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Abstract: The conservation of avian diversity plays a critical role in maintaining ecological balance
and ecosystem function, as well as having a profound impact on human survival and livelihood.
With species’ continuous and rapid decline, information and intelligent technology have provided in‑
novative knowledge about how functional biological diversity interacts with environmental changes.
Especially in complex natural scenes, identifying bird species with a real‑time and accurate pattern
is vital to protect the ecological environment and maintain biodiversity changes. Aiming at the fine‑
grained problem in bird image recognition, this paper proposes a fine‑grained detection neural net‑
work based on optimizing the YOLOV5 structure via a graph pyramid attention convolution opera‑
tion. Firstly, the Cross Stage Partial (CSP) structure is introduced to a brand‑new backbone classifica‑
tion network (GPA‑Net) for significantly reducing the whole model’s parameters. Then, the graph
pyramid structure is applied to learn the bird image features of different scales, which enhances
the fine‑grained learning ability and embeds high‑order features to reduce parameters. Thirdly,
YOLOV5 with the soft non‑maximum suppression (NMS) strategy is adopted to design the detec‑
tor composition, improving the detection capability for small targets. Detailed experiments demon‑
strated that the proposed model achieves better or equivalent accuracy results, over‑performing cur‑
rent advanced models in bird species identification, and is more stable and suitable for practical
applications in biodiversity conservation.

Keywords: fine‑grained bird species recognition; deep learning neural networks; graphic‑related
high‑order embedding; ecological environment security; biodiversity conservation

1. Introduction
Avian diversity refers to the variety of bird species that exist in natural environments.

Birds are one of the most diverse groups of vertebrate animals on earth and play various
roles in ecosystems, such as pollination, occupying the top or bottom of the food chain,
and controlling populations [1]. The conservation of avian diversity plays a critical role in
maintaining ecological balance and ecosystem function, in addition to having a profound
impact on human survival and livelihood. With factors such as environmental change,
habitat loss, habitat destruction, and human activities, many bird species are facing the
threat of endangerment and extinction on a global scale. Therefore, protecting and main‑
taining avian diversity has become a global priority, especially in complex outdoor envi‑
ronments, where the accurate identification of bird species is essential to protect ecological
environment security and maintain changes in avian biodiversity [2,3].

From the defined scope, biodiversity refers to all plants, animals, andmicroorganisms
on the earth and their genes. The ecosystem and its ecological process are formed by in‑
teractingwith various species and their habitats, including intra‑species, inter‑species, and
ecosystemdiversity [4]. Monitoring biodiversity is not only an effectiveway tomonitor the
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changes between organisms but also an effective way to evaluate their conservation effec‑
tiveness. It can provide an essential basis for formulating action plans and management
measures related to biodiversity conservation [5,6]. Bird species diversity is an ecologi‑
cal combination formed by interacting with birds, other organisms, and the environment,
e.g., the relationship between birds and air quality [7], and the impact between birds and
wetland environments [8]. It can characterize the composition and structure of bird com‑
munities and the quality of bird habitats, which is of great significance for understanding
the stability of ecosystems [9]. Meanwhile, birds have unique ecological and system en‑
gineering effects, such as species conservation and environmental restoration, and are an
integral part of wetland ecosystems, which are relevant to the healthy development of hu‑
man civilization [10]. Because birds have a broad niche and are sensitive to changes in
ecological factors, they are biological indicator species for detecting environmental qual‑
ity [11]. The species composition of birds reflects the comprehensive utilization of the bird
habitat environment to a certain extent [12]. In addition, birds provide humans with im‑
portant cultural connotations that inspire people to watch them, which is fascinating in the
life history of birds. One example is bird watching, a sport that is very beneficial to human
physical and mental health and that actually focuses on the diversity of birds [13].

In forestry andwetland ecosystems, bird identification technology can effectively help
related staff to realize automatic bird monitoring and count the number and species distri‑
bution of birds in the natural ecological environment, which plays a decisive role in bird
protection and has essential research value [14]. Traditional bird identification mainly re‑
lies on the experience of experts, some of whom specialize in bird work and research and
some of whom use bird watching as a recreational activity. But in any case, these people
still constitute a minority group [15]. Although this method can ensure high accuracy, it
needs to rely on experts to identify birds manually, which is costly. Moreover, there are
many kinds of wild birds, and their habitats are complex. It is inefficient and difficult to
guarantee the accuracy rate only by manually interpreting and counting their types and
distributions. In addition, humans cannot wait in the wild all the time, so how to effec‑
tively measure the existence and distribution of the bird population has always been a
complex problem.

With the progress of computer and artificial intelligence technology, artificial intel‑
ligence technology has been gradually applied to various intelligent identification fields,
e.g., intelligent health monitoring [16], agricultural hazard detection [17], remote sensing
satellite image processing [18], pest identification [19], and food traceability [20]. Simi‑
larly, bird image recognition technology has made significant progress. In the early days,
researchers mainly relied on pattern recognition by manually extracting classification fea‑
tures to recognize bird images [21]. Researchers must select key features of different birds,
e.g., texture [22] and the gradient histogram [23], and then design corresponding digital
feature vectors. By comparing these feature vectors, the classification and prediction of
different bird targets can be realized. However, to minimize the error, it is often neces‑
sary to manually extract the features of crucial points and subtle differences, dramatically
increasing the workload of manual feature extraction. Moreover, due to the different re‑
quirements of each task, researchers focus on selecting varying bird features, which weak‑
ens the generalization ability of this kind of bird classification method. It is difficult for the
algorithm to be further popularized and applied [24], and it is also tricky to significantly
improve its accuracy, bringing significant challenges to bird feature recognition [25].

With deep learning and convolutional neural network development, target classifica‑
tion and recognition technology have also made significant breakthroughs. Deep learning
is a method to learn big data samples’ inherent laws and representation levels. In the
learning process, much information can be obtained for data interpretation. Deep learning
has been studied in many fields, e.g., natural language [26], images [27], and sounds [28].
Deep learning can replace much repetitive work performed by human beings with mighty
computer computing power and dig deeper into the subtle feature differences among dif‑
ferent birds with its deep feature extraction capability, which significantly improves clas‑
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sification accuracy. Deep learning image classification distinguishes different images ac‑
cording to their semantic information. The difference lies in that their features are not ex‑
tracted or designed manually. Still, hierarchical feature learning is carried out supervised
or unsupervised through deep neural networks. The pixel information of the images is
directly used for input, which keeps all the knowledge of the input images to the greatest
extent. Through convolution operation, feature extraction and high‑level feature abstrac‑
tion are carried out on the images, and its image classification effect has surpassed that
of human beings under certain conditions. It has significant advantages in the field of
bird recognition.

However, the bird data obtained in the virtual environment are often affected by the
actual environmental factors, e.g., occlusion, light, and shadow, which significantly lim‑
its the performance of the bird recognition algorithm. Meanwhile, in the actual environ‑
ment, there are fine‑grained phenomena with minor interspecific differences and large
species differences among birds, which are also essential factors restricting bird identifica‑
tion. Moreover, because the equipment used for bird detection is often fixed in the virtual
environment, this leads to a situation in which the target in the obtained bird image is
tiny, which leads to a failure to detect the bird in the target detection algorithm correctly.
Therefore, aiming at fine‑grained bird recognition anddetection, this paper proposes a bird
recognition method based on improved YOLOV5 [29] via graph pyramid attention. This
method is divided into three parts. Firstly, using a backbone network based on the CSP
structure and cross‑stage attention method, the CSP structure can streamline the model
while attention can extract fine‑grained features. Then, the graph pyramid structure is
used to further extract features of different scales and for fine‑grained recognition; finally,
the optimizedYOLOV5 architecturewith Soft‑NMS strategy is used for fine‑grained image
detection of various birds in complex natural environments.

2. Related Works
2.1. Traditional Bird Identification Dataset and Methods

Bird image recognition methods are mainly divided into machine learning and deep
learning methods. The traditional recognition algorithm is based on manual extraction,
feature formation, and a cascade feature classifier, and it is realized by shallow trainable
architecture. A dataset is the basis of research. Many datasets for bird identification re‑
search have been published on the Internet. The BIRDS 400 bird dataset contains datasets
of 400 birds, 58,388 training images, 2000 test images, and 2000 verification images. There
is only one bird in each picture. All images are 224 × 224 × 3 color images in jpg format.
The California Institute of Technology proposed the CUB200‑2011 dataset in 2010 [30], the
benchmark image dataset for fine‑grained classification and recognition research. There
are 11,788 bird images in this dataset, including 200 bird subcategories. The dataset is di‑
vided into training and testing, and the number of images is 5994 and 5794, respectively.
Each image provides image label information, bird bounding box information, essential
part information of birds, and attribute information. The Birdsnap dataset [31] contains
pictures of 500 common birds in North America, with the number of pictures of each bird
being about 100, for a total of 49,829 photos.

The NABirds V1 dataset is a collection of 48,000 annotated images of 400 species of
birds common in North America [32]. There are more than 100 photos of each species,
including individual annotations of males, females, and larvae. In the early days, people
needed artificial feature designs for feature extraction, such as local binary patterns [33]
and directional gradient histograms [34]. This method must first determine the features
and parts to be extracted, for example, the bird’s outline, color, and texture, and 15 signif‑
icant details of the bird’s mouth, feet, wings, and neck [35].

Huang et al. [36] use a graphical model considering significance to classify and an‑
notate fine‑grained bird species. The method first divides the image into several regions.
Then, based on the regional and patch‑level characteristics, GMS is used for classification
and labeling. Finally, SVM is used as a classifier, and GMS is used for image classifica‑
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tion. Berg et al. [37] proposed an algorithm for feature coding of local areas, automatically
searching for information that plays a crucial role in image classification. However, this
method requires high positioning accuracy of critical points, so only a 73.3% recognition
accuracy can be obtained on CUB200‑2011. These methods are suitable for simple images
and a small amount of image data, but they perform poorly for images with complex back‑
grounds, such as the presence of occlusion or bad weather [38], and often fail to achieve
the expected classification accuracy, and the generalization ability of the models are poor.

2.2. Bird Identification via Deep Learning Migration Technology
Thanks to the rapid development of deep learning, target recognition and

classification technology have made remarkable progress. In recent years, networks, e.g.,
AlexNet [39], VGG [40], ResNet [41], GoogleNet [42], and DenseNet [43], have been
launched one after another, which shows that convolutional neural networks have a com‑
pelling feature learning ability in image recognition. Therefore, many researchers also
apply deep learning technology to classify and detect birds. In 2013, Zhang et al. [44] pro‑
posed a fine‑grained classification model, R‑CNN, based on parts. In this method, the
depth convolution feature based on the bottom‑up area suggestion calculation is used to
overcome the labeling problem of the assumed bounding box in the attitude normalization
process. The bounding box is modified and fine‑tuned by learning the whole object and
the component detector, and the geometric constraints between them are forcibly learned.
Finally, a classification accuracy of 76.37% is achieved by implementing feature cascade
fusion classification through AlexNet. Donahue et al. [45] analyzed the use of in‑depth
features in the semi‑supervised multi‑task framework, found that such features are su‑
perior to the most advanced feature methods based on complex multi‑core learning tech‑
nology and traditional manual engineering, and named them De CAF, which proves that
convolutional neural network (CNN) features havemore robust semantic information and
better performance than artificial features. Since then, almost all bird image recognition
algorithms have turned to CNN features.

Because of the apparent fine‑grained problem in birds, it is also essential for research
content to use the fine‑grained method to identify birds. Huang et al. [46] proposed a PS‑
CNNmethod based on a partially laminated CNN structure, which, based on component‑
based R‑CNN, modeled the subtle differences between components and objects to achieve
accurate positioning of multiple target discrimination parts. By adopting a set of sharing
strategies in calculating multiple object parts, the classification accuracy was 76%.
Song et al. [47] introduced the feature enhancement and suppression module, which en‑
abled the network to mine other potential features when learning the most significant
features. The network could understand features of different significant levels through
multilevel operations, which improved the recognition performance. Ji et al. [48] used a
convolutional binary tree network based on the attentionmethod to recognize fine‑grained
images. To calculate the calculation path from root to leaf in each tree, a convolution oper‑
ation was added to the edge of the tree, so the final decision calculation was the synthesis
of leaf node prediction.

2.3. Image Recognition Based on Graph Method
The graph neural network (GNN) is a new deep learning framework that has ap‑

peared in recent years. This framework can directly learn the graph structure data repre‑
senting different local areas. Therefore, it is of tremendous research significance to use the
advantages of graph neural networks in analyzing interpretable features of non‑European
data to understand the internal relations among various fine‑grained features. With the de‑
velopment of graph neural network theory, graph neural networks have also derivedmany
different network structures, such as the graph convolution neural network (GCN) [49]
based on the spectral domain and spatial domain, graph neural network [50] based on gat‑
ing, graph attention network [51] based on the attention method, graph spatiotemporal
network [52] based on time and space, etc.
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Zhao et al. [53] used a graph‑based high‑order relationship discoverymethod to learn
the implicit connection betweendifferent areas. Thismethod established a feature database
through semantic and location perception. Then, using the semantic grouping strategy of
a graph, the features of high‑dimensional data are mapped to low‑dimensional space, and
the learning parameters are reduced. Lin et al. [54] constructed a graph convolution net‑
workmethod for weakly supervised fine‑grained image classification based on correlation
learning. This method learns the implicit relationship between different regions from the
network transmission to fully mine and utilize the context relationship between other dis‑
crimination regions, thus improving the network’s recognition ability. Wang et al. [55]
proposed a cross graph propagation sub‑network to learn regional correlation and then
weighted and aggregated other regions in a crossway to enhance each part. Chen et al. [56]
used a fine‑grained graph network method to represent the learning framework based on
knowledge graph embedding. Firstly, this method builds a rich visual concept library as
a knowledge map. Then, the gate graph neural network generates knowledge represen‑
tation to realize fine‑grained image recognition. Wang et al. [57] studied the confidence
of graph neural networks. By applying the confidence correction structure to the graph
convolution network, the faith of the graph convolution network was improved, and the
classification ability of the graph was also enhanced.

3. Methods and Materials
The overall framework of this paper is mainly composed of three parts: data pre‑

processing, a fine‑grained classifier, and an optimized detector. The framework structure
is shown in Figure 1. Among them, the data pre‑processing component introduces vari‑
ous strategies used to process the data. Part of the classifier (defined as GPA‑Net) uses the
graph‑based pyramid attention method, which is mainly composed of a CSP‑based back‑
bone network and pyramid attention structure [58]. The Yolov5 detector is used as the
detector in the detection part, and the Soft‑NMS mechanism is used in the detection part
to enhance the detection results.
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Figure 1. The GPA‑Net framework based on a graph attention pyramid. We generate a library
through the cross‑stage attention module (CTA) and use feature maps of different levels to form
an attention pyramid. Then, the pyramid layer is embedded into features by the graph method to
form a graph attention pyramid network (GPE). Finally, multiple features are connected to obtain
attention representation.

The proposed fine‑grained classifier, GPA‑Net, mainly consists of the backbone struc‑
ture based on the CSP structure and the fine‑grained feature learning structure of graph
pyramid attention, as shown in Figure 1. The specific functions of each part are as follows.
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3.1. Lightweight Backbone Network
The improved CSP backbone network is used for processing as shown in Figure 2.

CSP is a new variant of the ResNet network series. This structure prevents too‑much‑
repeated gradient information by cutting off the gradient stream, strengthens CNN’s learn‑
ing ability, eliminates the computational bottleneck, and effectively reduces the memory
cost. The staging module of the basic CSPNet includes a primary branch and a spanning
branch, and the characteristics of the two branches are spliced at the end of each stage.
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Figure 2. CSP network structure.

The phase module of the basic CSPNet includes the basic branch and the spanning
branch, and the features of the two branches are spliced at the end of each phase, as shown
in Figure 2. The input of each stage first goes through two 1 × 1 convolutions. The calcu‑
lation process is as follows:

XBase = Fbase( f1×1(X)) (1)

where f1×1 represents 1 × 1 convolution and Fbase is a combination of n basic modules.
Then, two groups of features of the basic branch and the generated branch are spliced
together, and the information exchange between the two groups of features is increased by
channel shuffling [48]. Finally, the output of each stage is obtained by the down‑sampling
module. The calculation process is as follows.

X̃ = Fdown(S(XBase, XCross)) (2)

where XBase represents the output of the basic branch, XCross represents the output across
the branch, S represents the channel shuffling, and Fdown represents the down‑sampling.

3.2. Cross‑Stage Three‑Linear Attention Fine‑Grained Feature Learning Module (CTA)
Tomineplentiful features suitable for fine‑grained image classification, inspired by [46],

we propose a fine‑grained feature learning module based on cross‑stage trilinear attention
as shown in Figure 3.

Through the CSP backbone network, we can obtain a feature map X̃ ∈ RW×H×C, of
which W, H represent the feature map dimensions and the channel number of the feature
map, respectively. Generally, the global average pool (GAP) or global maximum pool
(GMP) is used to learn the final features X̃. One of the common problems with average or
maximum pooling is that the interactive information between different semantic channels
cannot be fully utilized.
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Therefore, a common method is to use bilinear spatial attention. The second‑order
matrix Fa of each position (i, j) is classified by merging itself XA ∈ RWH×CA with another
CNN stream XB ∈ RWH×CB , and then the final feature is used in the final category through
a fully connected (fc) layer.

Fa =
1

WH

W

∑
i=1

H

∑
j=1

v((XA)
⊤
i,j(XB) i,j) (3)

Fb = W · Fa + b (4)

where v : RCA×CB → RCACB×1 represents the vectorization of the second‑order matrix and
W ∈ RCACB×Ncls is the learnableweight of the FC layer. Although abundant features are ob‑
tained through bilinear pooling, these high‑dimensional features are easily optimizedwith
poor usability. Therefore, in the method of trilinear attention, the cross‑channel relation‑
ship is regarded as the attention diagram generated by the same feature map XTX ∈ RC×C

by non‑local operation, and then the channel‑perceived attention map gives different an‑
notations to the original features to produce the third‑order result S(XTX)XT ∈ RWH×C,
where S represents SoftMax normalization.

However, a disadvantage of the cross‑channel relationship is that it ignores the learn‑
ing between multi‑scale features. Because different network layers have different scales of
receptive fields, the later network layers have larger receptive fields. Inspired by [47], we
use features φ(X) from the next layer of the same stage of the network to conduct cross‑
layer semantic learning of cross‑channels (see Figure 3), which can be expressed as:

Fc = N(M(
1

WH

WH

∑
i=1

(X⊤φ(X)))) ∈ RC×HW (5)

where φ(X) is the output of one layer after the same stage of CSP, N denotes SoftMax
normalization, and M(x) = sign(x)x−1/2 denotes moment function normalization. Sim‑
ilar to trilinear attention, in order to make the feature map more consistent and enhance
robustness, the spatial relationship is further integrated into the feature map by Fc dot
multiplication of Fc and φ(X), so a cross‑stage trilinear attention map is obtained. The
attention map can be expressed as:

Fd = N(M(Fc⊤ φ(X))) ∈ RC×HW (6)

Therefore, this paper constructs an attention map Fd, and each channel of the map Fd

represents an attention map Fd
i ∈ RW×H . The pyramid method is used to learn objects

with different scales in images:
Fd′

k = CTA(F′
k) (7)
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where CTA denotes cross‑stage trilinear attention and F′
k represents the characteristics of

the k level of the pyramid. The values of k are 2, 3, and 4, representing the second, third,
and fourth stages of the network, respectively.

3.3. Graph‑Based High‑Order Feature Embedding (GFE)
Multi‑scale fine‑grained feature libraries can be generated through the cross‑stage at‑

tention modules in Section 3.3. Inspired by [47], each element of these feature libraries can
be regarded as a graph node, and then the adjacencymatrix score of the node graph neural
network is used to embed these features.

Firstly, every element in attention Fd= { f1, · · · , fCN

}
is regarded as a graph node,

and each graph node shares a large amount of information, so we can aggregate these
nodes in the following ways.

Ai,j =
τ( fi)

T · τ( f j)∣∣∣∣τ( fi)
∣∣∣∣∣∣∣∣τ( f j)

∣∣∣∣ (8)

where τ is the convolution used for dimension transformation and represents Ai,j, the adja‑
cency matrix score of nodes i and j. The adjacency matrix is Ã = A + I, where I ∈ RC1×C1

is the identity matrix.
Through similarity aggregation in this way, each node is updated as follows:

G0 = ReLu(D̃− 1
2 ÃD̃− 1

2 KdWd) (9)

where Wd is the graph node weight of dh learnable dimension and D̃d = ∑ j Ãd
i,j is the

diagonal matrix to be normalized in nodes. Kd represents the matrix form of feature bank
κd.

Similarly, the features Fd′
k in the pyramid structure also have embedded features Gd′

k
through similar operations, as shown below:

Gk = ReLu(D̃k
− 1

2 ÃkD̃− 1
2 k KkWk) (10)

where Wk is the graph node weight of learnable dh dimension, D̃k = ∑ j Ãk
i,j is the diagonal

matrix to be normalized, and Kk represents the matrix form of feature library κk.
Through the above graph propagation structure, we obtain the embedded features

G = {G0,G1, · · · , Gk} of a multilevel structure. Considering that the features of different
levels play different roles, we use an adaptive attention mechanism I = {I0, I1, · · · , Ik} to
learn the importance between them, as shown below:

I = att(G) (11)

where att denotes attention, and its specific generation mode is as follows. There is a node
gi

m, where 0 ≤ m ≤ k and i denotes the i‑th point. Secondly, we use nonlinear transforma‑
tion to transform the embedding and then use an attention vector η to obtain the attention
value, as shown below:

ηi
m = tanh(Wm · (gi

m)
T
+ bm) (12)

where tanh is a nonlinear function, Wm is a learnable parameter weight, and bm is a bias.
Through a similar operation, we can obtain all the embedded G = {G0,G1, · · · , Gk} atten‑
tion values and normalize them with the SoftMax function:

Ii
m = so f tmax(ηi

m) =
exp(ηi

m)
k
∑

m=0
ηi

m

(13)
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The larger the Ii
m, the more important the embedding. For all n nodes. The attention

vector I = [I0, · · · , Ik] can be obtained at last, which is selected to distinguish the impor‑
tance of different levels of features through attention adaptation. The final result score is
as follows:

C =
k

∑
m=0

Imso f tmax(Gm) (14)

3.4. YOLOV5 Detector via Soft‑NMS Optimization
The target detection task classifies and locates the objects in the image, generates

a detection frame for the objects in the image, and generates corresponding confidence.
YOLOV5 is used as the detector in this paper (Figure 4). When the model detects the de‑
tection frame of the object in the predicted image, multiple detection frames are generated
for the same object, and each detection frame has a corresponding score. Having too many
detection frames reduces the detection accuracy. Therefore, the NMS method is used to
process the detection frame and obtain the final detection result. So far, this method is
still a popular target detection algorithm and can effectively improve the recall rate of
detection. Non‑maximum suppression (NMS) is an integral part of the target detection
model. The detection box is screened to reduce the repetition rate and improve the recall
rate of detection.

The basic flow of this method is to sort the generated detection frames according to
the scores, take out the detection frame M with the highest score, compare the rest with
the selected detection frames, and suppress the detection frames whose overlap is higher
than the threshold. This process is repeatedly applied to the rest of the detection frames
until they are comparedwith the detection frames below it. The traditional non‑maximum
suppression method directly zeroes the score whose overlap ratio with the adjacent detec‑
tion frame is greater than the threshold so that when two detected objects are close, the
traditional non‑maximum suppression method deletes the detection frame with the lower
score, resulting in missed detection, which leads to the decrease in the accuracy of the
detection results.

Si =

{
Si, IOU(M, bi) < Nt
0, IOU(M, bi) ≥ Nt

(15)

The traditional non‑maximumsuppression algorithmhas the disadvantage ofmissing
overlapping objects, so we adopt a new soft non‑maximum suppression algorithm, which
is improved on a conventional basis. In this algorithm, when the overlap of two detection
frames ismore significant than the threshold, it is deleted and improved, but an attenuation
function is set. When the overlap between the rest of the detection frames andM is greater
than the threshold, a very low weight is given. If only a tiny part of the detection frames
overlap, it does not affect the detection results. Soft‑NMSdoes not need additional training;
it directly trains the model from end to end without increasing the model parameters.

When there is a high overlap with the detection box M, it is set to fractional attenu‑
ation instead of directly setting it to zero. The higher the overlap, the more serious the
corresponding fractional attenuation. Therefore, the traditional non‑maximum suppres‑
sion method is improved, as shown in Formula (15).

Si =

{
Si, IOU(M, bi) < Nt
Si(1 − IOU(M, bi)), IOU(M, bi) ≥ Nt

(16)

By improving the traditional non‑maximum suppression method, a fractional atten‑
uation method is proposed to solve the problem of missing detection when the detection
frames overlap. It is verified on two existing public detection datasets. Through the ex‑
perimental analysis, it is found that the improved non‑maximum suppression method can
identify overlapping objects and improve the detection accuracy of the model. The Soft‑
NMS method only improves the traditional non‑maximum suppression algorithm, which
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does not increase the parameters of model operation and affects the detection speed of the
model. It is easy to implement and can be embedded in any detection model.
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3.5. Loss Function
In the training process, the cross‑entropy loss is used as the loss function, and in order

to reduce the risk of over‑fitting, it is also applied to label smoothing technology, and the
smoothed new label is used to replace the original label:

y′ = (1 − ε)ỹ + εµ (17)

where ỹ represents the sample label, ε is the smoothing factor, and u is a fraction of the cat‑
egory. Using label smoothing can make the classification probability result of the SoftMax
activation function close to the correct classification, restrain the output difference between
positive and negative samples, and make the network have better generalization ability.

The CIOU loss function of the detector used in YOLOV5 is to measure the loss of
rectangular frames. The specific formula is as follows:

S1 = (min(xp2, xl2)−max(xp1, xl1))× (min(yp2, yl2)−max(yp1, yl1)) (18)

S2 = (xp2 − xp1)× (yp2 − yp1) + (xl2 − xl1)× (yl2 − yl1)− S1 (19)

IOU =
S1

S2
(20)

CLOU = IOU − ρ2

c2 − αv (21)

v =
4

π2 (arctan
wl
hl

− arctan
wp

hp
)

2
=

4
π2 (arctan

xl2 − xl1
yl2 − yl1

− arctan
xp2 − xp1

yp2 − yp1
)

2
(22)

α =
v

1 − IOU + v
(23)

where ρ is the distance between the center points of box A and box B, c is the diagonal
length of the minimum bounding rectangle of box A and box B, v is the width–height
similarity ratio of frame A and frame B, and α is the influence factor of v. The calculation
formula of CIOU loss can be obtained from the above:

lossCIOU = 1 − CIOU (24)
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CIOU considers the distance between the target and the anchor, the overlap rate, the
scale, and the penalty term so that the target box regression becomes more stable, and
there is no divergence or other problems in the training process such as IOU and GIOU.
The penalty factor considers the aspect ratio of the prediction frame and the aspect ratio of
the target frame.

4. Experiment and Result
4.1. Implementation Details

In this experiment, wepre‑trained ourmodel on the ImageNet dataset. Pre‑processing
adopts random cutting and random turning. The figure size was resized to 448 × 448, the
batch sizewas set to 128, training timeswere 150, and SGDwasused as an optimizer. Mean‑
while, the cosine annealing strategywas used to attenuate the learning rate, and the attenu‑
ation period was 20. The final experiment was conducted on 8 Nvidia P40 graphics cards.

In the classification experiment, we adopted two indexes: the accuracy rate (ACC) and
the parameter size of themodel parameters. The accuracy calculation formula is as follows:

ACC =
TP + TN

TP + TN + FP + FN
(25)

Here, TP represents true positive, TN represents true negative, FP represents false
positive, and FP represents false negative. In the testing experiment, the precision (P),
recall (P), and average accuracy are used as evaluation indexes, and the calculation formula
is as follows:

P =
TP

TP + FP
(26)

R =
TP

TP + FN
(27)

AP =
∫ 1

0
[P(R)dR] (28)

where P denotes precision and R denotes recall. Different evaluation indexes can not only
evaluate the model in all aspects but also further prove the superiority and practicability
of the proposed method.

4.2. Bird Classification Results
To verify the performance of the fine‑grained methods, we used two

fine‑grained datasets for experiments and selected some open‑source algorithms for
performance comparison.

Dataset (1) CUB‑200‑2011 [35] contains 5994 images in the training process and
5794 images in the test process; (2) Bird‑400 contains 58,388 images in training datasets
and 2000 images in test sets. The comparison index selected the commonly used accu‑
racy index of image classification. Meanwhile, the possibility of the fine‑grained method
is discussed according to a comparison of the parameters of different models as shown in
Table 1.

From the classification results shown in Table 1, we can see that the results of GPA‑
Net are better than those of coarse‑grained methods, e.g., VGG, ResNet, GoogleNet, and
DenseNet, which shows that the GPA‑Net can learnmore new information and has greater
vital feature extraction ability. Meanwhile, compared with some fine‑grained methods,
our method has more advantages. On the CUB‑200‑2011 dataset, GPA‑Net has achieved
the best results, with an accuracy rate of 89.6%. Compared with other fine‑grained meth‑
ods, the results on the Bird‑400 dataset are not much different. This is because the Bird‑
400 dataset is more direct and has less interference than other datasets. Comparatively
speaking, our method is better at feature extraction in complex backgrounds. The results
show that FBSD andAP‑CNNbenefit from the simple backgrounds on the Bird‑400 dataset.
However, our method has more advantages in datasets with a more complex background,
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e.g., CUB2011 and AF‑bird50. In terms of the parameters of the model, compared with
the coarse‑grained method, our model is slightly larger than the standard coarse‑grained
method, but its accuracy is better. Compared with other fine‑grained methods, our model
is lighter, which shows that our model has advantages in practical application. We drew a
comparison chart of the loss change during model training to further explore and evaluate
the model’s performance, as shown in Figure 5.

Table 1. The classification results of three datasets.

CUB‑200‑2011 Bird‑400 AF‑Bird50

Methods ACC (%) Parameter (M) ACC (%) Parameter (M) ACC (%) Parameter (M)

Coarse‑grained

VGG19 [42] 76.4 575.5 95.4 549 80.1 564.8
ResNet50 [43] 85.2 97.1 96.8 93.1 87.2 95.4
Inception [44] 85.9 48.9 97.6 34.1 88.3 44.2
DenseNet [45] 86.1 49.2 97.4 47.4 90.1 46.3

Fine‑grained
FBSD [49] 89.2 164 99.2 95.3 94.3 159.7

AP‑CNN [59] 88.1 178 99.3 199.6 94.6 172.1
GPA‑Net 89.6 100 99.3 128 95.4 98.2
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The downward trend of the loss is shown in Figure 5. Obviously, we know that GPA‑
Net can drop rapidly in the training process and reach a stable state later, indicating that
the model has strong stability in the training process. Meanwhile, it can be seen that GPA‑
Net converges faster than other models in the early stage, and the loss value is lower after
reaching the steady state, which shows that GPA‑Net has better convergence and can learn
more. We use a contrast histogram to analyze the parameter amounts of different models
on three datasets, as shown in Figure 6.
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The comparison results ofmodel parameters are shown in Figure 6. The parameters of
the GPA‑Netmodel are slightly larger than those of ResNet50, Inception, andDenseNet be‑
cause the attentionmodule added to the GPA‑Net model occupies a part of the parameters.
At the same time, the parameters of GPA‑Net are much smaller than those of other fine‑
grained algorithms. This is because the backbone network of our model uses a CSP struc‑
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ture, and the graph embedding method is used to reduce the parameters further, showing
that our model is more applicable in practical applications.

4.3. Bird Detection Results
Although there are many bird species in existing public bird databases, they mainly

rely on the Internet to crawl data. On the one hand, the scene of each image is an ideal shoot‑
ing environment (many pictures are provided for photography enthusiasts), and different
pictures have significant picture quality. On the other hand, these datasets are mainly
collected for the purpose of bird image classification. A picture often has only a small sam‑
ple of the same bird, which cannot solve the picture detection tasks that need to identify
multiple samples of different birds appearing in the same photo. When a dataset is used to
conduct deep learning network training, it cannot solve the real‑scene application of actual
environmental protection. In the remote monitoring system of environmental protection,
the background of an effective picture is often very complicated. Many samples of differ‑
ent types of birds appear randomly together, and the proportion of each bird occupying
the entire picture is usually small. There are also challenges such as mutual obstruction
between goals and backgrounds or the appearance similarity of different birds. Therefore,
deep learning models only relying on public datasets cannot effectively solve the image
recognition task in practical applications.

Therefore, in order to solve the challenge of bird detection in actual environmental
protection applications, we took the main bird species living in river and lake environ‑
ments in Beijing, China, as research objects and built a new dataset, AF‑bird50, for ap‑
plication demonstration experiments. AF‑bird50 contains over 10,000 images, covering
50 different species. Our dataset comes from photos taken in three stations—Miyun Reser‑
voir Station 1, Guanting Station 1, and Liudu Station in Fangshan District of Beijing—and
these stationswere set up starting inMarch 2022. All imagesweremainly collected through
cameras, and sensors were also applied to obtain bird pictures in real scenes by ourselves.
We tested the AF‑bird50 dataset and selected SSD‑300, Faster‑R‑CNN, and YOLOV3 as the
comparisonmodels. We divided this dataset into a ratio of 3:7; thus, there are 7000 training
sets and 3000 test sets. The experimental results can be seen in Table 2.

Table 2. Bird detection results on AF‑bird50.

Method P (%) R (%) AP (%)

SSD300 [60] 77.38 79.47 78.43
Faster‑R‑CNN [61] 80.01 81.69 80.52

YOLOV3 [31] 85.89 87.92 86.91
Optimized YOLOV5 88.43 90.64 89.37

From Table 2, we can see that compared with other target detection models, e.g.,
Faster‑R‑CNN, YOLOV3, etc., the optimized YOLOV5 achieves the highest results for dif‑
ferent indicators, e.g., precision rate and recall rate. Thereby, the optimized YOLOV5
based on the proposed GPA‑Net is suitable for accurate bird detection. Some bird detec‑
tion results are shown in Figure 7. As shown in the picture, the species of these wild birds
include sandpiper (scientific name “Tringa ochropus”, Chinese name “白腰草鹬”), heron
(scientific name “Ardea cinerea”, Chinese name “ 苍鹭”), egret (scientific name “Egretta
garzetta”, Chinese name “白鹭”), cormorant (scientific name “Phalacrocorax carbo”, Chi‑
nese name “鸬鹚”), etc. All pictures were obtained through remote monitoring cameras
in natural environments such as lakes and rivers.

It can be seen from Figure 7 that the network can detect the target very accurately
for the sample with only a single target and simple background in the image. On the
other hand, in the presence of interference factors such as multiple targets, different poses,
and background occlusion in the sample images, the network still achieves a sound effect,
which indicates that the Soft‑NMS mechanism can improve the performance of the net‑
work well and further demonstrates that the optimized YOLOV5 network can be used in
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actual bird recognition tasks. Furthermore, we draw a confusion matrix of the proposed
detector’s accuracy to visualize the model’s performance, as shown in Figure 8.
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The result of this confusion matrix is shown in Figure 8. It can be seen that the recog‑
nition rate of all birds is almost above 90%, which indicates that the model has high ac‑
curacy. At the same time, it can be seen that among the samples with model recognition
errors, none identify a large number of samples as the existence of another bird, which in‑
dicates that the model has high fault tolerance. The results of recognition errors are mainly
caused by vague pictures and severe occlusion, which lead to the model learning less than
the required features.

5. Discussion
To verify the actual function of each module in the model, we set up an ablation ex‑

periment to analyze the model on the CUB‑200‑2011 dataset. The ablation experiment was
executed for further analysis ofmodule functions. When only relying on the CSP backbone
network, the base model achieves an accuracy of 85.1%. After using the CTA module, the
accuracy is improved by 0.8%, achieving a result of 86.3%. In contrast, after only using the
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GPEmodule, the accuracy of themodel is up to 87.2%, which is 2.1% higher than that of the
backbone network. When the CTA and GPEmodules are applied to improve performance
at the same time, the entire model can achieve an 89.6% accuracy, which is the highest re‑
sult. This shows that the pyramid structure can help the model learn more fine‑grained
features and improve its fine‑grained identification ability.

In particular, the CSP is used as the backbone of our method to learn the shallow fea‑
ture information of images. Based on these shallow features in different stages, we can
further learn high‑order feature information with discriminant information. Meanwhile,
the CTA attention module is used to mine the learned features further. The pyramid struc‑
ture is used to learn the features of different scales for smaller targets. The graph structure
is used to learn parts of different scales, and attention adaptive learning is used to un‑
derstand the importance of different levels. The ablation experiment shows that the CTA
module can strengthen feature learning and improve accuracy by 0.8%.

Meanwhile, the GPE module can adaptively distinguish the importance of different
levels, reduce the influence of redundant features, and improve recognition accuracy. The
analysis of the ablation experiment proves that our network can learn different regional
features with discrimination information and improve the accuracy of fine‑grained recog‑
nition. For visual analysis, we use a heat map of attention distribution to visualize the GPE
module and explore its essential role. The visualization results of Stage2 to Stage4 for three
natural samples are shown in Figure 9.
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Meanwhile, the GPE module can adaptively distinguish the importance of different 
levels, reduce the influence of redundant features, and improve recognition accuracy. The 
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As shown in above Figure 9, if only the last layer of the backbone network is used as
the classification feature, the network misses a large amount of other useful information,
and other supplementary information is learned for classification by using the pyramid
structure. Meanwhile, to prevent the features at the bottom stage from bringing too much
noise, the attention mechanism is added to adaptively judge the importance of these fea‑
tures at different levels.

6. Conclusions
The avian species are essential to protecting the ecological environment andmaintain‑

ing biodiversity change. This paper proposes a fine‑grained bird recognitionmethod based
on a graph attention pyramid to solve the fine‑grained problem in bird image recognition.
Firstly, based on the CSP baseline network, the fine‑grained feature of cross‑stage atten‑
tion module learning is designed. At the same time, the graphic pyramid structure is intro‑
duced to learn the multi‑scale features for understanding the context information between
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different local parts and then building a novel fine‑grained classifier GPA‑Net. Finally, an
optimized YOLOV5 with Soft‑NMS strategy is designed as the detector composition, im‑
proving the detection capability for small targets. Massive experiments demonstrated that
the performance of the proposed method for fine‑grained bird identification is better than
other comparativemodels. The accuracy rates of GPA‑Net onCUB‑200‑2011, Bird‑400, and
AF‑bird50 datasets are 89.6%, 99.3%, and 95.4%, respectively, reaching the optimal results.
Additionally, the optimized YOLOV5 detector based on GPA‑Net has the advantages of
smaller identification error and lighter model parameters. This shows that the proposed
method is more suitable for natural bird image recognition in complex scenes.

Optimizing the model structure and improving model performance will be our work
in the future. At the same time, improving the model’s generalization ability is also an
essential part of future work. In the future, we will explore the application potential of
these methods in other fields, such as motion estimation [62], modeling optimization [63],
and temporal prediction [64], etc.
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