Next Article in Journal / Special Issue
Heavy Metal Content in Soils under Different Wastewater Irrigation Patterns in Chihuahua, Mexico
Previous Article in Journal / Special Issue
Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.)
Article Menu

Export Article

Open AccessArticle
Int. J. Environ. Res. Public Health 2008, 5(5), 436-440; doi:10.3390/ijerph5050436

Bioavailability and Uptake of Lead by Coffeeweed (Sesbania exaltata Raf.)

Plant Physiology/Microbiology Laboratory, Department of Biology, P.O. Box 18540, College of Science, Engineering and Technology, Jackson State University, 1000 Lynch Street, Jackson, Mississippi 39217, USA
Author to whom correspondence should be addressed.
Received: 20 September 2008 / Accepted: 8 December 2008 / Published: 31 December 2008
View Full-Text   |   Download PDF [123 KB, uploaded 19 June 2014]   |  


Lead (Pb) is recognized as one of the most pervasive environmental health concerns in the industrialized world. While there has been a substantial reduction in the use of Pb in gasoline, water pipes, and Pb-based residential paint, residual Pb from their use is still in the environment and constitutes an important source of Pb in the atmosphere, water, and soil. Soil acts as a sink for these anthropogenic sources of Pb, accumulating the deposits over time in the upper 2 - 5 cm of undisturbed soil. Generally, Pb binds strongly to soil particles and renders a significant soil-metal fraction insoluble and largely unavailable for phytoremediation or plant uptake. A major objective of current phytoremediation research, therefore, is to induce desorption of Pb from the soil matrix into solution and increase the propensity for plant uptake. We hypothesized that the bioavailability of Pb for plant uptake can be increased through chelate amendments. To test this hypothesis, we mixed delta top soil and peat (2:1) and added lead nitrate [Pb (NO3)2] to generate a Pb-contaminated soil concentration of 2000 mg Pb/kg dry soil. After incubating the Pb-spiked soil in a greenhouse for 6 weeks, Sesbania plants were grown in the soil and harvested at 6, 8, and 10 weeks after emergence. Six days before each harvest, a chelating agent, ethylenediaminetetraacetic acid (EDTA) was applied to the root zone as an aqueous solution in a 1:1 ratio with the Pb concentration in the soil. Sequential extraction procedures were used to assess selective chemical fractions of Pb in the soil. Our results showed that a higher exchangeable fraction of Pb was available for plant uptake after chelate amendment compared to pre-chelate amendment. We also saw higher root and shoot Pb uptake after chelate amendment compared to pre-chelate amendment, especially at 10 weeks after emergence. Together, these results suggest that chelate amendments can promote the bioavailability of Pb in the soil and increased the propensity for uptake by plants into roots and shoots. Further, these results indicate that Sesbania exaltata can be grown under elevated Pb conditions and may be suitable as a potential crop rotation species for phytoextraction. View Full-Text
Keywords: Lead; Phytoextraction; Sequential extraction; Chelates Lead; Phytoextraction; Sequential extraction; Chelates

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Miller, G.; Begonia, G.; Begonia, M.; Ntoni, J. Bioavailability and Uptake of Lead by Coffeeweed (Sesbania exaltata Raf.). Int. J. Environ. Res. Public Health 2008, 5, 436-440.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top