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Abstract: Subway operation safety management has become increasingly important due to the severe
consequences of accidents and interruptions. As the causative factors and accidents exhibit a complex
and dynamic interrelationship, the proposed subway operation accident causation network (SOACN)
could represent the actual scenario in a better way. This study used the SOACN to explore subway
operation safety risks and provide suggestions for promoting safety management. The SOACN
model was built under 13 accident types, 29 causations and their 84 relationships based on the
literature review, grounded theory and association rule analysis, respectively. Based on the network
theory, topological features were obtained to showcase different roles of an accident or causation in
the SOACN, including degree distribution, betweenness centrality, clustering coefficient, network
diameter, and average path length. The SOACN exhibits both small-world network and scale-free
features, implying that propagation in the SOACN is fast. Vulnerability evaluation was conducted
under network efficiency, and its results indicated that safety management should focus more on
fire accident and passenger falling off the rail. This study is beneficial for capturing the complex
accident safety-risk–causation relationship in subway operations. It offers suggestions regarding
safety-related decision optimization and measures for causation reduction and accident control with
high efficiency.

Keywords: subway operation; safety risk; vulnerability evaluation; network theory

1. Introduction

With continual urban sprawl, a city’s traffic flow will increase rapidly, and the problem
of urban traffic congestion will become more and more serious. Against this backdrop, the
subway has quickly developed due to its advantages of high efficiency and punctuality,
large transportation volume and low environmental pollution. By the end of 2021, 188 cities
in 62 countries and regions had subways which covered 18,952.3 kilometres [1]. China
has experienced the most rapid urban rail transit development among these countries.
The mileage of subway operations in China is shown in Figure 1. At present, 42 cities in
mainland China have opened subway stations, with a total length of 7209.7 kilometres. In
addition, the total number of subway passengers in China has reached 16.92448 billion
in 2021. Against the backdrop of such a large volume of passengers on subways, it is
necessary to accelerate subway construction to ease the road traffic. That said, given the
ever-increasing operation lines to satisfy public needs and the complex subway operation
network, operational risks are also increasing.
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Figure 1. Length of subway lines in China from 2012 to 2021 (Data source: China Urban Rail Transit 
Association). 
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nal environment, accidents often occur during operations, and the vulnerability of safety 
risk management in subway operations is increasingly prominent. According to statistics, 
1911 subway accidents occurred in 35 cities in mainland China during the 12 years from 
2007 to 2018 [2]. Because of the rapid development of subway construction and the high 
frequency of subway accidents during the operation stage, it is high time to enhance safety 
management in subway operations. Learning from past accidents is the best approach [3]. 
Accident analysis has been widely used to improve safety performance in various indus-
tries, such as the transport industry [4–6], chemical engineering [7] and construction en-
gineering [8]. 

Many investigations concluded that there might be many precursors or risks without 
harm and loss before subway operation accidents occur. Based on the general process of 
accident occurrence and development, various causations frequently happen in the pro-
cess of subway operation and lead to safety accidents directly or indirectly. According to 
the theory of track-cross of casualty accidents, accidents are caused by the unsafe status 
of matters and people’s dangerous behaviours. Aside from accidents, relevant studies 
should focus on the precursor and risk factors, i.e., conditions, events and sequences that 
precede and cause an accident. Accident precursor and risk analysis may explore and ob-
tain critical information concerning failure mechanisms and reduce the probability of an 
accident by reducing corresponding precursors [9,10].  

Previous studies have explored subway accidents’ causations from the perspective 
of personnel, equipment, management, environment, etc. Zhang et al. constructed a 
Shanghai subway operation incident database and analyzed the accident precursors [11]. 
The results proved that precursor analysis could improve subway operation safety man-
agement. Li et al. identified subway operation hazards and analyzed their relationships 
[12]. However, these studies have not analyzed the correlation between accidents and haz-
ards. Currently, the existing studies have concentrated on a specific city or a particular 
perspective, mainly focusing on the causes of accidents but ignoring the role of accidents 
in risk transmission. Accidents may happen due to other accidents. Subway accidents and 
causal factors must be analyzed simultaneously in an integrated framework. 

This study aims to identify the accidents and their causation factors, analyze the re-
lationships between them and their causative factors and control the critical factors for 
preventing safety accidents and enhancing subway safety performance. This study can 
help subway operation stakeholders to formulate more effective safety management strat-
egies and practical emergency response plans. For this purpose, an analytical framework 
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Figure 1. Length of subway lines in China from 2012 to 2021 (Data source: China Urban Rail Transit
Association).

With rapid subway development, subway operation safety has received more atten-
tion. Due to the subway system’s complexity and the increasing uncertainty of the external
environment, accidents often occur during operations, and the vulnerability of safety risk
management in subway operations is increasingly prominent. According to statistics,
1911 subway accidents occurred in 35 cities in mainland China during the 12 years from
2007 to 2018 [2]. Because of the rapid development of subway construction and the high
frequency of subway accidents during the operation stage, it is high time to enhance safety
management in subway operations. Learning from past accidents is the best approach [3].
Accident analysis has been widely used to improve safety performance in various in-
dustries, such as the transport industry [4–6], chemical engineering [7] and construction
engineering [8].

Many investigations concluded that there might be many precursors or risks without
harm and loss before subway operation accidents occur. Based on the general process of
accident occurrence and development, various causations frequently happen in the process
of subway operation and lead to safety accidents directly or indirectly. According to the
theory of track-cross of casualty accidents, accidents are caused by the unsafe status of
matters and people’s dangerous behaviours. Aside from accidents, relevant studies should
focus on the precursor and risk factors, i.e., conditions, events and sequences that precede
and cause an accident. Accident precursor and risk analysis may explore and obtain critical
information concerning failure mechanisms and reduce the probability of an accident by
reducing corresponding precursors [9,10].

Previous studies have explored subway accidents’ causations from the perspective of
personnel, equipment, management, environment, etc. Zhang et al. constructed a Shanghai
subway operation incident database and analyzed the accident precursors [11]. The results
proved that precursor analysis could improve subway operation safety management. Li
et al. identified subway operation hazards and analyzed their relationships [12]. However,
these studies have not analyzed the correlation between accidents and hazards. Currently,
the existing studies have concentrated on a specific city or a particular perspective, mainly
focusing on the causes of accidents but ignoring the role of accidents in risk transmission.
Accidents may happen due to other accidents. Subway accidents and causal factors must
be analyzed simultaneously in an integrated framework.

This study aims to identify the accidents and their causation factors, analyze the
relationships between them and their causative factors and control the critical factors for
preventing safety accidents and enhancing subway safety performance. This study can help
subway operation stakeholders to formulate more effective safety management strategies
and practical emergency response plans. For this purpose, an analytical framework is put
forward. Then, subway operation accidents are collected, and causative factors are iden-
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tified through grounded theory. Next, relationships are determined based on association
rule analysis. Subsequently, the network model is established and analyzed scientifically.
According to the findings and discussions, recommendations are proposed to promote the
related research. This study deepens the understanding of subway operation accidents and
provides valuable suggestions for subway operations in the long run.

2. Literature Review

The subway is a typical complex infrastructure system with many subsystems. Many
of the previous studies have identified subway operation safety risks. Risk identification
includes comprehensiveness and systematisms and is mainly carried out by management,
equipment and facility, personnel and environment [12]. It should be noted that risk
identification must be combined with the characteristics of the subway operation process
and characteristics [11]. Kyriakidis et al. analyzed precursors, top events, injuries and
deaths and their interrelationships with incidents and accidents in global subways via
the maturity model [13]. The results suggested that effective measures could be taken to
avoid accidents, according to the analysis of the precursors of the subway system. With
the deepening of the research, some new perspectives and methods have been applied.
Deng et al. identified critical and vulnerable functional modules in subway equipment and
discovered the most dangerous failure mode [14]. Zhang et al. identified and analyzed
four fire scenarios in a subway station located in the Wuhan Metro System in China [15].
Forero-Ortiz and Martinez-Gomariz summarised the potential hazards and identified a
knowledge map about the impact of water on the subway network [16].

Given the diverse, dynamic and complex features of the safety risks in subway op-
eration, many risk analysis and evaluation studies have been carried out based on risk
identification. These evaluation methods are mainly divided into qualitative evaluation
and quantitative evaluation. Wang et al. employed the grey incidence method to evaluate
the hazards of subway dynamic operating systems and conduct a quantitative analysis
of operational risks [17]. Fire occupies the highest percentage of frequency and does
tremendous damage to subway operations. Roshan evaluated the fire risk of the Tehran
metro and estimated its economic loss based on event tree analysis [18]. Avci and Ozbulut
presented the threat and vulnerability risk assessment (TVRA) procedure and provided
mitigation strategies [19]. As flooding often cause severe damage to the subway, Lyu
et al. proposed a perspective method for flood assessment of the subway system [20].
As emergency evacuation in disaster is of great significance to reduce losses, Chen et al.
developed a four-dimension parameter system to assess evacuation performance in the
subway station [21]. These evaluations deepen the understanding of the safety risks of
subway operations. Risk evaluation can provide a basis for effectively avoiding, preventing
and controlling the safety risks that may arise in the process of subway operations [22].

Risk management has played a central role in the safe management of subway op-
erations over the years. Since the exposure of staff and passengers to hazards cannot be
avoided entirely, risks cannot be eliminated but can be controlled at acceptable levels.
Many scholars have studied the safety management of subway operations from different
perspectives with proper methods. Xiahou et al. explored the impact of design for safety on
subway lifecycle safety management [23]. Di Graziano et al. introduced a risk management
methodology which can analyze the causes and consequences and assess the influence
factors of subway safety [24]. Kim et al. explored the effects of the built environment in
subway stations on pedestrian injuries [25]. In addition, the development of information
technology provides a powerful tool for subway safety management, such as the internet
of things, the building information model and big data. Kaewunruen et al. introduced
a digital twin to evaluate and manage a subway station in Hefei City [26]. Tang et al.
used a building information model to reduce the emergency evacuation risk in subway
operations [27]. More sophisticated safety management methodologies and tools are crucial
in improving the scientific level of management and decision-making.
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The existing studies mainly focus on cause analysis, safety risk identification, risk
assessment and management. These studies have provided a valuable reference for improv-
ing safety in subway operations. However, as causative factors and accidents do not exist
in isolation, and further study should be undertaken to explore intra-relationships between
accidents, intra-relationships between causative factors and interrelationships between
accidents and causative factors in the subway operation process. The relationship between
various factors exhibits complexity and dynamics, and the proposed SOACN better repre-
sents actual scenarios. Exploring the risk transmission process from a complex network
perspective is closer to reality and thus worth further study. Furthermore, causative factors
and accidents should be integrated into risk chains or network models. The grounded
theory is applicable to determine the risk factors, and associate rule analysis is suitable for
obtaining the relationships. The network model can be established and analyzed based
on network theory. These three methods are suitable for research work in combination.
Therefore, this study proposes an integrated analytical framework to identify and analyze
three relationships between accidents and causations based on the Apriori algorithm and
network theory.

3. Research Method
3.1. The Analytical Framework

Based on this literature review, the leading research status and trends of subway safety
management are displayed, and the framework of this research is shown in Figure 2. The
overall framework of this research is mainly divided into five steps. The first step is to
classify subway accidents during operation into 13 types. The second step is to obtain the
causative factors through reviewing the accident cases and expert experience. The third
step is to apply the association rule Apriori algorithm for mining potential associations
between causative factors and accidents. The fourth step is to employ complex network
theory to build the subway operation accident causation network (SOACN). The fifth
step is to analyze the topological features and vulnerability of SOACN. Finally, this paper
summarises the research results and suggests promoting subway operation safety.

The application of grounded theory in this study can be used to extract causal factors
from the collected data and carry out specific classifications. The saturation test ensures the
integrity of the constructed causal factors. In general, lacking basic data usually impedes
the smooth implementation of network model analysis. Data mining is the task of finding
useful information in large datasets. It is believed that the reasonable choice is to use
data mining to discover connotative and unknown knowledge [28]. The advantage of
employing association rule analysis is its ability to identify association rules for exploring
potential relationships. It is an essential link in the field of safety risk management to dig
out the possible correlation between accident causes and analyze the characteristics of risk
transmission in subway operations.

Nevertheless, it is worth noting that data mining requires raw data or information [29].
Based on reliable data acquisition and processing methods, complex network theory has
been recognized as the most appropriate approach to explore the behaviours of dynamic
processes occurring on networks. The advantages of network analysis include two aspects.
First, this method can build a network model consisting of different causative factors,
accidents, and interactions. Second, the risk transmission path can be visualized, and
the network topology and dynamic characteristics can be quantitatively calculated and
analyzed in-depth.
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3.2. Grounded Theory

Grounded theory is a qualitative and inductive method in social science, which was
first put forward by Glaser and Strauss [30]. It is usually used to establish a theory based
on data collection and analysis [31]. Grounded theory emphasizes the generation of a
pragmatic theory grounded in the data of experience and text, which has resulted in a
profound and enduring impact on qualitative research. Its problem-solving approaches
are prerequisites for advanced study in many subject areas. Grounded theory has been
widely accepted and applied in a variety of research areas since it was proposed, such as
information systems [32], construction management [33,34], and the banking industry [35].
Exploring safety knowledge in subway operation risk management using grounded theory
could be a suitable approach.

The primary process of implementing grounded theory is shown in Figure 3. The
research data should be collected first. Secondly, open coding, axial coding, selective
coding and theoretical saturation tests are carried out to analyze sequences. In this step,
coding refers to the continuous comparison between concepts and events to facilitate the
conceptualization of data. Theoretical saturation refers to saturated data and information
extracted from the sample. Once the saturation test is completed and verified, the theory
will not be affected by the new sample.
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3.3. Association Rule Analysis

Association rules can be used to mine the relationship between data item sets by
calculating the support and confidence of data item sets. The association rule is an essential
data mining technology that can explore the potential association and mutual relationship
between data item sets [36]. It has been widely recognized and applied in a variety of
research areas since it was proposed, including web data analysis [37], recommender
systems [38], and disease diagnosis [39].

In this field, the Apriori algorithm is the most classic, and some algorithms are devel-
oped based on its improvement [40]. The core idea of the Apriori algorithm is to screen
all the association rules that satisfy the support and confidence thresholds. It retrieves fre-
quent items through multiple iterative operations, and all frequent items can be calculated
through k iterations. Given the collected subway operation accidents, it can obtain valuable
strong association rules in accident information.

3.4. Network Modelling and Analysis

Complex network theory is a powerful approach to exploring complex systems, such
as supply chains [41], decentralized energy systems [42], urban traffic [43,44], and nuclear
reactors [45]. The two essential elements in the network model include vertexes and edges
that can be abstracted from the research object. The topological properties mainly include
degree distribution, betweenness centrality, clustering coefficients, network diameter and
average path length, small-world properties and scale-free properties. Vulnerability is a
global system characteristic that expresses the magnitude of severe consequences following
a specific hazardous event [46]. In a network, this can be reflected by network efficiency.
The network efficiency E is obtained by Equation (1).

E =
1

n(n− 1)∑
i 6=j

1
dij

(1)

where n is the number of vertexes in the network, and dij is the distance between two vertexes.
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4. Analysis and Results
4.1. Data Collection

To collect data on subway operation accidents, terms such as “subway/metro/
underground”, “operation” and “accident/incident” were employed to search for acci-
dent cases on the internet, including the Chinese National Knowledge Infrastructure
(CNKI), Google Scholar and various media websites. A greater quantity of documents,
reports and webpages were retrieved and scrutinized. In the meantime, several per-
tinent texts were chosen as sources of information. Finally, a total of 683 subway
operation accident cases were initially collected in this study. After screening the cases
that had unclear accident contents and causes, a database of 608 accident cases was
finally formed.

By referring to the “Standard of the operation safety assessment for existing metro,
GB/T 50438-2007” and the classification of the types of subway operation accidents in the
relevant literature [11], this study classified 13 types of subway operation accidents. It
includes seven train door/screen door clamping accidents, 37 fire accidents, 23 explosion
accidents, 37 poisoning and suffocation accidents, 29 passenger-falling-onto-rails accidents,
10 passenger-falling injury accidents, three stampede accidents, 10 train collision accidents,
17 train rear-end accidents, 17 train derailment accidents, 21 train-hit-people accidents,
10 station/line flooding accidents and 387 operation delay accidents (this type of accident
refers to an accident causing operation delay in addition to other accident types listed).
Using A as the code of the accident type, this study sets the codes of the 13 accident types
as A1 to A13 in sequence. The codes corresponding to specific accident types are shown in
Table 1.

Table 1. Accident type and corresponding code.

Accident Type Code

Operation delay accident A1
Fire accident A2
Explosion accident A3
Passenger falling onto rails A4
Train hit people accident A5
Train collision accident A6
Train rear-end accident A7
Train derailment accident A8
Train door/screen door clamping accident A9
Poisoning and suffocation accident A10
Stampede accident A11
Passenger-falling injury A12
Station/line flood accident A13

4.2. Construction of Risk Factor Index System

Grounded theory is employed to find out the core concepts of the collected data and
build relevant social theories through the correlation between concepts to build substantive
theories from the bottom up. This study randomly selected 4/5 (487) accident cases in
the collected subway operation accident cases for grounded coding. The remaining 1/5
(121) accident cases were used to verify whether the grounded coding reached saturation
to obtain the causative factor system of subway operation accidents. To avoid the influence
of subjectivity, this study combines personal coding with expert experience to improve the
rationality and accuracy of coding results. According to the open coding of 487 subway
operation accidents, 29 causative factor index subcategories are obtained. The specific
process is illustrated in Table 2.
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Table 2. Examples of open coding of subway operation accidents’ risk factors.

Accident Case Description Free Vertex Categorization

At about 10:00 on 18 February 2003, a passenger in the Joongang
subway station in Daegu City, South Korea, sprinkled the flammable
material in the plastic can on the seat, set it on fire and ran out of the
station, leading to the power failure of the station and the fire ignited
the train on the target platform, resulting in 198 deaths and 147 injuries
on the two trains.

A passenger sprinkled the
flammable material in the
plastic can on the seat, set
it on fire and ran out of the
station

Arson, passengers
carrying flammable
explosives and other
prohibited items

At 9:36 on 5 July 2011, the escalator at Exit A of Zoo Station, Line 4 of
the Beijing Subway, had a sliding failure. The ascending escalator
suddenly lost control and went downward, causing dozens of subway
passengers on the escalator to fall from a height. The accident killed a
13-year-old boy, injured three others seriously and 27 others with a
slight injury. The direct cause of the accident happened due to the
damage to the fixed parts of the elevator and the displacement of the
escalator drive main engine, causing the drive chain to fall off and the
escalator to slide down. The Beijing Municipal Bureau of Quality
Supervision announced the preliminary investigation results.

The fixed parts of the
elevator are damaged, and
the escalator drive main
engine is displaced,
causing the drive chain to
fall off and the escalator to
slide down

Escalator failure

To explore the relationships between subcategories of accident causations, this study
finally divides these subcategories into four categories: human factor, mechanical factor,
environmental factor, and management factor. The results of spindle coding are listed in
Table 3.

Table 3. Spindle coding of accident risk factors.

Types of Risk Factors Risk Factors and Their Codes

Human factor (H)

Staff operation error (H1)
Driver’s illegal operation (H2)
Passengers forcibly get on and off the train (H3)
Passengers carrying flammable and explosive and other prohibited items (H4)
Arson (H5)
Passengers fight and dispute (H6)
Terrorist attack (H7)
Passenger attempted suicide (H8)
Passenger congestion (H9)
Improper cigarette butts disposal/smoking (H10)
Speeding (H11)

Mechanical factor (ME)

Improper operation and maintenance of equipment and facilities (ME1)
Flammables catch fire in stations and trains (ME2)
Electrical equipment failure (ME3)
Signal failure (ME4)
Escalator failure (ME5)
Vehicle failure (ME6)
Line equipment failure (ME7)
Train door/screen door failure (ME8)
Catenary failure (ME9)
Cable short circuit (ME10)
Power failure/power supply interruption/power supply device failure (ME11)
Turnout failure (ME12)

Environmental factor (E)
Extreme weather (E1)
Foreign body invasion limit (E2)
Construction disturbance near the line (E3)

Management factor (M)
Imperfect safety management system (M1)
Inadequate safety training (M2)
Management negligence (M3)
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Due to the limitations of case-data collection, a theoretical saturation test is needed.
The reserved 1/5 (121) accident cases were recoded in this study. The results show that
the subcategories and main categories of the spindle coding did not change, and the main
categories did not generate new causative factors in the theoretical testing. Therefore, the
spindle coding results were determined as the causative factor system of subway operation
safety accidents.

4.3. Correlation Analysis

This study analyzed the relationships between various accidents and causative factors
and explored the potential laws for reducing subway operation safety accidents. The
Apriori algorithm was used to mine association rules. Among the 608 accident cases,
operation delay accounted for about 72% of total accident cases, while stampede accidents
accounted for only 0.5%. Owing to the significant difference in the number of cases of
different accident types, the accident type with the smallest proportion is used as the
base value to ensure that the obtained correlation is more comprehensive. This study set
the frequent item with accidents and causes accounting as 20%, and the rule support is
50%. The accident type with the minimum proportion accounts for 0.5% of total accidents.
Furthermore, the minimum support of the rule is 0.1%, and the minimum confidence is
0.5%. After analysis by SPSS software, 82 strong association rules are obtained, as shown
in Table 4.

Table 4. Strong association rules between accidents and causations.

Serial
Number Consequent Antecedent Serial

Number Consequent Antecedent Serial
Number Consequent Antecedent

1 A1 ME4 29 A2 H10 57 A10 H7
2 A1 ME6 30 ME11 ME1 58 A2 H7
3 A1 ME8 31 ME12 ME1 59 ME9 E1
4 ME1 M3 32 A7 ME3 60 ME3 H1
5 A1 ME3 33 A6 ME3 61 A7 H11
6 A1 ME7 34 ME11 E1 62 A8 E2
7 A1 ME11 35 A13 E3 63 A8 H11
8 ME6 ME1 36 A2 ME2 64 H5 H4
9 ME1 M2 37 A4 H6 65 A12 A11

10 A3 H7 38 A7 ME4 66 A11 H9
11 A5 A4 39 A6 ME4 67 A8 ME4
12 ME8 ME1 40 A2 ME6 68 A7 ME6
13 A4 H8 41 A8 ME3 69 A6 ME6
14 ME7 ME1 42 A9 ME8 70 ME5 ME1
15 A2 ME3 43 H4 M3 71 ME4 ME11
16 M3 M1 44 ME11 A4 72 ME4 E1
17 M2 M1 45 A2 A8 73 A3 H8
18 A2 ME10 46 A8 H2 74 ME4 H2
19 H2 M2 47 A4 A9 75 A6 H2
20 A7 H2 48 ME11 E2 76 A11 ME5
21 A12 ME5 49 A4 H3 77 ME4 H1
22 A13 E1 50 ME8 H3 78 A13 H1
23 A1 ME12 51 A2 H5 79 A6 H11
24 A8 ME6 52 A5 ME4 80 A1 E3
25 A10 A2 53 ME4 ME1 81 ME11 E3
26 H1 M2 54 ME9 ME1 82 A9 H9
27 H11 H2 55 ME3 ME1
28 A1 ME9 56 A3 ME3

4.4. Network Modelling

Pajek software was selected to visualize the network, as shown in Figure 4. The
13 accident types (Table 1), 29 causative factors (Table 3) and 82 relationships between
accidents and causative factors were used to build the SOACN model. The specific accidents
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and causation factors were regarded as vertexes of the network, and the edge of the network
represented the relationships between accidents and causative factors. Therefore, the
SOACN included 42 vertexes and 82 directed edges.
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4.5. Topological Features

Topological features can be used to do statistical analysis of the association relation-
ships between nodes from both local and global perspectives. It helps to understand the
SOACN in depth, especially in the exploration of the critical nodes and paths in the net-
work. In this study, the degree distribution, betweenness centrality, clustering coefficient,
network diameter, average path length, small-world property and scale-free property have
been analyzed as follows.

4.5.1. Degree Distribution

In the SOACN, the input degree refers to the total number of adjacent superior vertexes
that can transmit the safety risk to this vertex. The output degree refers to the total number of
adjacent subordinate vertexes to which that vertex can transmit the risk. The total degree is
the sum of the output degree and the input degree. The degree distribution of all vertexes in
SOACN is shown in Figure 5. The degree of most vertexes in the network is between 1 and 11.

In contrast, the degree of improper operation and maintenance of equipment and
facilities (ME1), signal failure (ME4), operation delay accidents (A1) and fire accidents (A2)
are significantly higher, at 11, 10, 9 and 9 respectively. The input degree of operation delay
accidents (A1) and fire accidents (A2) are significantly larger than that of other vertexes.
The output degree of improper operation and maintenance of equipment and facilities
(ME1) is significantly larger than that of other vertexes. The higher the degree of vertexes,
the more likely the risks represented by these vertexes will occur together with other risks.
Therefore, strengthening the control of these vertexes can better reduce safety risks.

Table 5 shows the average degrees of various types of vertex sets in SOACN. The
causation vertex set had a lower average degree than the accident vertex set, which signifies
that causation vertexes have fewer neighbour vertexes than accident vertexes. The average
input degree of the accident vertex set is much larger than the average output degree of
the accident vertex set. It is more significant than the average input degree of the accident
vertex set. The average output degree of the causation vertex set is much larger than
the average input degree of the causation vertex set. It is larger than the average output
degree of the accident vertex set. It denotes that causation vertexes are more critical in
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amplifying the cascading effects. In reality, accidents are paid more attention because of the
serious consequences of economic losses and casualties. However, subway operation safety
managers must transform conventional attention and focus more on controlling accidents
by reducing their connections with various causation vertexes in the SOACN. In addition,
the mechanical factor has the highest average degree, which indicates that the mechanical
factor plays a more significant role in the cause of subway operation accidents.
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Table 5. The average degrees of various types of vertex sets.

Vertex Set Average Input
Degree

Average Output
Degree Average Degree

Accident 4.08 0.46 4.54
Causation 1 2.62 3.62
Causation 1:
Human factor 0.45 2.18 2.64

Causation 2:
Mechanical factor 1.83 3.00 4.83

Causation 3:
Environmental factor 0.00 3.00 3.00

Causation 4:
Management factor 0.67 2.33 3.00

4.5.2. Betweenness Centrality

Vertex betweenness is used to describe the extent to which a vertex plays an inter-
mediary role in the interaction between all possible pairs of vertexes in a network [47].
Previous research has studied the vertex betweenness in occupational French and English
tweets [48], construction safety videos on YouTube [49] and Twitter knowledge-sharing
networks [50]. Yet, none of these threw light on subway accidents. This study showed that
the average betweenness of the network is 0.0366, and the betweenness of each vertex is
illustrated in Figure 6. The betweenness of most vertexes is less than 0.02.
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Figure 6. Values of vertex betweenness (see Tables 1 and 3 for the meanings of abbreviations).

In contrast, the betweenness of signal failure (ME4), power failure/power supply inter-
ruption/power supply device failure (ME11), passenger falling off rails (A4) and improper
operation and maintenance of equipment and facilities (ME1) are significantly higher than
that of other vertexes. It is not difficult to find that vertexes with large betweenness are
mostly mechanical factors, so daily maintenance of equipment should be strengthened
to prevent the propagation of risk chains. The vertexes with high betweenness facilitate
the transmission efficiency of safety risks higher. Therefore, effectively controlling these
vertexes and reducing the possibility of their occurrence will significantly prevent the risk
from spreading.

As shown in Table 6, the accident vertex set gains a more considerable value of average
betweenness centrality than that of causation 1, causation 3 and causation 4, but less than
that of causation 2. This can be explained by mechanical factor vertexes appearing more in
shortest paths in the SOACN. In contrast to the human, environmental and management
factors, the mechanical factor plays a more intermediary role. This signifies that this factor
has a more significant influence under the control of the other factors over safety-risk
propagation. The big difference among different vertex sets further demonstrates that it is
reasonable to allocate security resources based on causative factor characteristics.

Table 6. The average betweenness centrality of various types of vertex sets.

Vertex Set Average Betweenness Centrality

Accident 0.0062
Causation 0.0056
Causation 1: Human factor 0.0012
Causation 2: Mechanical factor 0.0111
Causation 3: Environmental factor 0
Causation 4: Management factor 0.0057

4.5.3. Clustering Coefficient

The clustering coefficient of a vertex is defined as the ratio of the actual number of
edges to the total number of potential edges between neighbours. The clustering coefficient
of each vertex in SAVN is illustrated in Figure 7. The clustering coefficients of the four
vertexes in the network are considerably more significant than those of other vertexes in the
network, including passenger-falling injuries (A12), poisoning and suffocation accidents
(A10), speeding (H11), and driver’s illegal operation (H2). These four vertexes are more
closely related to their neighbour vertexes. When these four risks occur, they are likely to
be accompanied by correlated risks. The two vertexes with the most significant clustering
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coefficient are accident vertexes, which shows that these two types of accident vertexes
have a high degree of aggregation with the surrounding vertexes. Effectively preventing
these two types of accidents can improve safety management performance. The two
causative factors with a significant clustering coefficient are human factors, indicating that
it is essential to carry out safety education and training. Safety managers should improve
workers’ safety awareness and ability, especially for drivers.
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As shown in Table 7, the accident vertex set has a more significant value of average
clustering coefficient than that of each causation vertex set in SOACN. Compared with
causation vertexes, the neighbour vertexes of an accident vertex are more prone to connect.
It may be explained by the fact that an accident does not happen alone. On the other hand,
the discrepancy among the four types of causation vertex sets is apparent. The average
clustering coefficient of causation 4 is 0, indicating no connections between the neighbour
vertexes of causation 4.

Table 7. The average clustering coefficient of various types of vertex sets.

Vertex Set Average Clustering Coefficient

Accident 0.1178
Causation 0.0433
Causation 1: Human factor 0.0561
Causation 2: Mechanical factor 0.0324
Causation 3: Environmental factor 0.0833
Causation 4: Management factor 0

4.5.4. Network Diameter and Average Path Length

The network diameter of the SOACN is 7. The diameter path is as follows: Passenger
congestion (H9)→ Train door/screen door clamping accidents (A9)→ Passenger falling
off rails (A4)→ Power failure/power supply interruption/power supply device failure
(ME11)→ Signal failure (ME4)→ Train derailment accidents (A8)→ Fire accidents (A2)
→ Poisoning and suffocation accidents (A10). The path from passenger congestion to
poisoning and suffocation accidents has the most vertexes, indicating an indirect correlation.
It is difficult for the former to lead to the latter’s occurrence directly, but through the
transmission of risks, it may eventually lead to the latter’s occurrence. This study helps to
discover potential causal associations that are not obvious. In addition, the average path
length of the SOACN is 2.4134, implying that one risk in the network only needs two to
three steps on average to reach another risk.
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4.5.5. The Small-World Property

The average path length of the SOACN is 2.4134, and the average clustering coefficient
of the whole network is 0.0559. This study used Pajek software to randomly simulate 10
networks of the same size (the number of vertexes and edges are the same). The average
path length of these 10 random networks is 4.2299, and the average clustering coefficient
is 0.0448, as shown in Table 8. In comparison, the SOACN has a significantly smaller
average path length and higher clustering coefficient, indicating that the connections
between vertexes are relatively close overall. The relationships between vertexes in a small
network are very close. It suggests that the SOACN has small-world properties. Hence,
risk propagation in the SOACN is fast.

Table 8. Average path length and average clustering coefficient of randomly simulated networks.

Random Network Average Path Length Average Clustering
Coefficient

1 4.9511 0.0459
2 4.3855 0.0591
3 4.1373 0.0469
4 4.1952 0.0294
5 4.4699 0.0320
6 4.1520 0.0293
7 3.9870 0.0427
8 3.6356 0.0417
9 4.3435 0.0741
10 4.0420 0.0469
Average value 4.2299 0.0448

4.5.6. The Scale-Free Property

In a scale-free network, the degree value has the characteristics of a power-law function.
Figure 8 shows the cumulative degree distribution of all vertexes in the SOACN. The degree-
distribution function fits the power-law function P(k) = 2.1171*k−1.456, indicating that the
SOACN is a scale-free network. The importance of individual vertexes in a scale-free
network is relatively higher than other vertexes in the network, which means that a small
number of vertexes in the network can affect the structure and function of the network to a
greater extent. Therefore, it is necessary to focus on the crucial vertexes in the network and
strengthen safety management.
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4.6. Vulnerability Evaluation of the SOACN

Subway safety managers can choose various effective measures to reduce or eliminate
risks in operation. From the perspective of safety management, the vulnerability of the
SOACN is the focus of safety management. Implementing safety precautions in the SOACN
and decreasing its connectivity is feasible, which will mitigate safety risks. Therefore, it
is necessary to explore how the SOACN is decomposed in the condition of removing an
accident or causation vertex, in other words, if a special safety measure is implemented
to deal with a particular accident, causative factor or combination of several accidents or
causative factors. Network efficiency can reflect the size of the entire network affected when
a vertex fails. The vulnerability of the vertexes in the SOACN is judged by the efficiency
change ratio of the network after removing each vertex. This index defines the network’s
vulnerability as the following equation [14]. In Equation (2), E[G] represents the network
efficiency. Where D is a set of interferences, E[D(G,d)] signifies the extent of efficiency loss.

V(G, D) =
E[G]− E[D(G, d)]

E[G]
(2)

The original network efficiency of the SOACN is 0.0915. Figure 9 shows the change
rate of network efficiency after each vertex is deleted. The more efficiency decreases, the
higher the vulnerability increases. It can be seen from the calculation results that among
the vertexes of accident types, fire accident (A2) and passenger falling off the rail (A4)
are most vulnerable. Safety management should pay attention to preventing these two
types of accidents. Among the causation vertexes, improper operation and maintenance
of equipment and facilities (ME1), signal failure (ME4) and power failure/power supply
interruption/power supply device failure (ME11) are the top three causation vertexes.
Compared with other vertexes, they have a considerably more significant influence. All
three are machine and equipment factors. Therefore, subway operation safety management
personnel should focus on the operation and maintenance of machines and equipment in
their daily management to prevent the spread of safety risks from the source.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 17 of 22 
 

 

The original network efficiency of the SOACN is 0.0915. Figure 9 shows the change 
rate of network efficiency after each vertex is deleted. The more efficiency decreases, the 
higher the vulnerability increases. It can be seen from the calculation results that among 
the vertexes of accident types, fire accident (A2) and passenger falling off the rail (A4) are 
most vulnerable. Safety management should pay attention to preventing these two types 
of accidents. Among the causation vertexes, improper operation and maintenance of 
equipment and facilities (ME1), signal failure (ME4) and power failure/power supply in-
terruption/power supply device failure (ME11) are the top three causation vertexes. Com-
pared with other vertexes, they have a considerably more significant influence. All three 
are machine and equipment factors. Therefore, subway operation safety management per-
sonnel should focus on the operation and maintenance of machines and equipment in 
their daily management to prevent the spread of safety risks from the source. 

 
Figure 9. Vulnerability evaluation results. 

According to the research results, the topological features and vulnerability of the 
SOACN can help subway safety managers deepen their understanding of safety risks and 
their relationships. Critical causative factors that lead to accidents should be considered 
before reduction or elimination. For instance, a signal system is a core component to en-
sure the efficient and safe operation of trains. Signal failure (ME4) dramatically influences 
the regular process of the train. The signal should be used correctly and maintained effec-
tively. Enhancing the maintenance level of the equipment and facilities is critical to sub-
way operation safety [22]. To improve the maintenance of the equipment and facilities, 
the statistics and analysis of maintenance data provide reliable references to carry out pre-
ventive maintenance. 

Overall, the vertexes in the SOACN can be divided into three types from the perspec-
tive of risk transmission, including the risk-inputted vertex, risk-outputted vertex and in-
termediary vertex. The characteristics of a vertex need to be considered when making 
safety-related decisions. In addition, safety measures should target specific risks and the 
correlation between risks. As shown in Table 4, the average degree in the SOACN is about 
4. There are many correlations among safety risks in subway operations. The 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A1
A2 A3

A4
A5

A6
A7

A8

A9

A10

A11

A12

A13

H1

H2

H3
H4

H5
H6

H7H8
H9

H10H11
ME1

ME2
ME3

ME4

ME5

ME6

ME7

ME8

ME9

ME10

ME11

ME12

E1
E2

E3
M1

M2 M3

Figure 9. Vulnerability evaluation results.

According to the research results, the topological features and vulnerability of the
SOACN can help subway safety managers deepen their understanding of safety risks and
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their relationships. Critical causative factors that lead to accidents should be considered
before reduction or elimination. For instance, a signal system is a core component to ensure
the efficient and safe operation of trains. Signal failure (ME4) dramatically influences
the regular process of the train. The signal should be used correctly and maintained
effectively. Enhancing the maintenance level of the equipment and facilities is critical to
subway operation safety [22]. To improve the maintenance of the equipment and facilities,
the statistics and analysis of maintenance data provide reliable references to carry out
preventive maintenance.

Overall, the vertexes in the SOACN can be divided into three types from the perspec-
tive of risk transmission, including the risk-inputted vertex, risk-outputted vertex and
intermediary vertex. The characteristics of a vertex need to be considered when making
safety-related decisions. In addition, safety measures should target specific risks and the
correlation between risks. As shown in Table 4, the average degree in the SOACN is about 4.
There are many correlations among safety risks in subway operations. The interconnections
require the safety manager to better understand the systems and context behind risks.
Analyses that focus on risk interconnections play an essential role in risk response. It is
conducive to optimizing safety management to reduce safety risks. However, each subway
company has limited safety resources such as staff, equipment, money and material. Opti-
mizing safety-related decisions under resource constraints is a practical problem for safety
managers. Furthermore, combining risk control and correlation control simultaneously is
also essential.

5. Discussion

There are various kinds of safety risks in subway operation, and the characteristics of
different safety risks vary greatly, which brings many challenges to safety management.
In practice, security resources cannot be evenly distributed. Therefore, safety risks need
to be handled differently based on their features. The analysis of the SOACN can identify
safety-risk characteristics from multiple perspectives, which is conducive to safety-risk
recognition and the development of safety-related measures.

Topological characteristics can provide a good reference for safety management. Con-
trolling risk transmission is an essential approach to reducing safety accidents. It identifies
the critical features and any associated risks. It helps improve the scientific and rational
distribution of safety resources. Betweenness centrality (BC), input degree (ID) and their
average values (green and orange dotted lines) are illustrated in Figure 10. signal failure
(ME4), power failure/power supply interruption/power supply device failure (ME11), fire
accidents (A2), passenger falling off the rail (A4), and train derailment accidents (A8) have
high values of BC and ID. This indicates that these two causative factors and three accident
types could easily be evoked and transmitted to other risks.
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Betweenness centrality (BC), output degree (OD) and their average values (green and
orange dotted lines) are illustrated in Figure 11. Improper operation and maintenance of
equipment and facilities (ME1) and signal failure (ME4) have high values of BC and OD.
This indicates that these two causative factors could quickly induce the occurrence of other
risks. The onsite safety management personnel should give sufficient focus to these specific
safety risks. Applying these results may enhance the management level of risk sources,
significantly decreasing the probability of subway operation accidents.
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The potential contributions of this paper can be summarised as follows. Firstly, this
paper identifies the propagation path between the accidents and causative factors that lead
to subway operation risks and accidents. Mining association rules could discover the poten-
tial and indirect correlations in many accident cases and improve knowledge management.
Secondly, subway operating companies can develop a targeted management system and
strategy to control critical causative factors and eliminate risk chain reactions according
to transmission rules. Thirdly, employing targeted emerging technologies for monitoring
essential causative factors and risks, such as the internet of things, building information
modelling and big data, should be beneficial. The development of new technology and its
application in the urban subway industry provide strong support for the digitalization,
informatization and intelligent development of subway operation and make smart subway
become the hot spot and trend of the industry. Smart subway systems can be constructed
to realize the full range of real-time monitoring of personnel, machinery, materials and
environment, strengthen safety management and effectively prevent safety accidents.

6. Conclusions

Unlike the previous research that explored interconnections among various causative
factors, this study employed data mining to integrate accidents and causations in subway
operations and built the SOACN. This network model includes the causations, accidents
and interrelationships among various accident causations and accidents based on network
theory. This study is beneficial to subway safety managers for systematically optimizing
safety-related measures to reduce and eliminate safety risks in subway operations.

The topological features of the SOACN and the vulnerability of the SOACN are iden-
tified and assessed based on network theory. The degree, betweenness and clustering
coefficient of vertexes show apparent discrepancies, and there are some noticeable differ-
ences between accidents and causations. The causation vertex set had a lower average
degree than the accident vertex set, which signifies that causation vertexes have fewer
neighbour vertexes than accident vertexes. This shows that the accident was caused by a
combination of factors. The accident vertex set gains a more considerable value of average
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betweenness centrality than that of human, environmental and management factors, but
less than that of the mechanical factor. This means that the mechanical factor has a more sig-
nificant influence under the control over safety-risk propagation. The neighbour vertexes of
an accident vertex are more easily connected than causation vertexes. The fact that accidents
do not occur in isolation may explain this phenomenon. To ensure the safe and efficient
operation of the subway system, it is essential to prioritize the control of critical accidents
and causations, especially the vertexes with high values of both degree and betweenness,
such as fire accident (A2), improper operation and maintenance of equipment and facilities
(ME1), signal failure (ME4) and power failure/power supply interruption/power supply
device failure (ME11). Considering that the safety performance of the equipment may
slowly degrade over a long time and eventually lead to severe risks, these results can
positively impact early warning to strengthen the maintenance of subway equipment. The
value of average path length in the SOACN is 2.4134, indicating that one risk may transmit
to another in only two to three steps on average. Preventing the correlation between risks
should be implemented to reduce the chain reaction.

Furthermore, topological characteristics were calculated to determine that the SOACN
is not only a small-world network but also a scale-free network model. It is demonstrated
that the risk propagation in the SOACN is fast, and the SOACN is vulnerable to deliberate
attacks. The vulnerability evaluation of the SOACN implied that multiple accidents and
causations should not be equally considered due to different roles in the SOACN. Reason-
able control of key safety risks is conducive to improving the overall safety level of subway
operations. The characteristics of safety risks should be fully considered when making
safety-related decisions and formulating safety-related policies. Additionally, it is crucial to
provide employees with the necessary training to recognize and respond to safety risks to
ensure a safe environment for all passengers and personnel. Safety risks and propagation
need to be paid attention to and invested in with security resources.

There are three limitations to this study. Firstly, the weights of vertexes and edges
were not assigned when the SOACN was built owing to insufficient data. In practice, it
is troublesome to estimate the importance of different kinds of accidents and causative
factors accurately and quantitatively. In future studies, the SOACN could be improved in
terms of node weights based on a more precise understanding of subway operation safety
risks. Secondly, edge failure is not considered in the vulnerability evaluation. In this work,
vulnerability assessment believes only a single node provides apparent objects for the
safety manager. It is argued that if the safety risks are controlled, the risk of transmission
can be substantially reduced. The edge failure could be explored in a future study. Thirdly,
the probability of risk occurrence and transmission needs to be explored more deeply. It
is suggested that big data analysis based on a large number of case statistics helps study
and determine risk probability. Specific control measures for safety risks need to be further
developed. In addition, the appropriate measures for making decisions about safety in the
condition of safety resource constraints deserve further study.
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