






 
   

 
 , (14)  

from which the maximum likelihood estimate and the 95% confidence intervals (CI) of r (per year) are 

obtained. Given a fixed generation time distribution g(), the uncertainty bound of R0 mirrors the 

uncertainty in the estimate of r. The translation of r into R0 via (5) is made by using g() in Figure 1. 
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The latter method, proposed in the present study, employs the estimator of corrected Ra in (11). 

Since the data are yearly, the equation (11) needs to be rewritten in discrete-time: 

0

0

ˆ t

s t s

s

j
R

g j









 

(15)  

where the discrete density function of the generation time, gs is assumed to be given  

by gs = G(s + 1) − G(s), where G(s) is the cumulative distribution function of the generation time of 

length s, but g0 is calculated as a normalized yearly average, because d1 is as short as 0.24 years.  

The likelihood of estimating R0 with (15) is proposed as follows. First, the inverse of both sides  

of (15) is taken: 

0

0 .

1 s t s

s

t

g j

R j








 (16)  

The numerator of the right-hand side indicates the total number of effective contacts made by 

potential primary cases in year t that have an equal probability of resulting in a secondary transmission, 

and the denominator is the number of secondary cases in year t.  

Figure 3. The transmission tree with R0 = 2. (A) Black circles represent primary cases that 

are infectious to others at time t and white circles are secondary cases generated by the 

primary cases. Secondary transmissions from primary to secondary cases are given with the 

basic reproduction number, R0 = 2, i.e., each primary case generates two secondary cases.  

(B) Reconstruction of the transmission tree. Given that all the potential contacts made by 

primary cases (black circles) are known using the incidence data and the generation time 

distribution, the probability that each potential contact resulted in a secondary transmission 

is given by 1/R0.  
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Table 1. Comparison of the estimates of the basic reproduction number for HIV/AIDS 

obtained using two different estimation methods. 

Country r (/year)
1
 

R0 

(exponential growth)
 2

 

R0 

(proposed likelihood)
 3

 

France 1.15 (1.12, 1.17) 3.65 (3.64, 3.66) 3.59 (3.38, 3.81) 

Western Germany 2.15 (2.02, 2.29) 4.08 (4.02, 4.14) 3.74 (3.43, 4.08) 

UK 1.21 (1.18, 1.25) 3.67 (3.66, 3.69) 3.65 (3.38, 3.96) 
1
The intrinsic growth rate during the exponential growth phase; 

2
the basic reproduction 

 number estimated using equation (5); 
3
the basic reproduction number estimated using 

 equation (17); the 95% confidence intervals are shown in parentheses. 

 

The right-hand side of equation (16) is interpreted as follows. Figure 3A shows a transmission tree, 

i.e., a representation of who infected whom, where each primary case on average generates two 

secondary cases. A transmission tree of this kind is usually unobserved unless rigorous contact-tracing 

with microbiological examination is implemented. Thus, a likelihood-based approach to reconstructing 

the tree is considered (Figure 3B) [29-31]. Given the total number of effective contacts that have equal 

potential for resulting in secondary transmission, the probability of a single effective contact resulting 

in a secondary transmission (or the probability that a secondary case is linked to an effective contact 

made by a single primary case in year t) is given by 1/R0. This is a simple binomial sampling process. 

In other words, the likelihood function for estimating R0 is: 

0 0

0

1 0 0

0

1 1
( ) 1

s t s t s t s

s s

g j j g jtT

t s t s

s

j

L R
g j R R

 

 

 





 



   
    

     
    

 




 (17)  

where T is the most recent time point of observation within an early (linear) epidemic growth stage. 

The maximum likelihood estimate of R0 is obtained by minimizing the negative logarithm of (17), and 

the 95% CI are derived from the profile likelihood. 

 

3. Results and Discussion 

 

Table 1 shows the estimates of r and R0 for HIV in France, Western Germany and the UK. The 

maximum likelihood estimates of r ranged from 1.15 to 2.15 per year with the smallest estimate in 

France and the highest in Western Germany. The 95% CI for Western Germany did not overlap with 

those of the other two countries, reflecting the steep rise in incidence in this region in Figure 2B. Based 

on the exponential growth assumption in (5), the estimate of R0 ranged from 3.65–4.08. Again, 

Western Germany yielded the highest estimate without an overlap of the uncertainty bound with the 

other two countries. The maximum likelihood estimate of R0 based on the proposed new method 

ranged from 3.59 to 3.74. Not only were the qualitative patterns for the expected values of R0 

consistent with those based on an exponential growth assumption, but the 95% CI also broadly 

overlapped with those based on the other method. In particular, although R0 in Western Germany using 

the proposed method is smaller than that based on an exponential growth assumption, the 95% CIs of 

the two methods overlapped. The 95% CI based on the proposed method appeared to be wider than 
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those based on exponential growth assumption. Since HIV is mainly transmitted via sexual contact, the 

above mentioned estimate may vary with the mixing pattern and contact frequency (thus, there is no 

general disease-specific R0, especially for HIV/AIDS). At least, compared with a previous estimate  

of R0 as ranging from 13.9 to 54.5 in the USA, based on an exponential growth assumption that 

adopted a mean infectious period of 10 years [32], R0 in the present study appeared to be much smaller 

using a precise estimate of the generation time distribution. 

The present study proposed the use of the corrected actual reproduction number, Ra, for statistical 

inference of R0 based on incidence and known relative frequency of secondary transmissions (i.e., the 

generation time distribution) during the early growth phase of an epidemic. The previously available 

method using (5) forced us to adopt an exponential growth assumption, and moreover, an additional 

step towards the estimation of r (i.e., the translation of r to R0) was required [9]. The proposed method 

does not necessarily require an exponential growth assumption and provides a “short-cut” to estimate 

R0 from incidence data. The simple likelihood function employing a binomial distribution was also 

proposed to yield an appropriate uncertainty bound of R0. It should be noted that given the knowledge 

of gs and readily available incidence data, equation (15) permits calculation of the expected value of R0 

without likelihood. Such a calculation can be attained using any spreadsheet. 

The usefulness of the actual reproduction number, calculated as a product of the mean generation 

time and the incidence-to-prevalence ratio, has been previously emphasized in assessing the 

epidemiological time course of an epidemic [14,15]. However, it appears that Ra does not precisely 

capture the secondary transmission if the transmission rate () varies with infection-age  [18], and 

moreover, the cohort- and period-reproduction numbers directly derived from the renewal equation 

have been suggested to be more accurate figures in capturing the underlying transmission  

dynamics [17,33]. In the present study, replacing the denominator (i.e., prevalence) of Ra by the total 

number of potential contacts, it was shown that the R0 derived from the renewal equation coincides 

with the corrected actual reproduction number, Ra, and also that the likelihood can be quite easily 

derived. The corrected Ra does not require prevalence data, and uses only the incidence data and the 

generation time distribution. 

Many future tasks remain, however. Most importantly, the estimation of R0 from early epidemic 

growth data for a heterogeneously-mixing population is called for. R0 in the present study can even be 

interpreted as R0 for a heterogeneously-mixing population (i.e., the dominant eigenvalue of the next-

generation matrix), provided that the early growth rate is the same among sub-populations (though it is 

not the case if the growth rate varies across sub-populations) [34,35]. Analyzing heterogeneous 

transmission among approximately-aggregated discrete groups, the estimate of the next-generation 

matrix would give more detailed insights into the epidemic dynamics, including the most important 

target host for intervention [36]. As discussed in a modeling study in this special issue of the 

International Journal of Environmental Research and Public Health [37], understanding the 

implications of sexual partnerships and their variations as a function of calendar time as well as 

infection-age is also of utmost importance. As the next step for a similar estimation framework, 

methods for estimating robust R0 and the next-generation matrix from structured data (i.e., data 

stratified by age- and/or risk-groups) will be useful. Despite the future challenges, I believe the present 
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study at least satisfies a need to offer a likelihood-based approach to estimate R0 from early epidemic 

growth data, while being easily tractable and calculable among general epidemiologists. 
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