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Abstract: High-frequency land-use changes caused by rapid economic development have become a
key factor in the imbalance of carbon sequestration within regions. How to balance economic devel-
opment and ecological protection is a difficult issue for regional planning. Studying the relationship
between future land-use changes and ecosystem carbon storage (CS) is of important significance for
the optimization of regional land-use patterns. The research used the gray prediction model and
coupled the patch-generating land-use simulation (PLUS) model and the integrated valuation of
ecosystem services and trade-offs (InVEST) model. On this basis, the evolution characteristics and
spatial coordination between land-use changes and CS in the Dongting Lake Basin (DLB) in different
scenarios in 2030 were simulated. The results show that: (1) The spatial distribution of CS remains sta-
ble in different scenarios, while land-use types with high carbon density in the periphery of cities are
constantly invaded by construction land, which results in the greatest carbon loss in the urban areas.
(2) Compared with the natural evolution scenario (NES), only 195.19 km2 of land-use types with high
carbon density are transformed into construction land in the ecological protection scenario (EPS),
generating a carbon sink gain of 182.47 × 104 Mg. Conversely, in the economic development scenario
(EDS), a total of over 1400 km2 of farmland and ecological land are transformed into construction
land, which weakens the carbon sequestration capacity of ecosystems, and more than 147 × 104 Mg
of carbon loss occurs in the urban areas. (3) The planned development scenario (PDS) takes ecological
protection and economic development both into consideration, which not only generates a carbon
sink gain of 121.33 × 104 Mg but also reduces the carbon loss in urban areas by more than 50%. The
PDS performs well in both land use and CS growth and can better motivate the effect of land-use
changes in increasing the carbon sink, which is also proved by analysis of the coordination between
land-use intensity (LUI) and CS. Therefore, the PDS better satisfies the future development demand
of DLB and can provide a reference for sustainable land use in the basin.

Keywords: land-use change; carbon storage; PLUS model; gray prediction; Dongting Lake Basin

1. Introduction

Land-use changes, one of the most prominent features of economic development, have
caused more than 60% of global carbon emissions since 1850 [1], and high-intensity land use
has seriously affected the terrestrial carbon cycle [2]. In the National Land Planning Outline
(2016–2030) released by China, driven by the excessive consumption of the economy and
society, the intensification of human–land conflict has led to a significant degradation in the
carbon storage (CS) function in local regions. Currently, the CS of terrestrial ecosystems in
China is declining at a scale of 9.3 Tg per year due to land-use changes [3]. However, China is
in a critical period of modernization development, and the demand for production and living
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land is expanding, and the blind development and disorderly expansion of cities will further
accelerate carbon loss [4]. With the goal of “carbon peaking and carbon neutrality” in China,
new requirements have been put forward for territorial planning programs, which also aim
to stimulate the carbon sequestration and sink potential of terrestrial ecosystems. Therefore,
scientific assessment of CS in terrestrial ecosystems based on territorial spatial master planning
has become an important issue and is of great significance for carbon reduction.

There are significant differences in the carbon sequestration capacity of vegetation
and soil in different land-use types [5], and the interconversion between land-use types
will definitely cause an increase or decrease in CS [6]. However, the carbon sink effect
of each land-use type conversion varies in different regions and even shows carbon loss.
Since this carbon sink process is complex and variable, it exhibits different evolutionary
characteristics in different spatial and temporal contexts [7,8]. Therefore, it is also important
to clarify the dynamic relationship between land-use changes and CS.

CS in terrestrial ecosystems is mainly evaluated using field measurements, biomass
inventories, and models. Therein, traditional methods such as field measurements and
biomass inventories are difficult and costly to implement in large-scale and long-time-
series studies [9], so researchers mainly use the model method based on land use. The
integrated valuation of ecosystem services and trade-offs (InVEST) model has been widely
used in the evaluation of CS due to its high operating efficiency, ease of access to data, and
high accuracy [10,11]. On this basis, researchers have studied land-use changes and CS at
different regional scales, including basins [5,11], administrative districts [12,13], and urban
agglomerations [4,14], by combining scenario simulation and InVEST. Numerous studies
have shown that higher and more stable CS can be realized by inhibiting blind urban
expansion and relying on low land-use transition [13,15,16]. For example, the incremental
carbon sequestration of forest ecosystems in Portugal would increase from 5.7% to 29.5%
if the development limit of forest land were higher [13]. In Hawaii, USA, CS would
increase by 0.5% by optimizing agricultural land and increasing the size of urban green
space [15]. In its study of the Jiroft Plain in Iran, moreover, by comparing multiple planning
scenarios, only environmentally friendly land planning policies would reverse the declining
trend of CS and result in an average annual increase of 60.6 × 104 Mg [16]. However,
existing studies tend to focus more on the carbon sink effects of individual ecosystems or
ecological protection policies and lack consideration of the complete terrestrial ecosystem
and sustainable policies [17]. Furthermore, land-use changes are a multifactorial process,
and the main challenge in balancing the terrestrial carbon cycle is to identify the best match
between the many land planning options.

Although researchers have made much progress in the evaluation of regional CS,
certain deficiencies remain. On the one hand, most researchers overlooked the obvious
interannual volatility of carbon density and used fixed carbon density to estimate regional
CS in different periods [18]. This attributes CS changes completely to land-use changes, and
therefore, the evaluation results are highly uncertain. On the other hand, scenario models
such as cellular automata (CA)–Markov, future land-use simulation (FLUS) model, and con-
version of land use and its effects at small regional extent (CLUE-S) model run inefficiently
and perform poorly in simulations when processing large-scale, high-resolution land-use
data [19]. In particular, these models are likely to neglect dynamic evolution characteristics
of ecological land (forests and grassland, for instance) [20,21]. To solve this problem, the
present research makes the following contributions: (1) the patch-generating land-use
simulation (PLUS) model developed using the High-Performance Spatial Computational
Intelligence Lab of China University of Geosciences (HPSCIL@CUG) is introduced, which
can better reflect the transition trend among various land-use types at the patch scale and
therefore achieve high-accuracy simulation [21,22]; and (2) the gray prediction model is
used to obtain carbon densities of the study area in multiple time periods. In addition, the
PLUS and InVEST models are coupled to more accurately reflect the spatiotemporal and
scenario evolution of ecosystem CS in the study area.
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The Dongting Lake Basin (DLB), as one of the most important ecological nodes, has an
important position in the Yangtze River Basin and even in China for its carbon sequestration
and sink function [23]. However, due to the rapid expansion of large urban clusters in the
basin, the high intensity and high frequency of land-use conversion has resulted in large
areas of carbon loss and a serious imbalance between the economy and ecology [14,24].
Thus, the Main Functional Area Planning sets out the objectives of the rational allocation of
land resources and the promotion of the green transformation of society in DLB.

In view of this, this study uses the PLUS + InVEST + GM(1,1) model to simulate and
explore the impact of land-use changes on CS in DLB under territorial spatial master plan-
ning and its pathways of action. At the same time, the following three research objectives
were set: (1) to explore the land-use patterns and their transformation characteristics in
DLB under different scenarios, (2) to dynamically assess the dynamic changes in CS in the
terrestrial ecosystem of DLB under different scenarios, and (3) to examine the response of
land-use changes and CS in DLB under different scenarios and their matching coordination.

2. Materials and Methods
2.1. Study Region

The DLB (24◦38′–30◦24′ N, 107◦16′–114◦15′ E) is situated in the middle reaches of the
Yangtze River and covers four sub-basins (Xiangjiang, Zijiang, Yuanjiang, and Lishui River
Basins) as well as Dongting Lake area (Figure 1). The basin has an area of 2.63 × 105 km2,
which is about 14.6% of the total area of the Yangtze River Basin [25]. DLB has a humid
subtropical monsoon climate, with an average annual temperature of 17 ◦C and an average
annual precipitation of 1437 mm. Moreover, DLB is surrounded by mountains to the east,
south, and west, hills in the center, and plains in the north, with the topography sloping
from southwest to northeast, which breeds a huge and complete terrestrial ecosystem.
However, during 1980–2020, the ecological risks in DLB became more and more serious,
and the ecosystem service capacity has significantly decreased [23–26]. DLB is the core
of economic development in central China. As of 2020, the total population of DLB was
73.3 million, with a per capita GDP of about 7 × 104 yuan and an urbanization rate (57.2%)
slightly lower than the national average (57.4%). Due to geographical constraints, the
development level of the Xiangjiang River Basin and Dongting Lake area is significantly
higher than that of other sub-basins. Meanwhile, in the past 40 years, a total of 2169.45 km2

of farmland and 1589.13 km2 of ecological land (forests, grassland, and wetland, etc.) in DLB
were converted to new construction land to meet the land needs for economic development;
however, only 73.68 km2 of ecological land was added. Moreover, uncontrolled land
development and urban expansion are further enhancing.
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2.2. Data Sources and Processing

The land-use data in the study area were derived from the Resource and Environmen-
tal Science Data Center of the Chinese Academy of Sciences (http://resdc.cn/ (accessed
on 12 September 2022)) at a spatial resolution of 30 m. The data were divided into seven
types: farmland, forests, grassland, wetland, waters, construction land, and unused land;
because land-use changes are a result of the joint action of natural and artificial factors [18],
the selected drivers included climate (annual mean temperature, annual precipitation,
and annual hours of sunshine), environment (elevation, slope, soil type, and normalized
difference vegetation index (NDVI)), distance (distances from road networks and waters),
and economic society (per capita GDP and population density). Among them, the cli-
matic factors were obtained by Kriging interpolation of data collected from the China
Meteorological Data Service Center (http://data.cma.cn/wa (accessed on 12 September
2022)), and the spatial resolution output parameter was set to 30 m. The digital elevation
model (DEM) data were derived from NASADEM (https://www.earthdata.nasa.gov/
(accessed on 12 September 2022)) at a spatial resolution of 30 m. Slope data were obtained
by extraction and processing of DEM data. Data pertaining to soil type and economic
society factors were both collected from the Resource and Environmental Science Data
Center of the Chinese Academy of Sciences (http://resdc.cn/ (accessed on 12 September
2022)) at a spatial resolution of 1 km, and the soil type and economic society factors were
resampled to 30 m by nearest neighbor method and bilinear method, respectively. NDVI
data were provided by the GEE platform (https://earthengine.google.com/ (accessed
on 12 September 2022)) and the Qinghai–Tibet Plateau National Scientific Data Center
(https://data.tpdc.ac.cn (accessed on 12 September 2022)) at a spatial resolution of 30 m.
Data pertaining to distance factors were obtained by Euclidean distance matrix analysis
of Open StreetMap (https://www.openstreetmap.org/ (accessed on 12 September 2022)),
and the spatial resolution output parameter was set to 30 m. In addition, the coordinate
projection (Krasovsky_1940_Albers) and the number of rows and columns (22,584, 21,505)
of all driving factors were unified with land-use data.

2.3. Methods

As shown in Figure 2, this study mainly included the following parts: (1) simulation
and analysis of land-use changes, (2) assessment and analysis of dynamic changes in CS,
and (3) response mechanism of land-use changes to CS. The method and analysis steps are
described in detail below.
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2.3.1. Simulation of Land-Use Changes Based on the PLUS Model

In the Emissions Gap Report 2022 released by the United Nations Environment Pro-
gramme, carbon emissions remain high, and climate disasters can only be avoided if
system-wide transformation is urgently implemented before 2030. In addition, according
to the Carbon Peaking Action Programme before 2030, the low-carbon transformation
of urban and rural construction in China is to be promoted on the basis of optimizing
the spatial development pattern of the country and the efficient use of land resources.
Therefore, it is of great significance to explore land-use changes and its trends in 2030 to
achieve a carbon peak.

The PLUS model is composed of the land expansion analysis strategy (LEAS) and
CA model of multitype random patch seed (CARS) modules. Therein, the LEAS module
obtains development probabilities of various land-use types by using the random for-
est algorithm; the CARS module simulates a land-use change pattern at the patch scale
combining mechanisms of the traditional CA model under constraints of development
probabilities of various land-use types [21]. The simulation of land-use changes of DLB in
2030 includes the following two aspects:

(1) Verification of simulation accuracy

Development probabilities of various land-use types from 1980 to 2000 and 2000 to
2020 were obtained using the LEAS module based on land-use data of DLB in three periods
(1980, 2000, and 2020). Then, taking land-use data in 1980 and 2000 as the base maps,
the CARS module was employed to simulate land-use situations in 2000 and 2020. By
verifying the accuracy through comparison with actual land-use data, it was calculated
that the Kappa coefficients are 0.8915 and 0.9064, overall accuracies are 91.4% and 94.9%,
and FOM values are 0.1043 and 0.1066, respectively. The result indicates that the selected
drivers enable a favorable simulation effect and high accuracy, which meet the demand for
simulating future land-use changes. Therefore, the land-use data in 2020 were used as the
base map to simulate land-use changes in 2030 by selecting the optimal parameter set.

(2) Scenario setting of future land-use changes

Combining research experience of existing scenario simulations [9,21,27] with the
ability of the PLUS model to achieve an optimal land-use structure under multiobjective
programming [21], the natural evolution scenario (NES), ecological protection scenario
(EPS), economic development scenario (EDS), and planned development scenario (PDS)
were set. The simulation parameters and the transition matrix were determined by referring
to the land-use transition probability from 1980 to 2020 and simulation accuracy.

• NES: The scenario is based on the land-use data in three periods from 1980 to 2020 to
predict the demand for different land-use types using the linear regression method
and Markov chain. The scenario continues the historical land-use change trend in the
study area, with no function-restricted areas and planned development areas.

• EPS: The scenario aims to reflect that in order to achieve the ecosystem restoration ob-
jective, the government in the study area intensifies enforcement intensity for ecological
protection policies, stringently controls increases in construction land, and encourages
returning farmland to forests, grassland, and lakes, as well as vegetation and wetland
restoration. Therein, the function-restricted areas include ecological barriers including
the Luoxiao–Mufu Mountains, Nanling Mountains, and Wuling–Xuefeng Mountains
designated in the Territorial Spatial Master Planning of Hunan Province (2021–2035).
Based on the NES, there are the following settings, apart from the function-restricted
areas: (1) stringently restricting the transition of forests, grassland, wetland, and wa-
ters to other land-use types; (2) improving transition probabilities of farmland and
unused land to forests, wetland, and waters by 60%, reducing transition probabilities of
farmland and unused land to construction land by 80%, and improving the probability
of transition of grassland to forests by 60%; and (3) setting a buffer of 10 km in the
periphery of existing urban areas to meet the minimum demand for urbanization.
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• EDS: The scenario gives priority to meeting production and living needs for socioeco-
nomic development so that the demand for farmland and construction land grows
substantially. The scenario mainly includes the following contents: (1) based on the
NES, improving transition probabilities of all land-use types (except for waters) to farm-
land and construction land by 50%; (2) setting the southeast of Guizhou Province, the
Yichang–Jingzhou–Jingmen–Enshi urban agglomeration, and the circum–Changsha–
Zhuzhou–Xiangtan urban agglomeration designated in the Territorial Spatial Master
Planning (2021–2035) and Main Functional Area Planning as planned development
areas; and (3) setting waters in the basin in 2020 as function-restricted areas in an
attempt to meet the demand for water for production and domestic use.

• PDS: The three aforementioned scenarios should coexist in a practical planning frame-
work, necessitating trade-offs when planning the ecological, production, and living
spaces. On the basis of development areas of urban agglomerations set in the EDS,
the PDS also involves the following aspects: (1) setting the 1-hour commuting circle
in the Development Plan for Changsha–Zhuzhou–Xiangtan Metropolitan Area as the
buffer at the urbanization boundary; (2) setting ecological barriers such as the Wuling
Mountains, Nanling Mountains, and Dongting Lake wetland designated in the Main
Functional Area Planning and Comprehensive Water Environment Control Plan of
Dongting Lake as function-restricted areas, in which transition from forests, wetland,
and waters to other land-use types is prohibited; and (3) setting existing cultivated land
in main agricultural producing areas of the basin in 2020 as function-restricted areas,
to achieve the objective of protecting cultivated land and basic farmland. In addition,
the development intensity of various land-use types in nonfunction-restricted areas is
improved to 6.9% based on the NES according to the Main Functional Area Planning.

2.3.2. CS Assessment of Terrestrial Ecosystems Based on the InVEST Model

(1) Estimate of CS

Using maps of land-use types and carbon density, the carbon storage and sequestration
module of the InVEST model estimates the net amount of carbon stored in a land parcel
over time [16,28]:

CSx = ∑7
i=1 (Ci−above + Ci−below + Ci−soil + Ci−dead)× Sxi (1)

where CSx is the amount CS of pixel x; Ci-above, Ci-below, Ci-soil, and Ci-dead represent the carbon
density of aboveground biomass, belowground biomass, soil, and dead organic matter on
land use i, respectively, all in Mg·ha−1; Sxi is the area of land use i in pixel x; i = 1, . . . ,7,
representing farmland, forests, grassland, wetland, waters, construction land, and unused
land, respectively.

(2) Estimate of carbon density

A key challenge when assessing carbon sequestration is setting carbon density. In
this study, we estimated carbon density from five aspects for DLB: (1) We estimated the
carbon density of farmland and grassland by a regression model between crop biomass
density and average NDVI, and grassland aboveground biomass and maximum NDVI,
respectively, according to the findings of Piao et al. [29] and Fang et al. [30]. (2) We modified
the forest biomass carbon density (including aboveground, underground, and dead organic
matter) and soil carbon density, referring to the national forest resource inventory data
and the continuous biomass conversion factor method and using the climate correction
model [31–33]. (3) The wetland carbon density is estimated based on the multiobjective
regional geochemical survey [34–36] and the Monitoring and Assessment Report on Eco-
logical Status of Dongting Lake Wetlands (2015–2020). (4) As the construction land and
unused land are mostly impermeable surfaces and bare rock, this study set the biomass
carbon density of the above two types of land as 0, and their soil carbon density was
estimated according to the study by Xi et al. [34–36]. (5) Since the water body does not
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involve vegetation or has very little biomass, its carbon pools are 0 [37]. Based on these
aspects, the carbon density of different land-use types was estimated (Table 1).

Table 1. Carbon density of different land-use types in DLB (unit: Mg·ha−1).

Land-Use Type
2020 Carbon Density 2030 Carbon Density

Ci-above Ci-below Ci-soil Ci-dead Ci-above Ci-below Ci-soil Ci-dead

Farmland 1.80 0.35 61.41 0.00 1.93 0.38 66.06 0.00
Forests 27.12 7.32 111.12 1.16 28.05 7.57 114.96 1.20

Grassland 1.19 2.37 63.42 0.06 1.26 2.49 66.90 0.07
Wetland 8.50 1.95 131.61 0.95 8.24 1.89 127.62 0.92

Construction land 0.00 0.00 44.15 0.00 0.00 0.00 49.14 0.00
Unused land 0.00 0.00 30.47 0.00 0.00 0.00 29.94 0.00

(3) Prediction of carbon density in future years based on GM(1,1)

The gray prediction model GM(1,1) was introduced to predict the carbon density of
DLB in 2030, which was used as the basis for subsequent research. As a traditional dynamic
gray prediction model, GM(1,1) can improve model accuracy using the gray differential
model in the case of incomplete and inaccurate system information, and therefore, it realizes
fuzzy quantitative prediction of future variables [38]. The estimated carbon density of DLB
from 1980 to 2020 was substituted in GM(1,1) to predict the carbon density in 2030 (Table 1).

2.3.3. Coordinating the Model between Land-Use Changes and CS

Land-use change affects the function and efficiency of the land, which, in turn, causes
changes in ecosystem services. The coordinating model [39], modified using the conven-
tional elastic coefficient, was introduced to quantitatively study the coordination between
land-use intensity (LUI) and CS in DLB and the changes therein (Table 2). For the conve-
nience of analysis, 3 km × 3 km grids were used for the generation of statistics related
to LUI, CS, and their coordination in DLB. The calculation of the degree of coordination
followed this principle [40,41]:

Ok =

∣∣∣(ALUIk + ACSk)/
√

2
∣∣∣√

ALUIk
2 + ACSk

2
(2)

where Ok is the coordinating index of grid k, Ok ∈ [0,1]; the larger the Ok is, the better the
coordination between LUI and CS. ALUIk and ACSk represent the annual growth rates of
LUI and CS of grid k. Among them, LUI is used to characterize the degree of disturbance of
land-use patterns by human activities. In this study, with reference to the study of Zhuang
et al. [42], the intensity levels of different land-use types were classified as 1 for unused
land; 2 for forests, grassland, wetland, and waters; 3 for farmland; and 4 for construction
land. The calculation of LUI followed this principle [42]:

LUIk = ∑7
i=1 Ii × Areaki (3)

where LUIk is the LUI of grid k, Ii is the intensity level of land use I, Areaki is the area of the
land use i in grid k, and i has the same meaning as Equation (1).

Table 2. Coordination types and relationships between land-use intensity (LUI) and carbon storage (CS).

O Judgment Condition Coordination Type Relationships Between LUI and CS

[0,0.5) ALUI < ACS
Uncoordinated

Ahead LUI and CS are uncoordinated, and CS growth
is ahead of improvement in LUI

ALUI > ACS Lagging LUI and CS are uncoordinated, and CS growth
lags improvement in LUI
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Table 2. Cont.

O Judgment Condition Coordination Type Relationships Between LUI and CS

[0.5,0.8) ALUI < ACS Adapted Ahead LUI and CS are managed so as to coordinate,
and CS growth is ahead of improvement in LUI

ALUI > ACS Lagging LUI and CS are managed so as to coordinate,
and CS growth lags improvement in LUI

(0.8,1] ALUI < ACS
Coordinated

Ahead LUI and CS are coordinated, and CS growth
is ahead of improvement in LUI

ALUI > ACS Lagging LUI and CS are coordinated, and CS growth
lags improvement in LUI

2.3.4. Standard Deviational Ellipse Analysis

Standard deviational ellipse (SDE) mainly uses the center, oblateness, and rotation
angle of output to measure and study the temporal variation trends of the central tendency,
dispersion, and directional trend of a certain factor. Some research has applied SDE to
reveal the spatial distribution and directional trend of coordination between two factors [43].
In the research, the ellipses for coordination of LUI and CS in different scenarios were
computed to reflect change characteristics of the spatial distribution, centripetal force, and
directional trend.

3. Results
3.1. Land-Use Simulation in Different Scenarios

Table 3 and Figure 3 demonstrate that compared with 2020, areas of various land-use
types of DLB change to different extents in different scenarios in 2030. The areas of farmland
and unused land are projected to shrink, areas of wetland, waters, and construction land
enlarge, while those of forests and grassland fluctuate.

By visualizing the transition among various land-use types with the transformed
area larger than 1 km2 (Figure 4), the transition of farmland and grassland to construction
land will be the main land circulation direction; the circum–Changsha–Zhuzhou–Xiangtan
urban agglomeration and the southeast of Guizhou Province are predicted to be areas with
the most intense land-use changes, and the urban development areas characterized by the
presence of construction land will show different expansion trends (Figure 3).

Table 3. Area and change in land-use types in DLB from 2020 to 2030 (unit: km2).

Year Farmland Forests Grassland Wetland Waters Construction
Land

Unused
Land

Area

2020 73,615.78 160,449.22 13,568.41 4416.96 4561.83 6580.18 30.46
2030 NES 72,698.53 160,364.60 13,199.58 4567.22 4655.35 7707.39 30.17
2030 EPS 72,643.50 160,570.26 13,785.44 4682.18 4737.22 6775.37 28.87
2030 EDS 72,861.43 160,279.99 13,015.16 4448.08 4561.83 8031.38 24.97
2030 PDS 72,707.71 160,496.34 13,207.69 4468.54 4570.83 7743.02 28.71

Change

2020–2030 NES −917.25 −84.62 −368.83 150.26 93.52 1127.21 −0.29
2020–2030 EPS −972.28 121.04 217.03 265.22 175.39 195.19 −1.59
2020–2030 EDS −754.35 −169.23 −553.25 31.12 0.00 1451.20 −5.49
2020–2030 PDS −908.07 47.12 −360.72 51.58 9.00 1162.84 −1.75
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According to Figure 4a–d: (1) In the NES (Figure 4a), the areas of farmland, forests,
grassland, and unused land separately shrink by 917.25 km2, 84.62 km2, 368.83 km2, and
0.29 km2; the areas of wetland, waters, and construction land separately increase by 150.26 km2,
93.52 km2, and 1127.21 km2. Construction land will expand mainly by invading farmland,
grassland, and forests, while a small amount of construction land will also be transformed into
farmland. (2) In the EPS (Figure 4b), the area of farmland is predicted to decrease by as much as
972.28 km2, the area of construction land will only increase by 195.19 km2, while areas of forests,
grassland, wetland, and waters will increase substantially under stringent ecological protection
policies such as returning farmland to forests and lakes. Farmland becomes the only land-use
type that is transformed into others, while ecological land, including wetland, grassland, waters,
and forests, will receive the largest area of transition from farmland. In the meantime, the
proportion of transferred farmland absorbed by construction land will plummet to 20.04%.
(3) In the EDS (Figure 4c), because production and living needs are maximized such that the
development of ecological land is not restricted, the decreased amplitude of the farmland area
is projected to slow down; the area of construction land will enlarge as high as 1451.20 km2 by
22.05%; the areas of forests, grassland, and unused land will maximally reduce by 169.23 km2,
553.25 km2, and 5.49 km2; the area of waters is predicted to show no increase. Influenced by
preferential policies for economic development, construction land invades a great deal of land, in
which farmland, grassland, and forests separately account for 50.66%, 37.66%, and 11.38%. (4) In
the PDS (Figure 4d), economic development, farmland protection, and ecological protection are
considered at the same time in the basin, which enables a more reasonable land-use pattern
to be developed. Therein, the area reduction in farmland will be 908.07 km2, which is only
larger than that in the EDS; apart from the EPS, the forests area also shows a positive increase
of 47.12 km2; the area of construction land grows by 1162.84 km2, approaching the level in the
NES. The land circulation direction in the PDS is similar to that in the NES. The difference is that
the expansion of construction land does not destroy existing forests but relies on the transition
of farmland and grassland. In addition, the area of construction land transformed into farmland
is predicted to decrease by 52.03%.

3.2. Dynamic Changes in CS in Different Scenarios

Simulations using the PLUS + InVEST model indicate that CS of DLB in NES, EPS,
EDS, and PDS will separately be 3125.70 Tg, 3129.60 Tg, 3124.15 Tg, and 3126.62 Tg in 2030
(Table 4), all increasing to different extents compared with that in 2020. As for various
land-use types, forests and farmland sequestrate more than 93% of carbon in DTB, while
unused land contributes the least to carbon sequestration, as its CS amounts to less than 1%.
Moreover, CS of these three land-use types remains quasi-stable in different scenarios. CS
of grassland and wetland both increase substantially by 6.53 Tg and 1.76 Tg separately in
the EPS. CS of grassland continues its increasing trend (to 2.44 Tg) in the PDS, while that of
wetland declines by 1.20 Tg to a level lower than that in the NES. Construction land is found
to have the largest increase in CS. Except for the EPS, in which the CS of construction land
is lower than 30% (only 14.60%), CS always exceeds 30% in other scenarios, particularly in
the EDS, where it reaches 35.87%.

Table 4. CS in DLB from 2020 to 2030 (unit: Tg).

Year Farmland Forests Grassland Wetland Construction
Land

Unused
Land Tot

Area

2020 467.90 2354.11 90.96 63.17 29.05 0.10 3005.29
2030 NES 497.04 2434.01 93.35 63.33 37.87 0.10 3125.70
2030 EPS 496.66 2437.14 97.49 64.93 33.29 0.09 3129.60
2030 EDS 498.15 2432.73 92.04 61.68 39.47 0.08 3124.15
2030 PDS 497.10 2436.01 93.40 61.97 38.05 0.09 3126.62

Change

2020–2030 NES 29.14 79.90 2.39 0.16 8.82 0.00 120.41
2020–2030 EPS 28.76 83.03 6.53 1.76 4.24 −0.01 124.41
2020–2030 EDS 30.25 78.62 1.08 −1.49 10.42 −0.02 118.86
2020–2030 PDS 29.20 81.90 2.44 −1.20 9.00 −0.01 121.33
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By combining Figure 5a–e, the spatial distribution of CS is shown to remain stable in
DLB. This is manifested as a horseshoe-shaped distribution pattern with CS decreasing
from high-value areas of large mountains in the east, south, and west of the basin to
the hilly area of central Hunan Province and Dongting Lake. The low-value areas are
mainly distributed in the Dongting Lake area and various urban regions, which shows the
important guidance of the land-use pattern on the spatial distribution of CS.
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Combining with the interannual variation (Figure 5f–i), regions with carbon losses
are also concentrated in the Dongting Lake area and various urban regions, as evinced
by: (1) In the NES (Figure 5f), the carbon loss mainly occurs in the Dongting Lake area
(0.48 Tg) and the southeast of Guizhou Province (0.01 Tg), and CS in the Dongjiang Lake
area also decreases by 0.002 Tg. (2) In the EPS (Figure 5g), ecosystems across the whole
basin are effectively protected. Land-use types change in large areas in the Dongting
Lake area due to the implementation of ecological restoration measures, such as returning
farmland to forests and lakes and wetland restoration. This results in decreased carbon
sequestration capacity in local regions and, therefore, a carbon loss of 0.51 Tg. (3) In
the EDS (Figure 5h), production and societal activities are strongly supported across the
whole basin so that the carbon loss risk rises substantially in regions with intense human
activities. The Dongting Lake area, Changsha–Zhuzhou–Xiangtan metropolitan area, and
the southeast of Guizhou Province are projected to have large carbon losses of 0.61 Tg,
0.55 Tg, and 0.07 Tg, respectively. Influenced by the development of the circum–Changsha–
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Zhuzhou–Xiangtan urban agglomeration, carbon losses exceeding 0.04 Tg will also occur
in Hengyang, Changde, Loudi, Huaihua, and Zhuzhou in Hunan Province, as well as
Anyuan in Jiangxi Province. (4) In the PDS (Figure 5i), the land-use pattern tends to be
reasonable, and the carbon loss risk declines across the whole basin. The carbon losses
of the Changsha–Zhuzhou–Xiangtan urban agglomeration and the southeast of Guizhou
Province will separately be 0.17 Tg and 0.03 Tg, lower than 50% of those in the EDS. Because
the Dongting Lake area possesses favorable locational conditions for production and living,
human activity intensity always remains high, so the carbon loss in the area will also be
high, reaching 0.59 Tg. Moreover, in places such as Hengyang in Hunan Province, which
experience a carbon loss in the EDS, the amount of carbon loss will decrease, or the CS will
increase from decreasing in the PDS.

3.3. The Relationship between Land-Use Changes and CS
3.3.1. Influences of Land-Use Changes on CS

Different land-use types differ significantly in their carbon sequestration capacity, so
land-use changes influence regional CS. To estimate influences of land-use changes on CS
of DLB in different scenarios in 2030, CS changes were plotted (Figure 6).
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Combining this with Figure 4: (1) In the NES (Figures 4a and 6a), the transition between
different land-use types will result in a carbon loss of 170.62 × 104 Mg. To be specific,
farmland, forests, and grassland are transformed into waterbodies and construction land so
that the carbon sequestration capacity of vegetation and soil of the original land-use types is
weakened. Although the wetland restoration from some farmland brings increases in CS by
about 121.10 × 104 Mg, it fails to complement the carbon loss induced by land-use changes.
(2) In the EPS (Figures 4b and 6b), the transition between different land-use types increases
CS by 182.47 × 104 Mg, mainly because the basin is oriented to ecological protection. This
not only places stringent restraints on the transition of farmland, forests, and grassland
to construction land but also drives the transition from land-use types with a low carbon
density to those with a high carbon density, which stimulates the carbon sequestration
potential. For example, farmland is transformed into forests, grassland, and wetland,
which enables increases in CS by 106.71 × 104 Mg, 15.52 × 104 Mg, and 199.09 × 104 Mg,
respectively. (3) In the EDS (Figures 4c and 6c), the transition trend between land-use
types continues from the level in the NES, while the carbon loss reaches a higher level of
342.69 × 104 Mg. This is mainly because the transition from forests and grassland with
high carbon sequestration capacity to construction land enlarges by more than 50%. The
second cause is that transition from farmland to wetland reduces substantially, so the
resulting increment in CS decreases correspondingly. (4) In the PDS (Figures 4d and 6d),
only 92.08 × 104 Mg of CS is lost, which is much lower than the CS losses in the NES and
EDS. The transition from farmland and forests to construction land results in a CS loss
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of 182.10 × 104 Mg. Despite this, the increment in CS attributed to the transition from
farmland and grassland to forests and wetland with higher carbon sequestration capacity
and clearing out some construction land is as much as 90.53 × 104 Mg. This compensates
for the CS loss caused by the transition between different land-use types.

3.3.2. Spatial Coordination between Land-Use Changes and CS in Different Scenarios

As shown in Figure 7, the land-use changes are adapted (CS growth ahead of improvement
in LUI) with CS changes in DLB in different scenarios. That is, increases in LUI and CS are in
a stage of adaptation, in which the carbon sequestration capacity of ecosystems in the basin
manages to adapt to rapid socioeconomic development; however, the carbon loss induced
by intensive land use cannot be compensated in case of any carelessness in development (or
accidents). In regions such as the Dongting Lake area, the circum–Changsha–Zhuzhou–Xiangtan
urban agglomeration, and the southeast of Guizhou Province, the coordination between LUI and
CS shows significant spatial heterogeneity (Figure 7). This is manifested as follows: (1) In the
NES (Figure 7a), the lack of coordination (CS growth ahead of improvement in LUI) is mainly
distributed in wetland and forests with low intensity of human activities in the Dongting Lake
area. In these regions, the stability of these ecosystems is ensured, and the carbon sequestration
capacity is improved under few artificial disturbances. LUI and CS are coordinated in most
urban agglomerations, which means that LUI and CS can grow synergistically. (2) In the EPS
(Figure 7b), the carbon sequestration capacity of ecosystems is enhanced substantially, while
land-use and development intensity are strictly controlled. This leads to a surge in uncoordinated
regions (CS growth ahead of improvement of LUI), which are concentrated in the Dongting
Lake area, the southeast of Guizhou Province, and the banks of Yuanjiang River. In comparison,
coordinated regions appear sporadically in the Xiangjiang River Basin. (3) Contrary to the
situation in the EPS, a large area of ecological land is transformed into construction land in the
EDS (Figure 7c). This reduces the carbon sequestration capacity of the whole basin and gives rise
to circular uncoordinated regions (CS growth lagging behind improvement in LUI) appearing in
the periphery of cities with high LUI. Other regions with concentrated artificial disturbances are
also found to be adapted or coordinated, both with CS growth lagging any improvement in LUI.
(4) In the PDS (Figure 7d), the lack of coordination between increments of LUI and CS is rare,
and such a phenomenon is mainly concentrated in the Wuling district in Changde City, Hunan
Province (uncoordinated with CS growth lagging any improvement in LUI). The periphery of
other cities is coordinated: this indicates that the ecosystems and economic society develop in
good coordination in DLB in the scenario, especially urban agglomerations, while the ecological
risk caused by excessively rapid economic development also cannot be overlooked.
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Further analysis shows that ellipses in the SDE analysis are distributed along the
northeast to southwest direction in different scenarios; however, the four ellipses differ
significantly in their spatial locations and coverages (Figure 7). The minor semiaxes of
ellipses for the coordination between LUI and CS in the NES, EPS, EDS, and PDS are
28.06 km, 41.95 km, 18.48 km, and 40.58 km; the oblateness is 56.12 km, 83.90 km, 36.97 km,
and 81.17 km; and coverages are 148,736.14 km2, 128,876.02 km2, 150,527.41 km2, and
146,430.71 km2, respectively. Compared with the NES, the ellipses in the other scenarios
show the following characteristics: (1) The coverage is the largest in the EDS, while the
center shifts to the south. In addition, due to the long minor semiaxis and small oblateness
of the ellipse, the coordination has a higher dispersion and insignificant directional trend of
spatial distribution. (2) The ellipses in the EPS and PDS have similar minor semiaxes and
oblateness. Although the aggregation of the degrees of coordination in the two scenarios
is inferior to that in the NES, the directional trends in the two scenarios are more explicit.
Combining with the coverage, the ellipse has the minimum area in the EPS, and its center
lies in the upper and middle reaches of the basin. The ellipse in the PDS has a smaller
area than that in the NES, while its center is located on the line between the southeast of
Guizhou Province and the circum–Changsha–Zhuzhou–Xiangtan urban agglomeration.
This indicates that the land-use modes in regions with concentrated human activities of the
basin play a key role in the carbon sequestration of ecosystems.

4. Discussion
4.1. The Relationship between Land-Use Changes and CS

The transition between land-use types with low and high carbon densities has both
positive and adverse effects on the carbon sequestration of ecosystems [44]. On the one
hand, enlarging the areas of farmland and construction land will lead to carbon losses. On
the other hand, ecological protection and restoration measures such as returning farmland
to forests or grassland, as well as reclamation and vegetation restoration of construction
land, will increase the carbon sink, making it necessary to minimize the carbon loss caused
by land-use changes while meeting socioeconomic development demands.

Comparing the results of this study with existing studies on the Yangtze River
Basin [24] and Poyang Lake Basin [45], the future land-use trend in DLB is represented by a
gradual transition from farmland and ecological land (mainly forests and grassland) to new
construction land, and the transition will be concentrated in existing urban areas, which
is certain. The difference, however, is that farmland in DLB will also be shifted mainly to
wetland and waters, with a certain scale of fallowing only occurring during EPS and PDS.
This may be due to the concentration of farmland in the Dongting Lake area and along the
shores of the tributaries, where returning farmland to lakes and wetland restoration is a
more appropriate ecological protection measure. Secondly, the negative effect of human
intervention in the DLB is significant, with large spatial differences in carbon sequestration
capacity. This is mainly due to the large urban clusters that have been formed during the
economic construction of “emphasizing development and neglecting protection” [14] and
which are scattered in sub-basins.

The research also reveals that the invasion of construction land to land-use types
with high carbon density is the key to carbon loss. Although the transition from farmland,
construction land, and unused land to forests, grassland, and wetland can greatly improve
CS, land-use changes in DLB are dominated by the transition from farmland and grassland
to construction land. This is unfavorable for increasing CS in the basin. The PDS based on
the Territorial Spatial Master Planning (2021–2035) and Main Functional Area Planning is
significantly better than other scenarios. Under the PDS, the area of forests will increase,
and the expansion of construction land will no longer destroy existing forested land, relying
on the transfer of farmland and grassland. Moreover, the risk of carbon loss from major
urban agglomerations will be significantly reduced, and the carbon sequestration capacity
of the DLB will be increased, which is similar to the results of the SSP1–2.6 scenario set
by Zhang et al. [24] in the Yangtze River Basin. The comparative analysis of changes in
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coordination between LUI and CS further proves that due to reasonable land-use changes,
the PDS can meet CS growth and social development. It also stimulates the transition
from farmland and grassland to forests and wetland, thus enhancing the ability of soil to
sequester carbon.

4.2. Policy Implications and Optimization Suggestions

How to realize the sustainable development of ecology and economy is the core
problem to be solved urgently in territorial spatial master planning. The Carbon Peaking
Action Programme before 2030 emphasizes the protection of ecosystems and the strict
prohibition of large-scale development. However, in some parts of China, land planning
schemes consistently serve economic development [46], and these schemes fail to bal-
ance ecological protection with economic development. We believe that, in the future,
if ecological–economic sustainability is to be achieved, forest destruction and wetland
degradation caused by human activities must be prevented. In forest areas, the policy of
returning farmland to forests should be implemented with greater vigor, not only to effec-
tively improve the carbon sequestration capacity of forest ecosystems but also to maintain
biodiversity and regulate climate, etc. Moreover, the policy of returning farmland to lakes
and restoring wetland and vegetation needs to be seriously implemented, as good water
ecosystems are vital to human society and terrestrial ecosystems [25]. In addition, rational
optimization of the internal spatial pattern of built-up areas can effectively improve the
efficiency of land resource use and restrain urban sprawl [45].

In summary, the following suggestions for optimizing the future land-use pattern in
DLB are recommended: (1) The scale of the expansion of urban agglomerations within the
Xiangjiang River Basin and the Dongting Lake area should be strictly controlled, and in
particular, the land-use pattern of the Changsha–Zhuzhou–Xiangtan metropolitan area
should be optimized. In regions such as western Hunan, which is relatively economically
backward, the scale of the expansion of construction land can be appropriately controlled,
but the development intensity of other land-use types should be reduced. (2) It is suggested
to set conservation areas in forests and wetland within urban agglomerations, such as
Yuelu Mountain, Hengshan Mountain, and Dongting Lake wetlands, to enhance the carbon
sequestration capacity of urban ecosystems and improve the quality of the human habitat.
(3) It needs to enhance the protection of high-quality farmland in the Dongting Lake area,
actively promote the transition from poor and barren land around urban and mountain-
ous areas to ecological land, and develop unused land suitable for culturing forests and
grassland or reclamation.

4.3. Accuracy of Estimation Results of CS

The research is different from most existing studies that directly use data summarized
from the literature, in which carbon density is determined based on remote sensing inversion
and model correction. Considering the interannual variation in carbon density, the gray
prediction model was adopted to attain carbon density values in future years, which, to some
extent, guarantees the accuracy of the estimation results of CS. The measured or simulated
carbon densities of various ecosystems in DLB were collected and then compared with
the current research results (Table 5). The carbon densities of aboveground biomass and
underground biomass of forest vegetation in DLB collected from the dataset on carbon density
in Chinese terrestrial ecosystems in 2010 [47] are approximate to those obtained in the present
research. The carbon density of forest soil shows a certain deviation from that attained in
the present research. The carbon density of arable soil is consistent with that acquired in the
present research. The carbon density of grassland is approximate to that in the present research.
Carbon densities of impervious surfaces and other land-use types conform to those of the
construction land and unused land obtained herein. Moreover, the average carbon density of
Dongting Lake wetland biomass and the carbon density of soil measured by Zhang et al. [48]
and Kang et al. [49] are both akin to the carbon densities of wetland biomass and soil obtained
in the present research. Furthermore, the carbon density of wetland biomass is projected
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to decline, which agrees with the conclusion suggesting a decreased carbon sequestration
capacity of Dongting Lake wetland mentioned in the Ecological Monitoring and Assessment
Report of Dongting Lake Wetland (2015–2020). In summary, the carbon densities obtained in
the research are reliable and can be used in the current research.

Table 5. Comparison of carbon density of different land-use types (unit: Mg·ha−1).

Land-Use Type Carbon Density The Present Research Reference Value Data Source

Farmland Ci-soil 61.41~66.06 65.20 Xu et al. [47]

Forests
Ci-above 27.12~28.05 29.58 Xu et al. [47]
Ci-below 7.32~7.57 10.40 Xu et al. [47]
Ci-soil 111.12~114.96 158.40 Xu et al. [47]

Grassland Ci-soil 63.42~66.90 68.20 Xu et al. [47]

Wetland
Ci-above + Ci-below + Ci-dead 11.05~11.40 14.95 Zhang et al. [48]; Kang et al. [49]

Ci-soil 127.62~131.61 139.4~157.71 Zhang et al. [48]; Kang et al. [49]
Others Ci-soil 29.94~49.14 27.46~44.51 Xu et al. [47]

4.4. Limitations

(1) Although remote sensing inversion and model correction methods are used to
determine carbon density values, which are efficient and scientifically sound for large
regional scale studies, it may affect the accuracy of CS assessment compared to field
experiments [29]. Even though dynamic carbon density has been used to evaluate CS in
DLB, the limitation of the InVEST model that simplifies carbon sequestration still cannot be
completely overcome. In particular, the model overlooks differences and dynamic changes
in carbon density inside a single ecosystem. Future research should determine the dynamic
change trend of carbon density in the study area by combining with field measurements
and verify the trend by combining with Eddy flux to further improve the accuracy of CS
evaluation results.

(2) The PLUS model is adopted to compensate for deficiencies in conventional models
in determining drivers for land-use transition and in simulating the spatiotemporal evo-
lution of landscapes [21]. The model also improves the simulation accuracy for changes
in various land-use types. However, certain limitations remain: (1) The future land-use
demands in different scenarios are all obtained by adjusting the NES according to relevant
policy documents. Although differences in the development intensity and transition proba-
bility of various land-use types in different scenarios are considered, it fails to reflect the
close relationship between future land-use changes and regional economic development.
How to improve the rationality and accuracy of predictions of future land-use demands
in different scenarios by combining them with the prevailing trends in economic devel-
opment will become one of the key problems to be solved in future land-use simulations.
(2) Regional development policies have strong guidance on land-use changes. Although
the function-restricted areas and planned development areas are set according to relevant
policies, the setting is not comprehensive enough, which, to some extent, influences the
accuracy of the simulation. How to better achieve quantification and space expression of
policy and institutional drivers is key to driver selection in future land-use simulations.

5. Conclusions

The PLUS model was used to simulate the land-use patterns of DLB in different
scenarios in 2030. The PLUS model was also coupled with the InVEST model to evaluate
the CS of ecosystems in different scenarios. The following conclusions are drawn:

(1) Compared with 2020, other land-use types exhibit similar trends in different scenar-
ios in 2030, except for forests and grassland, which show different changes in different sce-
narios. Construction land in regions such as the Dongting Lake area, the circum–Changsha–
Zhuzhou–Xiangtan urban agglomeration, and the southeast of Guizhou Province changes
in a complex manner. In addition, future land-use changes will be dominated by the
transition from farmland and grassland to construction land.
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(2) CS across DLB will always increase in different scenarios in 2030. CS is distributed
in a horseshoe-shaped pattern that decreases in a step-by-step manner from three directions
(the east, south, and west) to the center and north. Regions with more rapid urbanization
and more frequent human activities are found to have more significant dynamic changes in
CS. Construction land invades large areas of land with high carbon sequestration capacity,
which will induce carbon loss and weaken the ability of the whole basin in carbon seques-
tration. Moreover, land-use changes are a “double-edged sword.” The PDS can not only
balance the advantages of EPS and EDS but also compensate for disorderly development in
the NES to facilitate the development of the whole basin at the cost of a small carbon loss.

(3) LUI and CS growth are adapted (CS growth ahead of improvement in LUI) in DLB.
Although the rate of growth of CS is higher than the improvement rate of LUI, the two are
marginally coordinated. Compared with other scenarios, the coordination of the two has a
more explicit directional trend in the PDS and a higher degree of coordination. Moreover,
the PDS emphasizes the coordinating and promoting effect of reasonable land development
on the carbon sequestration capacity of ecosystems in the basin.

Author Contributions: Conceptualization: W.Z. and L.Y.; methodology: W.Z. and L.Y.; software:
W.Z., L.Y. and H.Q.; validation: J.W. and L.Y.; formal analysis: W.Z. and J.W.; investigation: W.Z.
and J.W.; resources: W.Z. and Y.H.; data curation: J.W., Y.H., and R.W.; writing—original draft: W.Z.;
writing—review and editing: W.Z., J.W., and L.Y.; visualization: L.Y. and H.Q.; supervision: L.Y.;
project administration: L.Y.; funding acquisition: J.W. and L.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Social Science Fund of China, grant numbers
22BJY094 and 22BGL169; the General Project of Humanities and Social Sciences Research of Ministry
of Education of China, grant number 19YJC630166; the China Postdoctoral Science Foundation, grant
number 2021M693573; the Natural Science Foundation of Hunan Province of China, grant number
2022JJ30080; the Project of Social Science Achievement Review Committee of Hunan Province of
China, grant number XSP22YBC221; and the Research Foundation of Educational Commission of
Hunan Province of China, grant number 22A0174.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their gratitude to the editors and reviewers for their time
and efforts.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arneth, A.; Sitch, S.A.; Pongratz, J.; Stocker, B.D.; Ciais, P.; Poulter, B.I.; Bayer, A.D.; Bondeau, A.; Calle, L.; Chini, L.P.; et al.

Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. 2017, 10, 79–84.
[CrossRef]

2. Vasenev, V.I.; Stoorvogel, J.J.; Leemans, R.; Hajiaghayeva, R.A. Projection of urban expansion and related changes in soil carbon
stocks in the Moscow Region. J. Clean. Prod. 2018, 170, 902–914. [CrossRef]

3. Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial
ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [CrossRef]

4. Guo, W.; Teng, Y.J.; Yan, Y.G.; Zhao, C.W.; Zhang, W.Q.; Ji, X.L. Simulation of land use and carbon storage volution in multi-
scenario: A case study in Beijing-Tianjin-Hebei urban agglomeration, China. Sustainability 2022, 14, 13436. [CrossRef]

5. Duan, Y.C.; Tang, J.; Li, Z.Y.; Yang, Y.; Dai, C.; Qu, Y.K.; Lv, H. Optimal planning and management of land use in river source
region: A case study of Songhua River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 6610. [CrossRef]

6. Borges, E.C.; Paz, I.; Leite, N.A.D.; Willinger, B.; Ichiba, A.; Gires, A.; Campos, P.C.; Monier, L.; Cardinal, H.; Amorim, J.C.; et al.
Evaluation of the spatial variability of ecosystem services and natural capital: The urban land cover change impacts on carbon
stocks. Int. J. Sustain. Dev. World Ecol. 2020, 28, 339–349. [CrossRef]

7. Zhu, L.Y.; Song, R.X.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal
areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [CrossRef]

http://doi.org/10.1038/ngeo2882
http://doi.org/10.1016/j.jclepro.2017.09.161
http://doi.org/10.1038/srep10233
http://doi.org/10.3390/su142013436
http://doi.org/10.3390/ijerph19116610
http://doi.org/10.1080/13504509.2020.1817810
http://doi.org/10.1016/j.ecolind.2022.109178


Int. J. Environ. Res. Public Health 2023, 20, 4835 18 of 19

8. Liu, Q.; Yang, D.D.; Cao, L.; Anderson, B. Assessment and prediction of carbon storage based on land use/land cover dynamics
in the tropics: A case study of Hainan Island, China. Land 2022, 11, 244. [CrossRef]

9. Shi, M.J.; Wu, H.Q.; Jiang, P.G.; Shi, W.J.; Zhang, M.; Zhang, L.N.; Zhang, H.Y.; Fan, X.; Liu, Z.; Zheng, K.; et al. Cropland
expansion mitigates the supply and demand deficit for carbon sequestration service under different scenarios in the future-The
case of Xinjiang. Agriculture 2022, 12, 1182. [CrossRef]

10. Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land
cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [CrossRef]

11. Wang, J.F.; Li, L.F.; Li, Q.; Wang, S.; Liu, X.L.; Li, Y. The spatiotemporal evolution and prediction of carbon storage in the Yellow
River Basin based on the major function-oriented zone planning. Sustainability 2022, 14, 7963. [CrossRef]

12. Wang, Z.Y.; Li, X.; Mao, Y.T.; Wang, X.R.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based
on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [CrossRef]

13. Cunha, J.; Campos, F.S.; David, J.; Padmanaban, R.; Cabral, P. Carbon sequestration scenarios in Portugal: Which way to go
forward? Environ. Monit. Assess. 2021, 193, 547. [CrossRef]

14. Ding, T.H.; Chen, J.F.; Fang, Z.; Chen, J.Y. Assessment of coordinative relationship between comprehensive ecosystem service and
urbanization: A case study of Yangtze River Delta urban Agglomerations, China. Ecol. Indic. 2021, 133, 108454. [CrossRef]

15. Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.J.; Mendoza, G.F.; Polasky, S.; Wolny, S.; Daily, G.C.
Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [CrossRef]

16. Adelisardou, F.; Zhao, W.W.; Chow, R.; Mederly, P.; Minkina, T.M.; Schou, J. Spatiotemporal change detection of carbon storage
and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). Int. J. Environ. Sci.
Technol. (Tehran) 2021, 19, 5929–5944. [CrossRef]

17. Benez, S.F.J.; Dwivedi, P. Analyzing the impacts of land use policies on selected ecosystem services in the upper Chattahoochee
Watershed, Georgia, United States. Environ. Res. Commun. 2021, 3, 115001. [CrossRef]

18. Li, P.J.; Liu, C.F.; Liu, L.C.; Wang, W.T. Dynamic analysis of supply and demand coupling of ecosystem services in Loess Hilly
Region: A case study of Lanzhou, China. Chin. Geogr. Sci. 2021, 31, 276–296. [CrossRef]

19. Han, N.L.; Yu, M.; Jia, P.H. Multi-scenario landscape ecological risk simulation for sustainable development goals: A case study
on the central mountainous area of Hainan Island. Int. J. Environ. Res. Public Health 2022, 19, 4030. [CrossRef] [PubMed]

20. Liang, X.; Liu, X.P.; Li, X.; Chen, Y.M.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based
FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [CrossRef]

21. Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a
patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569.
[CrossRef]

22. Zhou, Y.; Chang, J.; Feng, S.S. Effects of urban growth boundaries on urban spatial structural and ecological functional optimiza-
tion in the Jining Metropolitan Area, China. Land Use Policy 2022, 117, 106113.

23. Yuan, B.D.; Fu, L.N.; Zou, Y.A.; Zhang, S.Q.; Chen, X.S.; Li, F.; Deng, Z.M.; Xie, Y.H. Spatiotemporal change detection of ecological
quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126955. [CrossRef]

24. Zhang, S.Q.; Yang, P.; Xia, J.; Wang, W.Y.; Cai, W.; Chen, N.C.; Hu, S.; Luo, X.G.; Li, J.; Zhan, C.S. Land use/land cover prediction
and analysis of the middle reaches of the Yangtze River under different scenarios. Sci Total Environ. 2022, 833, 155238. [CrossRef]
[PubMed]

25. Wang, L.X.; Li, Z.W.; Wang, D.Y.; Chen, J.; Liu, Y.J.; Nie, X.D.; Zhang, Y.T.; Ning, K.; Hu, X.Q. Unbalanced social-ecological
development within the Dongting Lake basin: Inspiration from evaluation of ecological restoration projects. J. Clean. Prod. 2021,
315, 128161. [CrossRef]

26. Yang, L.; Deng, M.; Wang, J.L.; Que, H.F. Spatial-temporal evolution of land use and ecological risk in Dongting Lake Basin
during 1980–2018. Act. Ecol. Sin. 2021, 41, 3929–3939. (In Chinese)

27. Du, Y.J.; Li, X.L.; He, X.L.; Li, X.Q.; Yang, G.; Li, D.B.; Xu, W.H.; Qiao, X.; Li, C.; Sui, L. Multi-scenario simulation and trade-off
analysis of ecological service value in the Manas River Basin based on land use optimization in China. Int. J. Environ. Res. Public
Health 2022, 19, 6216. [CrossRef]

28. Wei, Q.Q.; Abudureheman, M.; Halike, A.; Yao, K.X.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of
habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [CrossRef]

29. Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Tan, K.; Tao, S. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999.
Global Biogeochem. Cycles 2007, 21, GB2002. [CrossRef]

30. Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Estimation of terrestrial vegetation carbon sequestration in China from 1981 to 2000.
Sci. Sin. Terrae 2007, 37, 804–812.

31. Giardina, C.P.; Ryan, M.G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with remperature.
Nature 2000, 404, 858–861. [CrossRef] [PubMed]

32. Chen, G.S.; Yang, Y.S.; Xie, J.S.; Du, Z.X.; Zhang, J. Total belowground carbon allocation in China’s forests. Acta Ecol. Sin. 2007, 27, 5148–5157.
33. Alam, S.A.; Starr, M.; Clark, B.J.F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A

regional carbon sequestration study. J. Arid. Environ. 2013, 89, 67–76. [CrossRef]
34. Xi, X.H.; Zhang, X.J.; Liao, Q.L.; Chen, D.Y.; Bai, R.J.; Huang, Z.F. Multi-purpose regional geochemical survey and soil carbon reserves

problem: Examples of Jiangsu, Henan, Sichuan, Jilin Provinces and Inner Mongolia. Quat. Sci. 2008, 28, 58–67. (In Chinese)

http://doi.org/10.3390/land11020244
http://doi.org/10.3390/agriculture12081182
http://doi.org/10.1016/j.scitotenv.2019.06.275
http://doi.org/10.3390/su14137963
http://doi.org/10.1016/j.ecolind.2021.108499
http://doi.org/10.1007/s10661-021-09336-z
http://doi.org/10.1016/j.ecolind.2021.108454
http://doi.org/10.1073/pnas.1201040109
http://doi.org/10.1007/s13762-021-03676-6
http://doi.org/10.1088/2515-7620/ac310c
http://doi.org/10.1007/s11769-021-1190-z
http://doi.org/10.3390/ijerph19074030
http://www.ncbi.nlm.nih.gov/pubmed/35409712
http://doi.org/10.1016/j.landurbplan.2018.04.016
http://doi.org/10.1016/j.compenvurbsys.2020.101569
http://doi.org/10.1016/j.jclepro.2021.126995
http://doi.org/10.1016/j.scitotenv.2022.155238
http://www.ncbi.nlm.nih.gov/pubmed/35427604
http://doi.org/10.1016/j.jclepro.2021.128161
http://doi.org/10.3390/ijerph19106216
http://doi.org/10.1016/j.ecolind.2022.109632
http://doi.org/10.1029/2005GB002634
http://doi.org/10.1038/35009076
http://www.ncbi.nlm.nih.gov/pubmed/10786789
http://doi.org/10.1016/j.jaridenv.2012.10.002


Int. J. Environ. Res. Public Health 2023, 20, 4835 19 of 19

35. Xi, X.H.; Yang, Z.F.; Liao, Q.L.; Zhang, J.X.; Bai, R.J.; Zhang, X.Z.; Jin, L.X.; Wang, H.F.; Li, M.; Xia, X.Q. Soil organic carbon storage
in typical regions of China. Quat. Sci. 2010, 30, 573–583. (In Chinese)

36. Xi, X.H.; Li, M.; Zhang, X.Z.; Zhang, Y.P.; Zhang, D.P.; Zhang, J.X.; Dou, W.; Yang, Y. Research on soil organic carbon distribution
and change trend in middle-east plain and its vicinity in China. Earth Sci. Front. 2013, 20, 154–165. (In Chinese)

37. Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in
China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026.
[CrossRef]

38. Kayacan, E.; Ulutas, B.; Kaynak, O. Grey system theory-based models in time series prediction. Expert Syst. Appl. 2010, 37, 1784–1789.
[CrossRef]

39. Yang, Z.W.; Chen, Y.B.; Qian, Q.L.; Wu, Z.F.; Zheng, Z.H.; Huang, Q.Y. The coupling relationship between construction land expansion
and high-temperature area expansion in China’s three major urban agglomerations. Int. J. Remote Sens. 2019, 40, 6680–6699. [CrossRef]

40. Stokes, E.C.; Seto, K.C. Climate change and urban land systems: Bridging the gaps between urbanism and land science. J. Land
Use Sci. 2016, 11, 698–708. [CrossRef]

41. Wang, Q.R.; Mao, Z.X.; Xian, L.H.; Liang, Z.X. A study on the coupling coordination between tourism and the low-carbon city.
Asia Pacific J. Tour. Res. 2019, 24, 550–562. [CrossRef]

42. Zhuang, D.F.; Liu, J.Y. Modeling of regional differentiation of land-use degree in China. Chin. Geogr. Sci. 1997, 7, 302–309.
[CrossRef]

43. Zuo, Z.L.; Guo, H.X.; Cheng, J.H.; Li, Y.L. How to achieve new progress in ecological civilization construction?-Based on cloud
model and coupling coordination degree model. Ecol. Indic. 2021, 127, 107789. [CrossRef]

44. Wang, Z.; Zeng, J.; Chen, W. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China.
Environ. Sci. Pollut. Res. 2022, 29, 45507–45526. [CrossRef] [PubMed]

45. Zhang, T.Z.; Gao, Y.; Li, C.; Xie, Z.; Chang, Y.Y.; Zhang, B.L. How human activity has changed the regional habitat quality in
an eco-economic zone: Evidence from Poyang Lake eco-economic zone, China. Int. J. Environ. Res. Public Health 2020, 17, 6253.
[CrossRef]

46. Lin, J.Y.; Li, X. Conflict resolution in the zoning of eco-protected areas in fast-growing regions based on game theory. J. Environ.
Manag. 2016, 170, 177–185. [CrossRef]

47. Xu, L.; He, N.P.; Yu, G.R. A dataset of carbon density in China terrestrial ecosystems (2010s). China Sci. Data. 2018, 4, 90–96.
48. Zhang, J.X.; Xing, X.D.; Lu, J.; Lü, H.Z. The distribution rule of soil carbon in Dongting lake district and its response to the global

climate change. Earth Sci. Front. 2008, 15, 57–66. (In Chinese)
49. Kang, W.X.; Tian, Z.; He, J.N.; Xi, H.Z.; Cui, S.S.; Hu, Y.P. Carbon storage of the wetland vegetation ecosystegm and its distribution

in Dongting Lake. J. Soil Water Conserv. 2009, 23, 129–133+148. (In Chinese)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1073/pnas.1700291115
http://doi.org/10.1016/j.eswa.2009.07.064
http://doi.org/10.1080/01431161.2019.1590877
http://doi.org/10.1080/1747423X.2016.1241316
http://doi.org/10.1080/10941665.2019.1610002
http://doi.org/10.1007/s11769-997-0002-4
http://doi.org/10.1016/j.ecolind.2021.107789
http://doi.org/10.1007/s11356-022-19146-6
http://www.ncbi.nlm.nih.gov/pubmed/35147879
http://doi.org/10.3390/ijerph17176253
http://doi.org/10.1016/j.jenvman.2015.11.036

	Introduction 
	Materials and Methods 
	Study Region 
	Data Sources and Processing 
	Methods 
	Simulation of Land-Use Changes Based on the PLUS Model 
	CS Assessment of Terrestrial Ecosystems Based on the InVEST Model 
	Coordinating the Model between Land-Use Changes and CS 
	Standard Deviational Ellipse Analysis 


	Results 
	Land-Use Simulation in Different Scenarios 
	Dynamic Changes in CS in Different Scenarios 
	The Relationship between Land-Use Changes and CS 
	Influences of Land-Use Changes on CS 
	Spatial Coordination between Land-Use Changes and CS in Different Scenarios 


	Discussion 
	The Relationship between Land-Use Changes and CS 
	Policy Implications and Optimization Suggestions 
	Accuracy of Estimation Results of CS 
	Limitations 

	Conclusions 
	References

