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Abstract: Alzheimer’s disease (AD) is characterized by the presence of neuropsychiatric or behav‑
ioral andpsychological symptoms of dementia (BPSD). BPSDhave been associatedwith theAPOE_ε4
allele, which is also the major genetic AD risk factor. Although the involvement of some circadian
genes and orexin receptors in sleep and behavioral disorders has been studied in some psychiatric
pathologies, including AD, there are no studies considering gene–gene interactions. The associa‑
tions of one variant in PER2, two in PER3, two in OX2R and two in APOE were evaluated in 31 AD
patients and 31 cognitively healthy subjects. Genotyping was performed using real‑time PCR and
capillary electrophoresis from blood samples. The allelic‑genotypic frequencies of variants were cal‑
culated for the sample study. We explored associations between allelic variants with BPSD in AD
patients based on the NPI, PHQ‑9 and sleeping disorders questionnaires. Our results showed that
the APOE_ε4 allele is an AD risk variant (p = 0.03). The remaining genetic variants did not reveal sig‑
nificant differences between patients and controls. The PER3_rs228697 variant showed a nine‑fold
increased risk for circadian rhythm sleep–wake disorders in Mexican AD patients, and our gene–
gene interaction analysis identified a novel interaction between PERIOD and APOE gene variants.
These findings need to be further confirmed in larger samples.

Keywords: Alzheimer’s disease; neuropsychiatric symptoms;OX2R/HCRTR2gene; PER2gene; PER3
gene; APOE gene

1. Introduction
Alzheimer’s disease (AD) is characterized by cognitive and behavioral symptoms,

also called neuropsychiatric symptoms, or behavioral and psychological symptoms of de‑
mentia (BPSD). AD is the most common form of dementia and may contribute to 60–70%
of cases [1].

BPSD have been related to worse impairments in the functional and cognitive per‑
formance of patients [2,3] and are often confused with other psychiatric diagnoses [4]. In
addition, BPSD are the major cause of institutionalization of AD patients and are a major
concern for their caregivers [5]. The pathogenesis of these heterogeneous groups of non‑
cognitive symptoms is multifactorial, involving biological, psychological and social fac‑
tors [6]. BPSD include mood disorders, aggression, psychotic symptoms and behavioral
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problems [7]. The literature has shown differences in the prevalence rates of the most com‑
mon BPSD by type of dementia and high heterogeneity of the reports [8]; for instance, two
studies, including a meta‑analysis, documented depression and apathy as the most com‑
mon BPSD inADpatients [9,10]; meanwhile, a longitudinal study showed a high incidence
of depression, anxiety, apathy and sleep disturbance in Mexican patients with AD [11].

Sleep disturbance is a common symptom in neurodegenerative diseases such as
AD [12] and is one of the BPSD that alters the quality of life of patients and caregivers
the most [13]. In AD, circadian cycle alteration has been found [14], including insomnia,
increased total sleep time, nocturnal awakening and daytime sleepiness; these, in turn, are
associated with a more accelerated progression of cognitive impairment [15,16] and also
with an exacerbation of depression and altered dietary intake [17]. Sleep and circadian
rhythms are intrinsically linked with several sleep traits (timing and duration), influenced
by both sleep homeostasis and the circadian phase.

One of the most important processes occurring during the sleep phase is the cleaning
of waste products by the glymphatic system, which, in turn, has been related to the patho‑
genesis of AD through amyloid‑β (Aβ) deposition during nights [18]. On the other hand,
sleep cycle abnormalities and behavioral and psychological symptoms in AD may influ‑
ence the function of the glymphatic system. Orexins could support the proper functioning
of the glymphatic system, as they have been seen to increase the removal of metabolic
byproducts from the brain [19]. Additionally, alterations of the circadian cycle, a relevant
feature of AD, have also been associatedwith changes in the glymphatic system [20]. Thus,
taken together, the BPSD symptoms in AD and the circadian/orexin genes are an interest‑
ing scenario for research.

Genetic variants in several circadian genes have been associated with diurnal prefer‑
ence and other sleep measurements [21]. As explained below, there are currently several
neurobiological proposals to understand the association between sleep disturbance and
BPSD of AD.

The APOE gene has three main alleles, ε2, ε3 and ε4, which encode for their cor‑
responding isoforms of apolipoprotein E, ApoE2, ApoE3 and ApoE4, respectively. The
main isoform, ApoE3, and the minor isoform, ApoE4, have a strong affinity to the low‑
density lipoprotein receptor (LDLR) and have been associatedwith a higher risk of AD [22].
APOE_ε4 has also been considered a risk factor for BPSD in AD [23]; for instance, Mou et al.
(2015) found that the proportion ofAPOE_ε4 carrierswith BPSDwasmuch higher than that
of non‑APOE_ε4 carriers in a group of AD patients; their findings suggested thatAPOE_ε4
may also be a risk factor for neuropsychiatric symptoms in this disease [24]. Moreover, a
recent study demonstrated a synergistic effect of BPSD (depression, apathy, anxiety, agi‑
tation, appetite or irritability) with APOE_ε4 status on conversion to dementia in a large
sample of patients with mild cognitive impairment [23]. However, there are no reports
that have studied interactions between APOE status and circadian genetic variants in AD‑
BPSD.

Circadian gene dysregulation is one of the proposals that has been associated with
neuropsychiatric pathologies and BPSD in AD [25]. Physiological rhythmic regulation is
partly exerted by the CLOCK genes (circadian locomotor output cycles kaput), including
the PERIOD genes (e.g., PER2 and PER3). Variants of these genes have been associated
with sleep regulation and cognition [21,26], in addition to adult psychiatric pathologies
such as anxiety [27], major depressive disorder [28] and depression [29]. These genes have
also been related to BPSD in different types of dementia, including AD; however, further
studies are needed to determine their clinical utility in dementia [30].

Perturbations in theCLOCK gene, including genetic variants, are associatedwith com‑
mon psychiatric illnesses, as well as with circadian disturbances and comorbidities. For
instance, a longer circadian period has been found in patients with bipolar disorder com‑
pared to controls [31], and the presence of the PER2_rs2304672 variant has been associated
with a higher risk for bipolar disorder [32].
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A variable number of tandem repeats (VNTR) in the coding region of PER3
(rs57875989) may present four or five repeats of eighteen amino acids in the corresponding
protein. The PER3_5/5 homozygous genotype has shown a protective effect for bipolar dis‑
order compared to the 4/4 genotype [32], and the latter has demonstrated a predisposition
to higher levels of anxiety [27]. Moreover, the PER3_5/5 genotype has been associatedwith
the presence of cognitive decline and altered brain integrity in terms of structural integrity
and functionality in older adults [26]. In contrast, another study found no association be‑
tween PER3 genetic variants and depression in older adults [33].

Another proposal to explain BPSD in AD is related to sleep disturbance and dysreg‑
ulation of the orexin (OX) or hypocretin neuropeptide precursor (HCRT) system [34,35].
Davies et al. [36] hypothesized that hippocampal upregulation of neuropeptides, includ‑
ing orexins and their receptors (OXR), could be involved in the AD pathophysiology, since
the patients have increased nocturnal activity, excessive daytime sleepiness and weight
loss. There are scarce studies of the association of circadian genes in AD, and the majority
of them included Asiatic or Caucasian patients [37–41]. Only one previous study was con‑
ducted in a Latin American population with AD, and the authors did not find associations
with PER2, PER3, CLOCK and OX2R (also known as HCRTR2) genetic variants [33].

The orexin system has also been involved in the presence of BPSD in patients with
AD. It has been documented that AD patients showing more BPSD with higher scores for
the Neuropsychiatric Inventory (NPI) correlate with lower scores in the Mini‑Mental State
Examination (MMSE) screening test, together with higher levels of orexins and TAU in
cerebrospinal fluid (CSF), a more altered sleep structure and an increased likelihood of
nocturnal awakening compared to AD patients not affected by BPSD [42,43].

Taken together, these findings highlight that APOE, circadian genes and the orexin
system may influence sleep deterioration and the occurrence of BPSD in AD. Herein, we
aimed to determine the association between genetic variants of APOE, PER2, PER3 and
OX2Rwith BPSD in patients with AD and paired cognitively healthy controls.

2. Materials and Methods
2.1. Subjects

All procedures were carried out in accordance with the declaration of Helsinki. Writ‑
ten informed consent was obtained from all control individuals and primary caregivers on
behalf of AD patients before they participated in the study. The protocol was approved
by the Research and Ethics Committees of the Instituto Nacional de Neurología y Neuro‑
cirugía (project identification code INNN_11/20, date of approval May 2021).

Inclusion and Exclusion Criteria
We included 62 non‑relatedMestizoMexican (MM) subjects (with four Mexican‑born

grandparents and a maximum of one Spanish grandparent), equal or over 60 years of age,
with no history of neurological or psychiatric disease and with a minimum of six years
of schooling. The patients’ group consisted of 31 subjects with a clinical diagnosis of AD
who were accompanied by primary caregivers. Other types of dementia were excluded.
The control group consisted of 31 unrelated, cognitively healthy subjects. Additionally,
100 MM control samples were included to determine the genetic structure of the popu‑
lation. Consecutive AD patients were recruited from the outpatient clinic of our insti‑
tution, and cognitively healthy controls were employees of the INNN or were compan‑
ions/partners of the patients. Individuals were excluded if they did not meet the inclusion
criteria and did not complete the evaluations.

2.2. Molecular Analysis
Genomic DNA was extracted from peripheral blood samples of all participants.

The genotyping of PER3_rs228697 and rs57875989; PER2_rs2304672; APOE_rs7412 and
rs429358; andOX2R_rs9370399 and rs2653349 variantswas performedusing real‑time PCR
on STEP ONE equipment (Thermofisher, Écublens, Switzerland). The VNTR of PER3_rs
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57875989was determined via capillary electrophoresis on an AB3130 genetic analyzer (Ap‑
plied Biosystems, Sparta, NJ, USA). Allelic and genotypic frequencies of the seven variants
were determined in 100 additional MM control samples.

2.3. Clinical and Neuropsychological Evaluations
A clinical diagnosis of Alzheimer’s disease according to DSM 5 criteria [44] and dif‑

ferential diagnoses were performed on the patients by at least two specialists in neuropsy‑
chiatry. Sociodemographic, neuropsychiatric and sleep questionnaires were applied to the
participants, as explained below.

The Barthel index of activities of daily living, the Montreal Cognitive Assessment
(MoCA)measurement, the Patient Health Questionnaire (PHQ‑9) and a sleeping disorders
questionnaire in the elderlywere used to assess the general health status of the participants;
specifically, the cognitive deficits and depression and sleep symptoms in patients and con‑
trols were determined. The 12‑itemNeuropsychiatric Inventory (NPI‑12) was used to eval‑
uate the neuropsychiatric symptoms in AD patients. These questionnaires were given to
the patient’s relative or caregiver and to the controls by the neuropsychologists in a single
session. A second session was required when requested by the caregiver/patient/control.

Barthel’s index of activities of daily living was used to evaluate the patient’s indepen‑
dence in basic activities such as bathing, eating, dressing, toileting and moving around.
It indicates the degree of independence, from total to severe dependence (scoring 0 to
100) [45]. The MoCA screening test for cognitive impairment in the elderly was chosen
to evaluate cognitive functions with a cutoff value of 26 [46]. The PHQ‑9 multipurpose
instrument was used for screening, diagnosing, monitoring and measuring the severity of
depression. It has a global score with a cutoff value of four, scoring affective and somatic
symptomatology [47]. The Cummings Neuropsychiatric Inventory (NPI‑12) obtains infor‑
mation on the presence of psychopathology in patients with AD and other dementias. Ten
behavioral and two neurovegetative areas are included: delusions, hallucinations, agita‑
tion/aggression, depression, anxiety, elation/euphoria, apathy/indifference, disinhibition,
irritability, aberrant motor behavior, sleep and nighttime behavior disorders and appetite
and eating disorders. The score for each domain was calculated as the frequency multi‑
plied by the severity. The global NPI score was calculated by adding the scores of the
12 domains together [48].

The sleeping disorders questionnaire in the elderly identifies and evaluates the fre‑
quency of sleep disturbances associated with the elderly with or without dementia. It
yields eight categories of sleep disturbance: obstructive sleep apnea (OSA), restless legs
syndrome (RLS), hypersomnia, rapid eyemovement (REM) sleep behavior disorder (RBD),
circadian rhythm sleep–wake disorders (CRSWD), periodic limb movement disorder
(PLMD) and insomnia. The higher the score, the greater the symptomatology present
(i.e., 0 = never to 4 = always) [49]. After the neuropsychological evaluation, a genealogy
and family history were constructed and blood draws were carried out by the geneticist in
the same or in the second session for all participants.

2.4. Statistical Analysis
Descriptive statistics were used for clinical, sociodemographic and BPSD variables.

Data for categorical variables are presented as numbers and frequencies and as mean val‑
ues for continuous variables. Allelic and genotypic frequencies were assessed for all the
genetic variants studied. Fisher’s exact test was used to compare the genotypic frequencies
of APOE, PER2, PER3 and OX2R variants for each BPSD variable. Allelic and genotypic
frequencies were calculated in both groups. The Hardy–Weinberg (H‑W) equilibrium and
differences in the frequencies of the variants among groups were determined using a chi‑
square test. Statistical analyses were performed using SPSS software V 22.0 (IBM, Tokyo,
Japan) and Prism for Windows ver. 5.01 (GraphPad Software, La Jolla, CA, USA). A p‑
value of <0.05 was considered statistically significant. Then, we used the nonparametric
multifactorial dimensionality reduction (MDR) algorithm to model gene–gene (epistatic)
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interactions and the predictive power of pooled variants. The MDR algorithm evaluates
all possible genetic models by reducing the dimensionality of genotype determinants and
provides the best genetic model to predict outcomes. The cross‑validation consistency
score is a measure of the degree of consistency with which the selected model is identified
as the best model among all the possibilities considered [50]. The associations were ana‑
lyzed with Student’s t‑test, Mann–Whitney U test or Fisher’s exact test depending on the
data distribution.

3. Results
3.1. Sociodemographic and Clinical Characteristics

Thirty‑one patients with AD and thirty‑one cognitively healthy controls were eval‑
uated. Medications and pathologies were classified according to those most frequently
presented. The mean age of the patients was 73.40 ± 8.76 years, and that of the controls
was 69.16 ± 8.27 years. Both groups were homogeneous and comparable in age, gender,
schooling and pathologies presented (Table 1) (p > 0.05). There were 74.2% of patients who
had late‑onset AD; the remaining had early‑onset AD, with an average of 5.5 ± 3.4 years
of evolution of the disease at the sampling time, and were under antidementia drugs for
at least six months prior to their enrollment.

Table 1. Description of sociodemographic and clinical characteristics of patients with AD (n = 31)
and controls (n = 31).

Characteristic
Patients Controls
(n = 31) (n = 31)

Frequency % Frequency %

Gender
Female 15 49 16 52
Male 16 51 15 48

Education

Elementary/Middle
school 10 32 9 29

High school 8 26 11 35
University 13 42 11 36

Comorbidities

None 12 39 10 32
Vascular 1 8 26 9 29

High cholesterol 1 3 1 3
Multiple pathologies 2 8 26 4 13

Other 2 6 7 23

Medication 4

Antidementia drugs ‑ 69 ‑ 0
Vascular ‑ 50 ‑ 36

SSRIs/Antipsychotic ‑ 66 ‑ 3
Polypharmacy 3 ‑ 53 ‑ 19
Antipsychotic and
Antidementia drugs ‑ 57 ‑ 0

Dependence
level

Total/Complete 2 6 0 0
Severe 3 10 0 0

Moderate 4 13 0 0
Low 15 48 0 0

Independent 7 23 31 100

Age (in years) ME SD ME SD
73.40 8.76 69.16 8.27



Int. J. Environ. Res. Public Health 2023, 20, 4412 6 of 14

Table 1. Cont.

Characteristic
Patients Controls
(n = 31) (n = 31)

Frequency % Frequency %

MoCA score 6.78 6.20 26.81 1.85

Age at onset of
AD (years) 67.5 8.96 NA NA

1 Including diabetes and high blood pressure; 2 presence of more than three chronic diseases; 3 more than three
drugs consumed simultaneously; 4 all patients were being treated with one or more drugs, and hence, the per‑
centages in “medication” are not exclusive and add up to more than 100%. SSRIs: selective serotonin reuptake
inhibitors; ME: mean value; SD: standard deviation; NA: not applicable.

3.2. Description of BPSD in Patients with AD and Cognitively Healthy Controls
The presence of BPSD in patients with AD for each symptom, according to NPI and

PHQ‑9 scores, is presented in percentages in Supplementary Table S1. In our sample, all
patients showed two or more BPSD symptoms. Regarding the NPI, the symptom with
the highest percentage was apathy (84%), followed by anxiety (81%), irritability (75%) and
depression (72%); meanwhile, affective symptomatology was the most observed symptom
in the patients on the basis of PHQ‑9 scores.

Regarding sleep disturbances, evaluated with the sleeping disorders questionnaire in
the elderly, insomnia and OSA were present in all patients and controls. In the patients’
group, other symptoms observed were CRSWD (87.5%) and parasomnia (84.4%); mean‑
while, in the group of controls, hypersomnia (87.1%) and CRSWD (77.4%) occupied the
third and fourth most frequent symptoms (Supplementary Table S2).

3.3. Allelic and Genotypic Frequencies of the Genetic Variants Studied
The allelic and genotypic frequencies of the PER2, PER3,OX2R andAPOE variants an‑

alyzed were calculated (Supplementary Table S3). All the genetic variants were found to
be in H‑W equilibrium, as calculated with the chi‑square test in 100 MM controls. The
frequencies of the alternative alleles for almost all of the variants analyzed were simi‑
lar between both groups (controls/patients; p > 0.05) as follows: PER2_rs2304672 f (C) =
0.03/0.05, PER3_rs228697 f (G) = 0.05/0.11, PER3_rs57875989 f (5 repeats) = 0.18/0.19 and
OX2R_rs9370399 f (C) = 0.27/0.37 and rs2653349 f (G) = 0.97/0.94. The exception was the
APOE_ε4 allele, which showed a significant difference between both groups; f (ε4) =
0.08/0.16, p = 0.03 (Supplementary Table S3).

The observed frequencies of the genetic variants included were similar to those pre‑
viously reported in the international databases: PER2_rs2304672, f (G) = 0.94, f (C) = 0.06;
PER3_rs57875989, f (4 repeats) = 0.84, f (5 repeats) = 0.16; PER3_rs228697, f (G) = 0.06, f (C) =
0.94; APOE_rs7412, rs429358, f (ε3) = 0.88, f (ε4) = 0.04; OX2R_rs9370399, f (A) = 0.65, f (C) =
0.35; and OX2R_rs2653349, f (A) = 0.14, f (G) = 0.86 (dbSNP, NCBI). The detailed character‑
istics of all genetic variants included in the study are found in Table S4.

3.4. Associations between Allelic Variants with BPSD in Patients with AD based on NPI, PHQ‑9
and Sleeping Disorders Questionnaire Evaluations

BPSD in the patients’ group were evaluated with NPI, PHQ‑9 and the sleeping disor‑
ders questionnaire; then, they were analyzed for associations with the genetic variants of
PER2, PER3,OX2R andAPOE. This analysis identified the following genetic variants as as‑
sociatedwith BPSD:Anxiety symptoms showed a significant associationwith theAPOE_ε4
allele (p = 0.029) when evaluated by the NPI scale. The OX2R_rs9370399 variant was asso‑
ciated with hypersomnia (p = 0.046) and circadian rhythm disorder (p = 0.031), whereas the
PER3_rs228697 variant was associated with circadian rhythm disorder (p = 0.028) when us‑
ing the sleeping disorders questionnaire (Table 2). Regarding the evaluations of the PHQ‑9
scale, no associations were observed for total, somatic or affective depressive symptoma‑
tology (p > 0.05). The odds ratios were calculated for those statistically significant variables
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(Table 2). Only the PER3_rs228697 variant persisted and showed a high risk for CRSWD
symptoms in patients with AD (OR = 9.736).

Table 2. Associations of allelic variants and BPSD according to NPI and PHQ‑9 scale evaluations in
AD patients (n = 31).

Allelic Variants

rs9370399
(f = 0.37)

rs2653349
(f = 0.94)

rs2304672
(f = 0.05)

rs57875989
(f = 0.19)

rs228697
(f = 0.11)

rs429358
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PHQ‑9 Depression 0.369 1.00 0.913 1.000 0.956 1.000 0.195 1.000 0.108 1.000 0.195 1.000

NPI

Delusions 0.368 0.597 0.941 1.000 0.941 1.000 0.147 0.349 0.088 1.000 0.264 0.192
Hallucination 0.333 0.788 0.958 1.000 0.958 1.000 0.208 1.000 0.125 0.669 0.208 1.000
Agitation 0.357 0.784 0.952 0.588 0.928 0.545 0.190 1.000 0.142 0.164 0.190 1.000
Depression 0.369 0.778 0.954 0.573 0.954 1.000 0.159 0.305 0.113 0.662 0.204 1.000
Anxiety 0.400 0.508 0.920 0.578 0.960 0.482 0.200 1.000 0.100 1.000 0.140 0.029 *
Euphoria 0.350 1.000 0.900 0.588 0.900 0.241 0.200 1.000 0.200 0.079 0.150 0.735
Apathy 0.384 0.731 0.942 0.515 0.942 1.000 0.173 0.391 0.115 0.577 0.173 0.391

Disinhibition 0.369 1.000 0.925 1.000 0.925 0.546 0.175 0.740 0.125 0.449 0.200 1.000
Irritability 0.413 0.369 0.913 0.565 0.934 0.562 0.152 0.268 0.130 0.325 0.2174 0.714

Aberrant motor
behavior 0.361 1.000 0.944 1.000 0.916 0.258 0.111 0.101 0.115 0.689 0.194 1.000
Sleep 0.404 0.575 0.928 1.000 0.952 1.000 0.238 0.306 0.119 0.654 0.142 0.177

Appetite 0.369 0.778 0.977 0.70 0.954 1.000 0.181 0.090 1.000 0.227 0.481

Sleeping
Disorders

Questionnaire

Insomnia 0.409 0.396 0.955 0.313 0.955 1.000 0.227 0.481 0.113 0.662 0.159 0.305
OSA 0.404 0.575 0.928 1.000 0.952 1.00 0.190 1.000 0.142 0.164 0.166 0.500
RSL 0.500 0.425 0.750 0.077 0.923 1.000 0.125 1.000 0.250 0.168 0.250 0.642

Hypersomnia 0.230 0.046 * 1.000 0.132 0.961 0.567 0.230 0.528 0.192 0.074 0.153 0.746
RBD 0.500 0.661 1.000 1.000 1.000 1.000 0.166 1.000 0.166 0.472 0.333 0.328

Parasomnia 0.346 0.794 1.000 1.000 0.961 1.000 0.192 1.000 0.153 0.227 0.192 1.000
CRSWD 0.208 0.031 * 1.000 0.151 0.958 1.000 0.250 0.511 0.208 0.028 * 0.166 0.670
PLMD 0.333 1.000 1.000 1.000 1.000 1.000 0.166 1.000 0.166 0.472 0.333 0.328

Genetic association

NPI Genetic Variant p Value OR
Value CI 95%

Anxiety rs429358 0.029 0.223 0.056–0.923

Sleeping Disorders Questionnaire

Hypersomnia rs9370399 0.046 0.335 0.109–1.030

CRSWD
rs9370399 0.031 0.292 0.090–0.945

rs228697 0.028 9.736 1.060–89.398

OSA: obstructive sleep apnea; RSL: restless legs syndrome; RBD: rapid eye movement (REM) sleep behavior
disorder; CRSWD: circadian rhythm sleep–wake disorders; PLMD: periodic limb movement disorder; OR: odds
ratio; AAF: alternative allelic frequency;
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3.5. Gene–Gene Interaction Analysis by MDR
Based on MDR analysis, the best model included the allelic variants PER2_rs2304672,

PER3_rs228697 and APOE_ε4 and had a CV of 5/10. This model presented a p‑interaction
value of 0.0025. The highest interaction presented was obtained for the PER2_rs2304672
and APOE_ε4 variants with a gain information value of 6.40%, followed by the interaction
between PER3_rs228697 and APOE_ε4 allelic variants with a gain information value of
1.48% (Figure 1).

In order to carry out protein–protein interactions between the corresponding gene
products, we used the STRING tool, a protein–protein interaction network functional en‑
richment analysis [51]. A direct interaction between PER2 and PER3 was confirmed. Then,
an indirect interaction between the mentioned PERIOD proteins with APOE was medi‑
ated by SIRT1 (Figure S1). Sirtuin 1 is an enzyme that deacetylates transcription factors
that contribute to cellular regulation (reaction to stressors and longevity).
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Figure 1. Interaction entropy graph for gene–gene interactions via multifactor dimensionality reduc‑
tion (MDR) analysis. Information gain summary by main effects can be found inside the boxes. The
effects by pairs indicate interaction in red or orange lines, which can be interpreted as a synergistic or
non‑additive relationship; meanwhile, negative entropy (yellow‑green or green lines) indicates inde‑
pendence or additivity (redundancy). The best model in gene–gene interaction was PER2_rs2304672
and PER3_rs228697 with APOE_ε4. This result suggested that the interaction between the PER2‑
PER3 and APOE_ε4 genes may play an important role in the pathogenesis of BPSD in our sample of
AD patients.

3.6. Potential Synergistic Associations between APOE_ε4 Carrier Status Plus Multilocus
Genotype with BPSD in the AD Progression of Patients

In order to estimate whether the variants of the circadian genes plus the presence of
the APOE_ε4 allele were associated with faster AD progression, patients were grouped ac‑
cording to theirAPOE_ε4 carrier status (carriers vs. non‑carriers). Theywere also grouped
by amultilocus genotype. This genotypewas based on the presence of alternative alleles in
the genetic variants: rs228697, rs57875989, rs265334 and rs9370399 (i.e., alternativemultilo‑
cus genotype vs. wildtypemultilocus genotype). Then, possible associations of synergistic
genotypes (APOE_ε4 status and circadian variants) for BPSD in AD progression (depres‑
sion, sleep disorder, delusions, hallucinations and anxiety) were explored. No associations
were found.

4. Discussion
In the present study, we expanded the information about frequencies of BPSD inMex‑

ican patients with AD and their association with APOE, PER2, PER3 and OX2R gene vari‑
ants in both AD patients and cognitively healthy controls.

Our sample (patients and controls) predominantly receivedmedium and high school‑
ing, representing a higher level of schooling than the data reported at the national level.
This may be related to the fact that our institution is a third‑level health care center that
offers specialized care for patients with neurodegenerative disorders; hence, all of our AD
patients had additional chronic pathologies that were under treatment and properly man‑
aged. The most frequent chronic pathologies found in both groups were of the vascular
type, including diabetes and arterial hypertension, results which were expected according
to epidemiological data of the Mexican population [52].

Regarding BPSD inADpatients, apathywas identified as themost frequent symptom,
unlike what was previously reported in the Mexican population [11] but similar to what
was found in a meta‑analysis [10]. Anxiety ranked second, equal to what was described
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in the literature. Irritability, a symptom that has been reported at a low frequency in the
natural course of AD [10], appeared as the symptom with the third‑highest frequency and
severity. This could be due to the cognitive and functional deterioration of the patients. Pa‑
tients with depression presented higher scores on the NPI scale and in the eight categories
of the sleepdisorder questionnaire. The above datamay be associatedwith depression, one
of the most prevalent symptoms in AD [52]. The highest percentage of sleep disturbances,
present in both groups, appeared for insomnia and OSA, which are common symptoms
for the Mexican older adult population with or without dementia [53]. Symptoms such
as circadian cycle disturbance, parasomnia and hypersomnia were more prevalent in the
patient group, as expected in AD [16,54].

The genotypic and allelic frequencies of the MM sample were similar to those previ‑
ously documented in the international databases. The comparison of allelic and genotypic
frequencies between AD patients and controls confirmed the APOE_ε4 allele as the main
genetic variant risk for the development of AD (p = 0.029) (Table 2). The remaining genetic
variants did not show significant differences between the study groups. Therefore, the in‑
teractions of BPSD with gene variants were analyzed among AD patients. We found an
association between anxiety and the APOE_ε4 allele, using the NPI scale. Of note, this has
been previously correlated in animal models [5] and patients [23]. Animal studies have
suggested that the relationships between ApoE genotypes and anxiety may be mediated
by changes in neurons in the amygdala [55]. A higher frequency of the OX2R_rs9370399
variant in the patients´ group with circadian rhythm disorder and hypersomnia was ob‑
served. Interestingly, this last association has been previously proposed during a major
depressive episode of bipolar disorder, based on a genome‑wide association (GWAS) anal‑
ysis [56]. Circadian cycle disturbance is one of the most common sleep disturbances in AD
and is related to CLOCK genes; however, little is known about how they interact to change
the course of AD [57]. In our AD patients, the PER3_rs228697 variant was associated with
symptoms of circadian rhythm disorder according to the sleeping disorders questionnaire.
Circadian rhythm disorders aggravate the deposition of amyloid plaques in the brains of
AD patients. Therefore, improving the circadian rhythm of AD patients may slow down
the pathological development of neurodegeneration [58].

The gene–gene interaction analysis by MDR included PER2_rs2304672, PER3_rs
228697 and APOE_ε4 variants in the best model. There have been previous reports doc‑
umenting genetic interactions for eveningness or diurnal phenotypes among PERIOD and
other circadian genes in Korean and Brazilian populations, respectively [59,60]. There
is also evidence of an association between sleep quality and APOE_ε4 in healthy older
adults [61], with an increased risk of insomnia [62] and obstructive sleep apnea/sleep‑
disordered breathing in both adults [63,64] and children [65]. Recently, APOE_ε4 homozy‑
gosity was associated with sleep disturbance, independent of AD pathological change and
clinical functional status in individuals with and without dementia [66]. It has been hy‑
pothesized that the presence of the APOE_ε4 allele instigates entry into a feed‑forward
loop, where sleep problems increase Aβ deposition (or reduce Aβ clearance via impaired
circulation) in the brain, which then further disrupts sleep brain circuitry [61]. Recently,
it was postulated that APOE_ε4 affects sleep by mechanisms that are independent of AD
pathological change [66]. It is known that glymphatic impairment caused by sleep dis‑
turbance results in Aβ aggregation and increased risk of AD [18–20]. Therefore, future
research should focus on glymphatic dysfunction at the molecular genetic level as a poten‑
tial bridge between sleep disorders and other BPSD in AD.

This is the first time that a PER2‑PER3‑APOE_ε4 interaction model has been reported
in AD patients presentingwith BPSD. Interestingly, that same PER3 variant showed a high
risk for circadian rhythm sleep–wake disorders in the patients´ group (OR = 9.736). A pre‑
ceding report found that the APOE genotype and CLOCK_T3111C variant seem to interact
with cardiovascular risk factors in patients with cognitive impairment to influence the pro‑
gression to AD [38]. It would be relevant for future research to investigate the impact
of the APOE genotype on the circadian system and sleep–wake homeostasis and the way
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they interact in defining sleep and waking cognition in AD patients to drive the onset and
progression of this disease.

Synergistic interactions between BPSD and APOE_ε4 have been identified among pa‑
tients with mild cognitive impairment when predicting incident dementia [23]. The anal‑
ysis of APOE_ε4 carrier status plus the alternative multilocus genotype with the following
BPSD as indicators of AD progression (depression, sleep disorder, delusions, hallucina‑
tions and anxiety) did not find any association in this population of AD patients. This
could be due to the small sample sizes of our subgroups and should be explored in future
studies with larger samples. Taking into account past and present findings, the combi‑
nation of BPSD, APOE carrier status and circadian genotypes could be a useful strategy
to identify the most vulnerable patients with cognitive impairments to dementia conver‑
sion and also to apply early psychological interventions based on genetic findings in AD
patients that present with specific BPSD.

One limitation of the study was the small sample size of participants; moreover, we
did not include environmental risk factors or other relevant circadian gene variants, such as
BMAL1, PER1 and CRY1/2, which activate PERIOD transcription, and sleep disturbances
were subjectively evaluated; therefore, these results should be considered to be prelimi‑
nary and need to be confirmed in larger samples. One of the strengths of our study was
that we included AD patients who presented with BPSD, with a clinical diagnosis con‑
firmed by specialists in dementia. Patients and controls were matched by sex, age, ethnic‑
ity, level of schooling and even by concomitant health conditions. Another strength of the
present study was the use of a validated and specific scale to assess sleep disturbances in
older adults with and without dementia. Most scales to assess sleep are not focused on
the elderly, whose sleep disturbance characteristics are different from those of the adult
population.

Despite the numerous efforts to counteract this neurodegenerative disorder, no ther‑
apies have so far been proven to prevent AD onset or progression. There is an urgent need
to find more valuable biomarkers to delay/modify the progression of BPSD in AD. Cur‑
rently, orexins are being studied as a therapeutic target for the treatment of AD, consider‑
ing not only sleep disturbances but also their interactions with the Aβ and TAU proteins
(key actors in the AD pathophysiology) [54,67]. In this context, further research involving
larger sample sizes, including a group of AD patients without BPSD, and exploring other
circadian genes will provide more information on possible associations and interactions
between these genes and particular mechanisms of BPSD in AD.

5. Conclusions
The PER3_rs228697 variant showed a nine‑fold increased risk for CRSWD inMexican

ADpatients, and this riskmay be even higher in those patientswho also carry theAPOE_ε4
allele due to a potential PERIOD–APOE interaction.
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variants included in the study; Figure S1: Protein‑protein interactions of PERIOD 2 and 3with APOE.
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