
Int. J. Environ. Res. Public Health 2009, 6, 1055-1074; doi:10.3390/ijerph6031055 

 
International Journal of 

Environmental Research and 
Public Health 

ISSN 1660-4601 
www.mdpi.com/journal/ijerph 

Article 

Simulation of Atmospheric Dispersion of Elevated Releases 
from Point Sources in Mississippi Gulf Coast with Different 
Meteorological Data 
 

Anjaneyulu Yerramilli 1,*, Challa Venkata Srinivas 1, Hari Prasad Dasari 1, Francis Tuluri 1, 

Loren D. White 2, Julius M. Baham 1, John H. Young 1, Robert Hughes 1, Chuck Patrick 1,  

Mark G. Hardy 3 and Shelton J. Swanier 3  

 
1 Trent Lott Geospatial Visualization Research Centre, Mississippi e-Center, Jackson State 

University, 1230 Raymond Road, Jackson MS 39204, USA; E-Mails: cvsri@igcar.gov.in (C.V.S.); 

hari.dasari@jsums.edu (H.P.D.); francis.tuluri@jsums.edu (F.T.); julius.m.baham@jsums.edu 

(J.M.B.); john.h.young@jsums.edu (J.H.Y.); robert.l.huges@jsums.edu (R.H.);  

cpatrick@jsums.edu (C.P.) 
2 Department of Physics, Atmospheric Science and General Sciences, Jackson State University, 1400, 

Lynch Street, Jackson MS 39217, USA; E-Mail: white@twister.jsums.edu 
3 College of Science, Engineering &Technology, Jackson State University, 1400 Lynch Street, 

Jackson MS 39217, USA; E-Mails: mark.g.hardy@jsums.edu (M.G.H.); 

 sswanier@jsums.edu (S.J.S.) 

 

*  Author to whom correspondence should be addressed; E-Mail:yerramilli.anjaneyulu@jsums.edu; 

Tel.: 601-979-3654(O); Fax: 601-979-8247 

Received: 19 January 2009 / Accepted: 2 March 2009 / Published: 11 March 2009 

 

Abstract: Atmospheric dispersion calculations are made using the HYSPLIT Particle 

Dispersion Model for studying the transport and dispersion of air-borne releases from point 

elevated sources in the Mississippi Gulf coastal region. Simulations are performed 

separately with three meteorological data sets having different spatial and temporal 

resolution for a typical summer period in 1-3 June 2006 representing a weak synoptic 

condition. The first two data are the NCEP global and regional analyses (FNL, EDAS) 

while the third is a meso-scale simulation generated using the Weather Research and 

Forecasting model with nested domains at a fine resolution of 4 km. The meso-scale model 

results show significant temporal and spatial variations in the meteorological fields as a 

result of the combined influences of the land-sea breeze circulation, the large scale flow 
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field and diurnal alteration in the mixing depth across the coast. The model predicted SO2 

concentrations showed that the trajectory and the concentration distribution varied in the 

three cases of input data. While calculations with FNL data show an overall higher 

correlation, there is a significant positive bias during daytime and negative bias during 

night time. Calculations with EDAS fields are significantly below the observations during 

both daytime and night time though plume behavior follows the coastal circulation. The 

diurnal plume behavior and its distribution are better simulated using the mesoscale WRF 

meteorological fields in the coastal environment suggesting its suitability for pollution 

dispersion impact assessment in the local scale. Results of different cases of simulation, 

comparison with observations, correlation and bias in each case are presented. 

Keywords: Meteorological data; HYSPLIT model; dispersion estimates. 

 

 

1. Introduction 

 

Increasing urbanization, industrial growth and population expansion in coastal areas necessitates 

accurate air pollution dispersion estimates. A number of regional-scale meteorological conditions and 

prevailing winds influence the pollutant trajectories and ground level concentrations. Coastal regions 

are particularly interesting as topographic variations and land-sea interface govern the local flow. 

Pollutant plumes in the coastal zones are influenced by development of meso-scale sea breeze 

circulations as a result of differential heating of the land and water surfaces [1,2]. Differential land-sea 

temperatures and the incidence of local circulations initiate development of internal boundary layer 

(IBL), which has a critical effect on dispersion [3,4]. These local effects need to be accounted in the 

coastal dispersion simulation for realistic estimations of pollutant concentrations. Proper 

meteorological inputs are needed to obtain realistic estimation of concentrations. At present several 

sources of meteorological data are available at different spatial and temporal resolution to study long-

range transport or the local scale dispersion. Numerous studies show the spatial and temporal 

resolution of meteorological data is an important factor in accurate estimation of plume trajectories and 

concentration [5,6]. Nasstrom and Pace reported in 1998 that higher resolution meteorological data 

lead to improvement in meso-scale dispersion through better representation of flow features [7]. 

Draxler, in 2006, reported application of meteorological fields produced by Penn State University 

(PSU)/National Center for Atmospheric Research (NCAR) mesoscale meteorological model (MM5) 

improved dispersion calculations on urban scales over the forecast fields from global models [8]. 

Several studies reported application of numerical meso-scale models for driving the dispersion models 

in complex terrain to capture the complex flow and meteorological parameters essential in dispersion 

estimations [9-11]. Segal et al. in 1998, applied a coupled mesocale atmospheric dispersion model to 

study the ground level SO2 concentrations from major elevated sources in Southern Florida [12]. Their 

study revealed that the local sea-breeze circulations lead to complex meso-scale dispersion pattern 

causing higher concentrations on the east coast. Usually meteorological fields (analyses/forecasts) 

commonly available from operational weather agencies are employed in dispersion estimations due to 

their availability in near real-time. Secondly, meso-scale models are computationally expensive and 
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need to be designed carefully with appropriate input data such as terrain/topographic information, 

physics schemes and initial/boundary condition data for a selected domain which preclude their 

application for dispersion estimations when data is generally available at a desired scale from 

operational weather agencies. However it is necessary to evaluate such commonly available 

meteorological data for application in a specific location especially in challenging coastal 

environments. 

Southern Mississippi (MS) has densely populated urban regions at Biloxi, Gulfport, Harrison 

located along the Gulf Coast. Several industries situated along the MS coast emit elevated releases. 

Considerable meso-scale forcing exists in the Mississippi Gulf coast due to differential temperatures 

across the coast, variability in the land use and complex topography. This area, located to the east of 

Louisiana complex coastline (Figure 1), experiences typical coastal atmospheric conditions in terms of 

flow field variability, temperature and mixing depth characteristics. In this work, a numerical modeling 

approach has been adopted to examine the environmental SO2 concentrations from some of the 

significant elevated sources in the MS Gulf coast region. A few commonly available meteorological 

model data and a meso-scale model prognosis that vary in their temporal and spatial resolution are 

tested using the Hybrid Single Particle Lagrangian Integrated trajectory model (HYSPLIT) [13] to 

simulate pollutant releases in the coastal environment. The analysis data sets included the NCEP Final 

Analysis (FNL), and the NCEP Eta Data Assimilation System (EDAS) analysis [14,15,16]. A 

simulation was conducted using the Weather Research and Forecast (WRF) meso-scale model to study 

the aspects of the coastal atmospheric circulations in the Mississippi Gulf coast [17]. The 

meteorological outputs from that simulation study are used to provide the high resolution wind and 

turbulence fields as the third data set in the present study. Summer synoptic conditions are considered 

to model the concentrations as the meteorological patterns during summer season are associated with a 

high pressure in the Gulf of Mexico, a weak synoptic forcing and significant land-sea temperature 

contrast conducive to the development of local meso-scale circulations in Mississippi. The objective of 

the work is to study the complexity of the elevated plume dispersion in distance ranges of a hundred 

kilometers under the combined influences of the local land-sea breeze circulation and synoptic flow.  

Since the interest here is to find the differences that arise in the concentration patterns in the three 

different cases of input data, simulations are compared to ground-level air concentrations to assess the 

relative performance of each of the meteorological data sets. The description of different 

meteorological data sets used for the study is given in Section 2, the dispersion model is described in 

Section 3 and the intercomparison of dispersion calculations is given in Section 4. 
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Figure 1. Location of the study area Mississippi Gulf coast and the domains used in the 

WRF model simulation. 

 
 

2. Brief Description of Numerical Models 

 

2.1. Meteorological Models and Data Generation 

 

The modeling period was selected as June 1-3, 2006 during a summer synoptic condition. A 

moderate easterly synoptic flow associated with a high pressure over the subtropical North Atlantic 

Ocean prevailed during this period. The coarse meteorological data is chosen from two sources i.e., the 

NCEP FNL analyses, and the EDAS Eta analyses. The FNL analyses is prepared by combining 

observations with short-range forecasts from a global model and the data are available on the surface 

and 26 vertical levels from 1,000 mb to 10 mb at a spatial resolution of roughly 100 km at 6 h 

intervals. EDAS is a regional analyses for North America based on the Eta regional model. These data 

are available at 3 h intervals on Eta 212 grid at a spatial resolution of 40 km on 26 vertical levels from 

1,000 mb to 50 mb. To obtain high-resolution meteorological fields a simulation is conducted with the 

Advanced Research WRF (ARW) meso-scale model (V2.2) [18]. The model consists of fully 

compressible non-hydrostatic equations and the prognostic variables include the three-dimensional 

wind, perturbation quantities of potential temperature, geo-potential, surface pressure, turbulent kinetic 

energy and scalars (water vapour mixing ratio, cloud water). The model vertical coordinate is terrain-

following hydrostatic pressure and the horizontal grid is Arakawa C-grid staggering. A 3rd order 

Runge-Kutta time integration is used in the model.  

 

2.2. WRF Model Domains and Initialization 

 

The details of the meso-scale simulation are given in [17] and are briefly described here. The model 

is designed with three nested grids (36, 12 and 4 km) and with 34 vertical levels. The outer domain 
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covered the South-central US and the surrounding Atlantic Ocean (Figure 1). The inner finer grid 

covered the Mississippi Gulf Coast off Louisiana above the Gulf of Mexico. The 36 km grid (54 by 40 

points) is centered at 30.8 N, 85.3 E and the finest 4 km grid (187 by 118 points) is centered at  

30.96 N, 87.5 E and covers the Mississippi Gulf Coast (Figure 1). The second and third nests are two 

way interactive. The model physics options used are Kain-Fritsch scheme [19] for convective 

parameterization, WRF Single Moment Class 3 (WSM3) simple ice scheme for explicit moisture [20], 

Yonsei University non-local scheme for boundary layer [21], standard five-layer soil model [22], 

Dudhia scheme for short wave radiation [23] and the Rapid Radiative Transfer Model [24] for long-

wave radiation processes. The model is initialized at 00 UTC 1 June and integrated for 48 hours using 

FNL data for initial and boundary conditions. Four dimensional data assimilation (FDDA) [25,26,27] 

grid nudging is performed for the first 12 h period on all grids for temperature, mixing ratio and wind 

on the model grids using the NCEP ADP (Atmospheric Data Project) surface and upper air 

observations. The WRF model is run in the data assimilative mode for the first 12 h period (after 

enhancing the initial / boundary conditions with incorporation of surface / upper air observations), and 

then in pure forecast mode thereafter. The nudging coefficients used are 2.5×10-5 for temperature and 

wind and 1.0×10-5 for mixing ratio. The USGS topography and vegetation data (25 categories) and 

FAO Soils data (17 categories) with resolutions 5m, 2m and 30 sec (0.925 km) were used to define the 

lower boundary conditions. Various options used in WRF model are given in Table 1. 

 

2.3. Dispersion Model 

 

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model [13] developed by 

the Air Resources Laboratory is used to simulate the dispersion of airborne pollutant releases. It 

computes both simple trajectories and complex dispersion and deposition simulations using puff and or 

particle approaches. The dispersion computation consists of three components: particle transport by the 

mean wind, a turbulent transport component, and the computation of air concentration. Pollutant 

particles are released at the source location and passively follow the wind field. The mean particle 

trajectory is the integration of the particle position vector in space and time. In particle mode, the 

turbulent component of the motion defines the dispersion of the pollutant cloud and it is computed by 

adding a random component to the mean advection velocity in each of the three-dimensional wind 

component directions. The vertical turbulence is computed from the wind and temperature profiles and 

the horizontal turbulence is computed from the velocity deformation. The meteorological fields needed 

in the model are u,v,w (horizontal, vertical wind components), T(temperature), Z (height) or P 

(pressure), surface pressure (Po) and the optional fields moisture and vertical motion. These gridded 

three dimensional fields are linearly interpolated in space and time to the particle’s position.  
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Table 1. Details of the physics and grid configuration used in WRF model. 

Dynamics Primitive equation, non-hydrostatic 
Vertical resolution 35 levels 
Domains Domain1 Domain2 Domain3 
Horizontal resolution 36 km 12 km 4 km 
Grid points  54 x 40 109 x 76 187 x 118 
Domains of 
integration 

93.0 W – 78.05 E 
27.16 N – 34.45 N 

91.74 W – 81.92 W 
28.5 N – 34.45 N 

90.28 W – 84.77 W 
29.38 N – 32.54 N 

Radiation Dudhia (1989) scheme for short wave radiation, Rapid radiative 
transfer model (RRTM) for long wave radiation 

Surface processes 5 layer soil diffusion scheme  
Boundary layer Yonsei State University (YSU) PBL scheme 
Sea surface 
temperature 

NCEP FNL analysis data 

Convection Kain and Fritsch scheme on the outer grids domain1, domain2 
Explicit moisture WSM3 class simple ice (SI) scheme 

 

The advection of a particle or puff is computed from the grid scale three-dimensional velocity 

vectors obtained from the meso-scale model. The horizontal turbulent velocity components at any 

given time are computed from the turbulent velocity components at the previous time, an auto-

correlation coefficient that depends upon the time step, the Lagrangian time scale, and a computer 

generated random component. The lagrangian time scales TLw (vertical) = 100 s and TLu (horizontal) = 

10,800 s are assumed to be constant. These values result in a random walk vertical dispersion for most 

of the longer time steps. Turbulent mixing is calculated using a diffusivity approach based upon 

vertical stability estimates and the horizontal wind field deformation. The stability estimates are based 

on surface fluxes when available or the wind and temperature profiles otherwise. Pollutant 

concentrations are estimated as the integrated mass of individual particles as they pass through the 

concentration grid which is a matrix of cells, each with a volume defined by its dimensions.  

 

2.4. Dispersion Simulation 

 

Three simulations were conducted with the HYSPLIT model using i) FNL analysis ii) Eta analysis 

and iii) WRF model outputs. Results are compared with observations to study the impact of the spatial 

and temporal resolution of the mean wind on the dispersion pattern. Dispersion simulation is done over 

a range of 100 km around the sources. A horizontal grid of 2° × 2° with resolution of 0.01° × 0.01° 

(approximately 1 km × 1 km) and with eight vertical levels 25, 50, 100, 200, 500, 1,000, 2,000 and 

5,000 m above ground level (AGL) is considered in HYSPLIT. The emissions data is taken from the 

Mississippi Department of Environmental Quality (MDEQ) and comprises normal annual average for 

the respective sources. From a cluster of elevated point sources located along the MS coast, four major 

sources are considered in the present study. These are Mississippi Power Company-Plant Jack Watson 

(MPJ), Chevron Products Company- Pascagoula Oil Refinery (CR), Mississippi Power Company- 

Plant Victor Daniels (MPV) and Dupont Delisle Facility (DDF) (Table 2).  
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Table 2. Sources of elevated release considered for the HYSPLIT computations. 

Elevated 

Source 

Location 

Source 
Latitude / 

Longitude 

Stack Height 

Hs (m) 

Stack 

Diameter  

Ds (m) 

Source strength 

Qs (g s-1) 

Gulfport 

(A) 

Mississippi Power 

Plant Jack Wa  

30.46° N; -89.21° E 115.12 3.85 24,869.5 

Pascagoula 

(B) 

Chevron Products 

Pascagoula 

Refinery 

30.42° N: -88.49° E 54.1 1.35 1,742.8 

Escatawpa 

(C)  

Mississippi Power 

Plant Victor 

30.52° N; -88.53° E 105.0 10.23 12,522.2 

Passchritian 

(D) 

Dupont Delisle 

Facility 

30.43° N; -89.38° E 45.0 3.0 1,270.5 

 

The dispersion calculations are made for SO2 species and no seasonal or diurnal variations in the 

emissions are considered in the present study. Also the plume rise due to plume effluent velocity and 

plume temperature is not considered in the present study. The point sources considered have exit 

velocities since power plant plumes are certainly buoyant. The buoyant plumes rise to higher heights 

before being subjected to downwind transport and dispersion. The plume rise for these buoyant plumes 

is expected to impact the trajectory paths and concentration results since there is considerable vertical 

variation in winds and temperature with height. A detailed calculation of plume rise could be done in 

future work using the next version of HYSPLIT which incorporates the complete plume rise equations. 

The pollutant plume is treated as top-hat puffs in the horizontal and particle in the vertical. A total of 

500 particles or puffs are released during one release cycle with a maximum of 10,000 particles 

permitted to be carried at any time during the simulation (Table 3). The vertical turbulence mixing is 

computed using a diffusivity approach based upon vertical stability estimates. Although there are 

several methods for the calculation of horizontal diffusivity such as isotropic similarity based on 

turbulent fluxes or temperature/ wind profiles (i.e., gradient Richardson number), in the present study 

the standard velocity deformation method is used as it is relatively simple and requires only the wind 

field which is commonly available in all the three data sets used in the study. Ground level 

concentrations are computed as averages for the lowest 50 m AGL within each horizontal grid cell. 

 
Table 3. HYSPLIT dispersion model configuration. 

Model version 4.8 
Grid Centre 30.5 N, -89.5 L 
Vertical resolution 8 Levels – 25, 50, 100, 200, 500, 1000, 2000, 5000 
Horizontal Grid  2 × 2 degree 
Horizontal resolution 0.01 × 0.01 
Turbulence Method Standard Velocity Deformation 
Meteorology NCEP FNL 6 h data, EDAS 3 h data,  

WRF Simulated hourly meteorological fields 
Frequency of 
emissions cycle 

500 particles per hour 
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3. Results 

 

3.1. Meteorological Fields 

 

Calculations from dispersion models are limited by the nature of the input meteorological data such 

as the resolution and representation of local terrain features in the low-level wind pattern [8]. The 

surface wind from the three input data sets are analysed first. Horizontal wind fields from the three 

meteorological data sets are shown in Figure 2 at 12 UTC (06 LT) and 02 UTC (20 LT) corresponding 

to the night and day time conditions. Surface wind in FNL data has coarse resolution. It is easterly over 

the sea region and northeasterly over the land region. Slight shift in wind flow to the land is seen in the 

daytime (Figures 2a,b). Wind field in the EDAS analysis seems to be represented better and more 

resolved indicating spatial variations than the FNL data. In a few grids near to the coast wind is 

northerly in the night and southerly in the day time indicating the diurnal variation in the flow pattern 

near the MS coast (Figures 2c,d). Simulated wind flow from WRF model (Figures 2e,f) is well 

resolved and more clearly represents the diurnal pattern of winds than the FNL and the EDAS data. It 

depicts the topographic variations in the flow expected from the presence of complex coast line of 

Louisiana. 

 

Figure 2. Surface horizontal wind field in Mississippi region on June 1, 2006 in the case of 

FNL analysis (a,b), Eta AWIP analysis (c,d), WRF model outputs (e,f) corresponding to 12 

UTC (06 LT) 01 June 06 and 02 UTC (20 LT) 02 June 06 respectively. The arrow size in 

each case corresponds to a maximum wind of 10 m s-1. 
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Figure 2. cont. 

         

Figure 3. WRF simulated vertical cross-section of potential temperature and circulation 

vectors at 15 LT, 1 June 2006. 

 
 

Results of the meso-scale model simulation are given in more detail in [17]. Here a few results 

from that simulation relevant to the dispersion study are presented. During the morning time the 

surface wind over Mississippi and Louisiana is northerly. It gradually becomes north-westerly offshore 

and gains in strength especially in parts of Mississippi and Louisiana coastal plains indicating 

prevalence of land breeze circulation. The surface wind at the coast turns southerly around 11:00 LT 

indicating development of sea breeze. Simulated sea breeze penetrates more inland in the subsequent 

times (Figures 2e,f). The maximum wind speed increases to about 5 ms-1 near the coast at 16:00 LT, 

the extent of the sea breeze was up to 50 km at this time. The flow is onshore and extended deep inland 

in the night. The simulated vertical cross-sections of wind and potential temperature at 15:00 LT at 

89.75° E are shown in Figure 3. Circulation near the coast line at distance point (=100 km from south) 

shows development of a sea-breeze front with convergence, ascending winds at the leading edge, 

return flow aloft and subsidence behind the front. Horizontal circulation associated with sea breeze is 

seen to prevail up to a height of about 1,000 m. Temperature contours across the coast indicate stably 

stratified layers in the lower atmospheric region in the morning time on the sea and land regions, 
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which gradually transforms to unstable stratification over the land in the afternoon time at 15:00 LT 

(Figure 3). A shallow boundary layer near the coast and deep boundary layer in the inland region are 

seen. The shallow mixing layer extends horizontally up to 30 to 40 km inland. Simulated PBL height 

across the coast also shows a shallow PBL near the coast and a deep boundary layer inland (Figure 4). 

Sea breeze extends up to 80 km inland and mixed layer depth across the coast varies from 200 m to 

800 m. Diurnal variation in modeled and observed near surface (10 m) wind speed, wind direction and 

air temperature (at 2m) along with corresponding values from FNL and EDAS data for the period, 

June 01-03, 2006 are shown in Figure 5 at Pascagoula Mesonet tower located at 30.36N and -88.52E 

roughly at a distance of 5 km from the coast. Both observations and model values at Pascagoula 

indicate increase in wind speed, decrease in air temperature and shift in wind direction around the 

noon time indicating sea-breeze onset. A shift in wind direction from 275 (northwesterly) to 200 
(southerly/ southwesterly) is found both in the model values and observations. The model could 

reproduce the observed trends of the surface variables (Figure 5). The data from EDAS and FNL 

follow the trend in observations to some extent. Although the EDAS and FNL data follow the order of 

the parameters, the diurnal cycle is better represented in the WRF simulated fields. 

 

Figure 4. Simulated boundary layer height across the MS coast at 10 UTC (16 LT), June 

01, 2006. The latitude of the coast is 30.4° N. 

 
Figure 5. Diurnal pattern of observed and simulated surface (10 m) wind speed (A), wind 

direction (B) and 2m Air Temperature (C) at Pascagoula station from 00 UTC June 01 – 00 

UTC June 02, 2006. 
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Figure 5. cont. 

 

5.2 Forward Trajectories 

 

Simulated forward trajectories from the release locations are noticed to vary with each case of 

meteorological data (Figure 6). Trajectories with FNL data move in the northeast direction and no 

significant back turning is found. Trajectories in the cases of EDAS and WRF data sets also move in 

north east direction but show looping to the coast indicating effect of onshore and off-shore flows on 

the movement of air parcels. The looping of the trajectories is clearer from the trajectories drawn with 

WRF wind fields. Trajectories in these two cases also show vertical growth while moving inland due 

to variations in the vertical mixing across the coast.  

 

Figure 6. Forward trajectories from the source regions with FNL analysis (a), Eta AWIP 

analysis (b) and WRF model outputs (c). 

 

 

 



Int. J. Environ. Res. Public Health 2009, 6         
 

1066

Figure 6. cont. 

 

Figure 7. Simulated SO2 plume concentration distribution using FNL data at 08-10 UTC, 

01 June 06, 16-18 UTC 01 June 06, 02-04 UTC 02 June 06 and 20-22 UTC 02 June 06 

respectively. 
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5.3. Plume Distribution Pattern 

 

Dispersion simulation in the present work is evaluated following the procedures outlined in [7,8]. A 

visual examination of the plume distribution pattern is made followed by statistical analysis. Figures 7, 

8 and 9 show contours of model calculated 2 h average ground level concentrations in the case of 

simulations with FNL, EDAS and WRF meteorological fields respectively. Each of these figures 

shows the concentration distributions for the periods ending at 10, 18, 28 and 42 h respectively after 

the beginning of calculation. All the plots contain the same concentration contour intervals. Visual 

comparison shows the spatial pattern of concentration field is distinctly different in the three cases of 

meteorological data. Calculations with FNL data show relatively uniform distribution of the plume 

around the sources and the individual plumes from the sources are difficult to be identified. Also 

diurnal alteration in the plume direction was not significant in this case. Orientation of the plume was 

mostly to the west and followed the large scale wind flow pattern in the case of simulation with FNL 

data. Simulations with EDAS meteorological fields showed diurnal alteration in the plume direction to 

some extent but was largely influenced by the synoptic flow. 

 

Figure 8. Simulated SO2 plume concentration distribution using Eta AWIP data at 08-10 

UTC, 01 June 06, 16-18 UTC 01 June 06, 02-04 UTC 02 June 06 and 20-22 UTC 02 June 
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Plume pattern in the case of simulation with WRF meteorological fields clearly showed the diurnal 

alternation in plume direction according to diurnally varying wind flow pattern. Wide spatial and 

temporal variability of the plume is noticed in the calculations with WRF fields. Also the individual 

plumes from each of the sources could be clearly seen in the downwind direction in the cases of WRF 

and EDAS fields. The plume direction was to the east at early morning time (Figure 9A), to the 

southeast in the noon (Figure 9B), to the north east (Figure 9C) in the evening / night conditions and to 

the east-northeast in the afternoon next day (Figure 9D) in the case of simulation with WRF fields. In 

the simulation with WRF fields, the concentration pattern during offshore wind condition shows the 

ranges (2.15e-7 – 8.25e-8), (1.48e-6 – 5.62e-7) extended to larger downwind distances over the 

oceanic region. Similarly the concentration pattern during the night condition (Figure 9C) showed the 

range (2.15e-7 – 8.25e-8) extended to large distance over land.  

 

Figure 9. Simulated plume concentration distribution using WRF model data at 08-10 

UTC, 01 June 06, 16-18 UTC 01 June 06, 02-04 UTC 02 June 06 and 20-22 UTC 02 June 

06 respectively. 
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Figure 10. Diurnal variation of observed and simulated SO2 concentration at Pascagoula 

monitoring station. 
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Table 4. Statistics of the dispersion calculation with different input meteorological data. 

(S.D- standard deviation, S.E- Standard error), units are in g/m3. 

Data 
Used 

Time (UTC) 
Statistics of dispersion calculation (units : g/m3) 

Mean  S.D  S.E  Min Max Range 
FNL 08-10 June 01 1.01E-08 5.43E-08 1.35E-10 0.0 3.28E-06 3.28E-06

16-18 June 01 8.90E-09 8.91E-08 2.22E-10 0.0 2.05E-05 2.05E-05

02-04 June 02 1.27E-08 5.96E-08 1.49E-10 0.0 3.32E-06 3.32E-06

20-22 June 02 8.53E-09 6.19E-08 1.54E-10 0.0 1.15E-05 1.15E-05

ETA 
AWIP 

08-10 June 01 8.73E-09 5.81E-08 1.45E-10 0.0 9.70E-06 9.70E-06

16-18 June 01 5.69E-09 6.64E-08 1.66E-10 0.0 1.45E-05 1.45E-05

02-04 June 02 6.42E-09 6.74E-08 1.68E-10 0.0 8.17E-06 8.17E-06

 20-22 June 02 3.11E-09 9.12E-09 2.27E-11 0.0 1.24E-07 1.24E-07

WRF 08-10June 01 1.01E-08 5.43E-08 1.35E-10 0.0 3.28E-06 3.28E-06

16-18 June 01 1.43E-08 5.72E-08 1.43E-10 0.0 6.93E-06 6.93E-06

02-04 June 02 7.28E-09 2.53E-08 6.32E-11 0.0 1.01E-06 1.01E-06

20-22 June 02 5.47E-10 1.01E-08 2.51E-11 0.0 1.95E-06 1.95E-06

 

Table 5. Results of dispersion calculations with FNL, EDAS and WRF meteorological 

data. R- correlation coefficient, FB- fractional bias. 

Meteorological 
data 

R FB (24 h) 
FB (8 h 
day) 

FB (8 h 
night) 

FNL 0.396 0.81 1.47 -1.04 

EDAS  0.10 -1.33 -1.39 -1.85 

WRF mesoscale 
simulation 

0.21 -0.82 -1.47 -0.41 

 

Model concentrations with WRF data are closer to observations up to 40 h and deteriorate 

thereafter. Statistical parameters of correlation and fractional bias are calculated between observed and 

calculated concentrations. Correlation (R) is used to represent the scatter among paired measured and 

predicted values and a fractional bias (normalized bias) (FB) is used to indicate over-prediction or 

under-prediction [7]. Calculated concentrations in all cases show an increase in bias towards the tail of 

simulation. Simulated concentrations with Eta analysis are an order less than those with FNL and WRF 

fields. Calculations with FNL fields are overestimated during day time and underestimated during 

night time. This is seen in the positive fractional bias during 8 h daytime period and negative fractional 

bias during 8 h night time period (Table 5). An overall (24 h) high correlation and positive bias is 
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noticed with FNL data. The higher correlation in FNL plume prediction is probably because of the 

closeness of the wind speed , direction and other meteorological parameters in FNL data with the 

observations over 6 h intervals and because the FNL values remain constant in the dispersion 

simulation over every 6 h period unlike the EDAS and WRF data. However the WRF plume provides a 

more realistic representation of the plume diurnal cycle. 

Higher concentrations observed in coastal regions are generally associated with sea-breeze 

circulation and shallow mixing during thermal internal boundary layer formation. Downwind 

concentrations in the three simulations for the afternoon time (18 LT) are shown in Figure 11 when the 

plume is spread completely over land. While the downwind concentration falls monotonously with 

FNL and Eta EDAS data some difference is noticed in the case with WRF fields. Maximum 

concentrations are noticed at distances of 10 - 40 km in the afternoon time coinciding with sea-breeze 

time and the consequent shallow mixing layer formation and during the night conditions. Figure 9C 

shows the concentration contours 5.6e-7, 2.15e-7, 8.25e-8 extend to large downwind distances in the 

north east direction during the night time in the dispersion simulation with WRF outputs unlike in the 

other two cases. 

 

Figure 11. Simulated downwind concentration of SO2 with different meteorological fields 

at 02-04 UTC 02 June, 2006. 
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reveal presence of meso-scale land/sea breeze circulation and associated mixed layer alterations in the 

Mississippi Gulf coast. The Eta EDAS analysis could show these characteristics to some extent where 

as they are not represented in the FNL analysis data. Plume pattern with NCEP FNL analysis data 

followed the large scale flow. The effects of meso-scale sea breeze and IBL effects are not found in the 

case of calculation with FNL data and EDAS fields. The flow fields from WRF could better simulate 

the diurnal plume distribution pattern than the other two data sets, which may be due to the resolving 

ability of the mesoscale model while using a 4-km grid over the study area. Calculations with WRF 

data clearly show plume recirculation due to sea breeze and follow observed trends of concentration. 

The relatively uniform plume distribution in the case of FNL is probably due to the large horizontal 

deformation associated with the coarse wind field data in the case of FNL analysis. The plume 

distribution in the coastal area is better resolved in the cases of EDAS and WRF fields which could 

more realistically represent the local scale flow field. There were some deviations in the simulated 

concentrations in the case of WRF fields in the initial 6 hours which may be because of the model 

adjustment and spin up to the topography. The deviations in the concentrations are an order more 

during sea breeze time than during other times (10-6 to 10-7 gms-1). While the downwind concentration 

falls monotonously in the simulations with FNL and Eta EDAS data, concentrations are noticed to 

reach maximum values at 25-40 km distance range during the night time and in the afternoon times in 

the simulations using WRF fields. This may be because of the formation of shallow mixing region 

during the afternoon and night hours in the WRF simulation. The current study shows improvement in 

local scale dispersion simulation with the meso-scale analysis data (Eta EDAS) and more specifically 

using meso-scale fields from WRF fields, especially in plume distribution in the coastal environment. 

The species used is actually a reactive chemical species (SO2) with contributions from many local and 

distant sources which makes the model evaluation subject to too many unknowns. However, 

considering the unknowns common in the three cases, the verification in the present study only 

focused on general trends. Also the present study uses observations from a single monitoring site for 

verification. However to distinguish between the influences of the meteorology versus those of subgrid 

processes in HYSPLIT,more number of verification sites need to be considered, which will be 

attempted in the future studies. The current study shows in a general way the problems associated with 

the use of analyses (FNL and EDAS) to represent evolving meteorology over a 48 h period for the 

atmospheric transport and dispersion applications, especially the inability to represent synoptic-scale 

and mesoscale vertical motion fields (viz., sea breeze) in a way that is consistent with the horizontal 

flow field. Also more cases would be required to determine the relative skill when using the three 

cases of input meteorological data sets.  
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