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Abstract: It is commonly recognized that setting a reasonable carbon price can promote the healthy
development of a carbon trading market, so it is especially important to improve the accuracy of
carbon price forecasting. In this paper, we propose and evaluate a hybrid carbon price prediction
model based on so-called double shrinkage methods, which combines factor screening, dimensionality
reduction, and model prediction. In order to verify the effectiveness and superiority of the proposed
model, this paper takes data from the Guangdong carbon trading market for empirical analysis.
The sample interval is from 5 August 2013 to 25 March 2022. Based on the results of the empirical
analysis, several main findings can be summarized. First, the double shrinkage methods proposed
in this paper yield more accurate prediction results than various alternative models based on the
direct application of factor screening methods or dimensionality reduction methods, when comparing
R2, root-mean-square error (RMSE), and root absolute error (RAE). Second, LSTM-based double
shrinkage methods have superior prediction performance compared to LR-based double shrinkage
methods. Third, these findings are robust with the use of normalized data, different data frequencies,
different carbon trading markets, and different dataset divisions. This study provides new ideas for
carbon price prediction, which might have a theoretical and practical contributions to complex and
non-linear time series analysis.

Keywords: carbon price forecasting; double shrinkage methods; factor screening; dimensionality
reduction

1. Introduction

Global warming is becoming one of the major environmental issues threatening the
survival and development of human beings. As an effective mechanism to mitigate climate
change, carbon markets have received great attention from worldwide governments and
organizations. In the carbon market, carbon price forecasting is very important, which not
only helps the government to make appropriate decisions and reduce investor risks, but also
helps to improve carbon market construction. In light of this fact, numerous scholars have
studied the predictability of carbon prices. The main research methods currently used to
forecast carbon prices include traditional econometric models and machine learning models.
The former is relatively simple and straightforward, mainly including linear regression
models, vector autoregressive models (VARs) [1], autoregressive integrated moving average
models (ARIMAs) [2], generalized autoregressive conditional heteroscedasticity models
(GARCHs) [3], etc. However, these models cannot accurately capture the changes in
carbon price series due to their highly nonlinear and non-stationary nature [4]. Compared
with traditional econometric models, machine learning models have the advantage of
high self-learning ability, high generalization ability, and associative memory, making
them more suitable for fitting the non-linear relationship of a carbon price series. The
common algorithms for machine learning include the backpropagation artificial neural
network (BPANN) [5], the long short-term memory network (LSTM) [6], the extreme
learning machine (ELM) [7], the support vector machine (SVM) [8], etc. However, the
models mentioned above mainly use the information derived from the carbon price series
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to forecast the carbon price in the future. In light of this, some scholars have studied
the influence of other factors on carbon price changes when predicting carbon prices
through machine learning models. For example, Huang and He [9] further improved
forecasting accuracy by investigating the effects of structured data and unstructured data
on carbon prices.

In this paper, we improve the prediction accuracy of the carbon price by proposing
and analyzing a double shrinkage approach to extract useful information from the poten-
tial influencing factors. First, we propose to apply the least absolute shrinkage operator
(LASSO), ElasticNet shrinkage (EN), or random forest (RF) approach to select the relevant
factors that contain useful information about the carbon price. Then, we apply the prin-
cipal component analysis (PCA), sparse principal component analysis (s-PCA), or partial
least squares method (PLS) to the selected influencing factors, in order to reduce their
dimensionality and estimate latent factors of carbon prices. Finally, we use these estimated
latent factors to predict carbon prices based on either linear regression models (LRs) or
long short-term memory network models (LSTMs). In the first step, we shrink the set
of factors that influence carbon prices by removing those factors that are not related to
the change in carbon prices. In the second step, we further shrink the set of influencing
factors chosen in the first step. It is in this sense that our approach can be called “double
shrinkage”, which may be applied in the prediction of complex and non-linear time series
in asset management, investment decision, and risk assessment.

One might argue that it is not necessary to use this method because a simpler method
may have similar predictive power. However, our empirical results show that the double
shrinkage method proposed in this paper yields higher prediction performance (higher
R2, lower RMSE, and RAE) than many simpler variants of our method, including the
following alternatives: (1) an LR model or LSTM model, which utilizes the raw information
of the influencing factors; (2) an LR model or LSTM model, which includes influencing
factors selected by LASSO, EN, or RF methods; (3) an LR model or LSTM model, which
includes latent factors estimated using PCA, s-PCA, or PLS methods; and (4) an LR model
or LSTM model, which includes latent factors estimated using the double shrinkage method
discussed above. This may be due to the fact that the double shrinkage method discards
irrelevant information while retaining relevant information about the carbon price, resulting
in higher prediction accuracy.

The rest of this paper is organized as follows. Section 2 introduces the framework
of our carbon price forecasting model, as well as the theories and algorithms involved.
Section 3 describes our experimental setup, including details of the datasets and evaluation
metrics, as well as a description of all forecasting models. Section 4 discusses the results of
the empirical analysis and robustness tests. The conclusions are presented in Section 5.

2. The Proposed Model and Related Methods
2.1. Construction of the Proposed Model

The framework of the carbon prediction model based on the double shrinkage methods
is presented in Figure 1. The prediction procedures of the method are as follows:

1. Data collection and preprocessing, which is represented by green in Figure 1. We collect
and preprocess datasets related to carbon prices and their influencing factors; influencing
factors consist of technical factors, commodity factors, and financial factors.

2. Factor selection, which is represented by yellow in Figure 1. The LASSO, EN, and RF
are used to select influencing factors that may contain any useful information related
to carbon prices, respectively.

3. Dimensionality reduction, which is represented by orange in Figure 1. The PCA,
s-PCA, and PLS are used to remove irrelevant information contained within particular
selected influencing factors, respectively.

4. Final prediction, which is represented by blue in Figure 1. Based on the estimated latent
factors of carbon prices, the LR and LSTM are used to predict carbon prices, separately.
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2.2. Related Methods
2.2.1. Factor Selection Methods

In this paper, we utilize the double shrinkage methodology to construct a hybrid
carbon price forecasting model, which may improve the accuracy of carbon price prediction
by extracting useful information.

In the first step, we attempt to select a subset of influencing factors that are more
relevant to carbon prices through factor selection methods. In this paper, we apply LASSO,
ElasticNet, and random forests on the influencing factors, respectively. By removing
irrelevant factors that are not crucial, the prediction model will be enhanced.

(1) LASSO

The LASSO is a regularized technique for simultaneous estimation and variable
selection [10]. Imposing a penalty on the coefficients in the model, the LASSO shrinks the
coefficients of irrelevant variables in the regression model to zero to constitute the subset of
variables selected with non-zero coefficients.

Considering the regression of Y on Xi, the LASSO estimation is defined as:

QLASSO = argmin
{∣∣∣Y−∑n

i=1 XiBi

∣∣∣2 + λ∑n
i=1

∣∣Bj
∣∣} (1)

where λ is a nonnegative regularization parameter, determined by cross-validation [11]. The
second term is the so-called `1-norm penalty, which is crucial for variable selection. Owing
to the nature of the `1-norm penalty, the LASSO performs both continuous shrinkage and
automatic variable selection simultaneously. As λ increases, the coefficients continuously
shrink toward 0 to improve the prediction accuracy [12]. In this paper, λ is chosen among
[0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1].

The above approach adds a penalty on the absolute value of the parameters to the
least squares objective function, which ensures that many of the coefficients will be set
to zero and thus variable selection is performed. This is an attractive feature that helps
to make the results of a high-dimensional analysis interpretable. Due to this feature, the
LASSO and its many extensions are now standard tools for high-dimensional analysis.

Although the LASSO has gained a high degree of success in many situations, it usually
either includes a number of inactive predictors to reduce the estimation bias or over-shrinks
the parameters of the correct predictors to produce a model with the correct size. These
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drawbacks are partially addressed by adaptive LASSO, which extends the LASSO by
allowing different penalization parameters for different regression coefficients.

(2) EN

Considering an orthogonal design model [13], the LASSO shows a conflict between
optimal prediction and consistent variable selection due to noisy features. Hence, Zou, and
Hastie [14] proposed a new regularization technique called the elastic net (ElasticNet). The
ElasticNet is a regularized least squares regression method that has been widely used in
learning and variable selection. The ElasticNet penalty is a compromise between the LASSO
penalty and the ridge penalty; thus, it achieves both variable selection and grouping effect.
Specifically, the ElasticNet regularization linearly combines an `1 penalty term (such as the
LASSO) and an `2 penalty term (such as ridge regression). The `1 penalty term enforces
sparsity of the ElasticNet estimator, whereas the `2 penalty term ensures democracy among
groups of correlated variables; thus, the ElasticNet estimation can be defined as:

QEN = argmin


∣∣∣∣∣Y− n

∑
i=1

XiBi

∣∣∣∣∣
2

+ λ
n

∑
i =1

(
ρ
∣∣Bj
∣∣+ (1− ρ)

2

)
B2

j

 (2)

where ρ represents the ratio of two regular terms. In our experiments, we set possible ρ as
a matrix [0.01, 0.1, 0.5, 0.9, 0.99], while the selection range of λ is the same as the LASSO.

Similar to the LASSO, ElasticNet simultaneously realizes automatic variable selection
and continuous shrinkage. Moreover, the `2-norm penalty allows ElasticNet to select
groups of correlated variables, a property that is not shared by the LASSO. However,
ElasticNet is computationally more expensive than the LASSO or Ridge, as the relative
weight of the LASSO versus Ridge, ρ, has to be selected using cross-validation.

(3) RF

Random forest (RF) proposed by Breiman [15] is a combination of the random subspace
method [16] and the bagging method. As an ideal approach for feature selection, RF
outperforms the LASSO and ElasticNet in several ways. First, RF is fairly robust in the
presence of relatively high amounts of missing data [17]. Meanwhile, its computation time
is modest even for very large datasets [18].

Specifically, RF first constructs multiple samples by randomly sampling data from the
original samples using the bootstrap resampling technique. Then, decision trees are built
and combined via the random splitting technique of nodes. Finally, the prediction results
are obtained by voting.

It is worth noting that about one-third of each sample in this study is not taken. These
data are called out-of-bag (OOB) data, which can be used for internal error estimates. By
sorting the relative importance of variables calculated by OOB errors, variables can be
screened and ranked. The variable importance measure for xi can be calculated as follows:

VI
(

Xi
)
=

1
M ∑m

(
errÕOBm

i
− eerOOBm

)
(3)

where ÕOBm
i

and errÕOBm
i

are computed by randomly permuting the values of Xi in
OOBm. For a fixed number of trees, a variable with a higher importance score indicates
that the variable is significant for classification.

In the RF framework, two parameters need to be defined: the number of classification
trees (N) and the number of prediction variables used by each node segmentation (M). We
set n as [100, 300, 500, 800, and 1000] and m as [1, 3, 6, 8, 9, and 10], respectively.

RF models can achieve high prediction accuracy by non-parametric methods based
on iterative algorithms; however, this also creates the so-called “black box” problem.
This means that these models cannot interpret the causal relationship between predictors
and responses.
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After the factor selection process, only variables with useful information are retained.
These selected factors tend to potentially provide more information about the carbon prices
than others in the original set, which may be helpful for carbon price forecasting.

2.2.2. Dimensionality Reduction Methods

In the second step of our procedure, we further narrow down the set of variables
selected in the first step. Specifically, we apply the principal component analysis (PCA),
scaled PCA (sPCA), or partial least squares (PLS) for dimensionality reduction. Eventually,
we are able to estimate the potentially effective factors for carbon price forecasting.

(1) PCA

The principal component analysis (PCA) is an algorithm that transforms the columns
of redundant datasets into a new set of features called principal components. Principal
components contain fewer variables and retain as much information about the original
variable as possible.

Mathematically, the PCA model extracts diffusion indexes as linear combinations of
the predictors through the following equation:

Fi,t = λ′iF
PCA
t + εi,t (4)

where FPCA
t is a K-vector (K � N) that denotes PCA diffusion indexes extracted from

selected factors, λi is a K-dimensional parameter to be estimated, and εi,t is the idiosyncratic
noise term.

In this way, a large chunk of information across the full dataset is effectively com-
pressed into fewer feature columns, thus achieving dimensionality reduction. However,
the PCA is an unsupervised learning technique, which means that it ignores the prediction
target and may lead to unstable prediction results. In extreme cases, when factors are
strong, the PCA cannot distinguish the target-relevant and irrelevant latent factors. When
the factors are weak, the PCA may fail to extract the signals from a large amount of noise,
resulting in biased forecasts when all factors are used [19].

(2) sPCA

The principal component analysis (PCA) is widely used in data processing and dimen-
sionality reduction. However, the PCA suffers from the fact that each principal component
is a linear combination of all the original variables; thus, it is often difficult to interpret
the results. The scaled PCA (sPCA) proposed by Huang et al. [19] is a modified principal
component analysis, which assigns different weights to different predictors based on their
forecasting power. Statistically, compared with the traditional PCA method evaluated
based on the dimensionality reduction technique of unsupervised learning, the sPCA
method is a new dimension reduction technique for supervised learning, which considers
more information on statistical targets. This property allows the sPCA to overcome the
deficiencies of the PCA and obtain more significant predictions. Specifically, the sPCA
model extracts diffusion factors in two steps. In the first step, we form a panel of scaled pre-
dictors, (γ1Xi,t, · · · ,γNXN,t), where the scaled coefficient γ1 is the estimated slope obtained
by regressing the prediction target on each predictor:

yi,t = αi + γiXi,t + εt+1 (5)

In the second step, we apply the PCA to the scaled predictors to extract principal
components as sPCA factors and use them for prediction:

γiXi,t = λ′iF
sPCA
t + εi,t (6)

where FsPCA
t is a K-vector (K� N) that denotes sPCA diffusion indexes.
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Because the prediction target yt+h depends on the factors instead of the loadings,
sthe PCA-based prediction has a large chance to outperform the PCA-based prediction,
especially when all factors are used [20–24].

(3) PLS

Similar to the sPCA, partial least squares (PLS) is a supervised learning method
that uses the prediction target to discipline its dimension reduction process [25–27]. This
property allows PLS to exhibit strong forecasting power even when data are relatively
small [27–29]. Specifically, PLS extract diffusion factors in two steps as well. In the first
step, we extract the component from the set of influencing factors:

t1 = E0W1 (7)

where th is the h-th component, E0 is the normalized matrix of X, W1 and is the first column
of E0.

In the second step, we set up a regression equation for these components and the
prediction target:

F̂0 = r1t1 + r2t2 + · · ·+ rhth (8)

where F0 is the normalized matrix of y, r1 = ET
0 t1/||t1||2.

PLS make full use of all relevant information in the variables, which lead to substan-
tially superior forecasting performance in many areas and may be suitable for carbon price
forecasting. However, PLS also have the disadvantage of a complicated calculation process
and multiple iterations, which may make it difficult to interpret the regression coefficients.

3. Experimental Setup
3.1. Data
3.1.1. Carbon Prices

Since 2011, China has established eight carbon emissions trading pilots in Beijing,
Shanghai, Tianjin, Chongqing, Hubei, Guangdong, Shenzhen, and Fujian. Among them,
the carbon trading market in Guangdong had a cumulative turnover of 202.5 million tons
of quotas and a cumulative turnover of CNY 4.838 billion by the end of April 2022, both
of which ranked first in all carbon trading markets in China. Due to the importance of
the carbon trading market in Guangdong, the carbon price of Guangdong is chosen as a
detailed case for empirical analysis in this paper. Figure 2 depicts the general trend of the
carbon price in Guangdong. It can be observed that the carbon price is highly nonlinear and
volatile. In addition, the carbon trading market in Shanghai is used as the supplementary
case to fully demonstrate the superiority and robustness of the proposed model. Shanghai
is the only pilot region in China that has achieved a 100% corporate compliance clearance
rate for eight consecutive years. By the end of December 2021, Shanghai’s cumulative
trading volume of CCERs was 170.42 million tons, ranking first in China. Therefore, we can
understand the situation of China’s carbon market well by analyzing the carbon trading
markets in Guangdong and Shanghai.

We collect all the daily carbon prices of these carbon trading markets from http:
//k.tanjiaoyi.com/, accessed on 31 March 2022. The full sample period is from 5 August
2013 to 25 March 2022. The data with zero transaction volume are deleted from the sample.
The processed sample is divided into a training set (60% of the sample), a validation set
(20% of the sample), and a test set (20% of the sample). The training set is used to train the
carbon price prediction models, the validation set is used to tune hyper-parameters, and
the test set is used to evaluate the performance of all prediction models.

http://k.tanjiaoyi.com/
http://k.tanjiaoyi.com/
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3.1.2. Indicator Selection

This paper selects 71 technical indicators, 13 financial indicators, and 25 commodity
indicators to forecast carbon prices. The relevant data are collected from the Wind Infor-
mation, Energy Information Administration, Thomson DataStream, and Intercontinental
Futures Exchange.

Specifically, the 71 technical indicators are constructed based on five popular technical
rules employed by Wang et al. [30]. The details of these rules are described in Table 1.

Table 1. Description ff technical indicators.

Number Technical Rule Abbreviation Equation

1 Momentum Rule MOM St,MOM =

{
1, if Pt ≥ Pt−k
0, if Pt < Pt−k

2 Filtering Rule FR

Sbuy
t,FR ={
1, if Pt ≥

(
1 + µ

100
)
×min(Pt−1, Pt−2, · · · , Pt−k)

0, otherwise
Ssell

t,FR ={
1, if Pt ≤

(
1 + µ

100
)
×max(Pt−1, Pt−2, · · · , Pt−k)

0, otherwise
3 Moving Average Rule MA St,MA =

{
1, if MAs,t ≥ MAl,t

0, otherwise

4 Oscillator Rule OSLT
Sbuy

t,OSLT =

{
1, if RSIt ≤ 50 + µ

0, otherwise

Ssell
t,OSLT =

{
1, if RSIt ≥ 50 + µ

0, otherwise

5 Support/Resistance Rule SR

Sbuy
t,SR ={
1, if Pt ≥

(
1 + µ

100
)
×max(Pt−1, Pt−2, · · · , Pt−k)

0, otherwise
Ssell

t,SR ={
1, if Pt ≤

(
1 + µ

100
)
×min(Pt−1, Pt−2, · · · , Pt−k)

0, otherwise

In Table 1, Pt denotes the carbon price for day t, Up denotes the magnitude of the up-
ward stock price movement over k days, Down denotes the magnitude of the downward
stock price movement over k days, Up + Down denotes the total magnitude of the stock
price movement over the period, and MAj,t =

(
1
j

)
∑

j−1
I=0 PtIi(j = s, l), RSI(k) = Up

Up+Down × 100.
Following Wang etal.[30], we construct five MOM indicators, twenty FR indicators, six MA indi-
cators, twenty OSLT indicators, and twenty SR indicators, with µ = 5 and 10, k = 1, 3, 6, 9, and
12, s = 1, 3, and 6, and l = 9 and 12. Specifically, the five MOM indicators are MOMk=1,
MOMk=3, MOMk=6, MOMk=9, and MOMk=12. The twenty FR indicators are FRbuy

µ=5,k=1,
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FRbuy
µ=5,k=3, FRbuy

µ=5,k=6, FRbuy
µ=5,k=9, FRbuy

µ=5,k=12, FRbuy
µ=10,k=1, FRbuy

µ=10,k=3, FRbuy
µ=10,k=6, FRbuy

µ=10,k=9,

FRbuy
µ=10,k=12, FRsell

µ=5,k=1, FRsell
µ=5,k=3, FRsell

µ=5,k=6, FRsell
µ=5,k=9, FRsell

µ=5,k=12, FRsell
µ=10,k=1, FRsell

µ=10,k=3,

FRsell
µ=10,k=6, FRsell

µ=10,k=9, FRsell
µ=10,k=12. The six MA indicators are MAs=1,l=9, MAs=1,l=12,

MAs=3,l=9, MAs=3,l=12, MAs=6,l=9, and MAs=6,l=12. The twenty OSLT indicators are OSLTbuy
µ=5,k=1,

OSLTbuy
µ=5,k=3, OSLTbuy

µ=5,k=6, OSLTbuy
µ=5,k=9, OSLTbuy

µ=5,k=12, OSLTbuy
µ=10,k=1, OSLTbuy

µ=10,k=3,

OSLTbuy
µ=10,k=6, OSLTbuy

µ=10,k=9, OSLTbuy
µ=10,k=12, OSLTsell

µ=5,k=1, OSLTsell
µ=5,k=3, OSLTsell

µ=5,k=6,

OSLTsell
µ=5,k=9, OSLTsell

µ=5,k=12, OSLTsell
µ=10,k=1, OSLTsell

µ=10,k=3, OSLTsell
µ=10,k=6, OSLTsell

µ=10,k=9, and

OSLTsell
µ=10,k=12. The twenty SR indicators are SRbuy

µ=5,k=1, SRbuy
µ=5,k=3, SRbuy

µ=5,k=6, SRbuy
µ=5,k=9,

SRbuy
µ=5,k=12, SRbuy

µ=10,k=1, SRbuy
µ=10,k=3, SRbuy

µ=10,k=6, SRbuy
µ=10,k=9, SRbuy

µ=10,k=12, SRsell
µ=5,k=1,

SRsell
µ=5,k=3, SRsell

µ=5,k=6, SRsell
µ=5,k=9, SRsell

µ=5,k=12, SRsell
µ=10,k=1, SRsell

µ=10,k=3, SRsell
µ=10,k=6, SRsell

µ=10,k=9,
and SRsell

µ=10,k=12.
In addition, the 13 financial indicators and 25 commodity indicators are chosen from

previous literature, which shows considerable predictive power in carbon price forecast-
ing [30–35]. The details of the financial indicators and commodity indicators are described
in Tables 2 and 3, respectively.

Table 2. Description of financial indicators.

Number Financial Indicators Abbreviation Description

1 S&P 500 index SP500 -
2 Dow Jones Composite Index DJ -
3 Shanghai Composite Index SHANGHAI COMPOSITE INDEX -
4 Shenzhen Composite Index SZSE COMPONENT INDEX -
5 5-Year Bond Index Yield BOND -

6 AAA-Rated Corporate Bond Spreads COPBOND SPREAD
Daily spread between AAA-rated
corporate bonds and BAA-rated

corporate bonds

7 Treasury Rate TREASURY RATE Secondary market interest rates for
3-month Treasury bills

8 Long-term Treasury Spreads TREASURY SPREAD Daily spreads between 1-year
Treasury bills and 10-year state bonds

9 Long-term Treasury Yield LONTREASURY YIELD 10-year Treasury rate
10 Exchange Rate (US) USD/CNY -
11 China Economic Policy Uncertainty Index UNCERTAINTY -

12 WilderHill New Energy Global Innovation
Index NEX -

13 WilderHill Clean Energy Index CEI -

Table 3. Description of commodity indicators.

Number Commodity Indicators Abbreviation

1 ICE-UK natural gas continuous futures price UKGP
2 Asia gas price JKM
3 S&P GSCI gas oil index excess return GGO
4 ICE-coal Rotterdam continuous futures price GP
5 ICE-Brent crude oil continuous futures price BOP
6 S&P GSCI crude oil index excess return GCO
7 EUA price EUA
8 China Electricity Price index CEP

9 S&P GSCI non-energy commodity indexes
Including GGOL, GSIL, GALU, GCOP, GLEA, GNIC,
GZIN, GCOC, GCOF, GCOR, GCOT, GSOY, GSUG,

GWHE, GFC, GLH, AND GLC

3.2. Model Accuracy Assessment

Three common evaluation metrics are selected to evaluate the performance of the
prediction model. They are the coefficient of determination (R2), the root-mean-square
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error (RMSE), and the mean absolute error (MAE). Among them, the closer the value of
R2 is to 1, while the smaller the values of RMSE and MAE, the better the prediction model
performs. The three evaluation metrics are calculated as follows:

R2 = 1− ∑N
t =1(yt − ŷt)

2

∑N
t =1(yt − yt)

2 (9)

RMSE =

√
1
N ∑N

t =1(yt − ŷt)
2 (10)

MAE =
1
N ∑N

t =1|yt − ŷt| (11)

where yt, ŷt, and yt represent the true value, predicted value, and average value at time t,
respectively. N is the number of samples.

In addition, we use R2
OS to evaluate the out-of-sample performance of the prediction

model further [36], which is calculated as follows:

R2
OS = 1− ∑N

t =1(yt − ŷM.t)
2

∑N
t =1(yt − ŷB.t)

2 (12)

where yt is the true value of the prediction model, ŷM.t is the predicted value of the
prediction model, and ŷB.t is the benchmark prediction of the historical average model.
Finally, we construct Diebold–Mariano (DM) test statistics introduced by Diebold and
Mariano [37] for pairwise model comparisons.

3.3. The Proposed Model and Comparative Methods

We examine 18 factor-augmented models associated with the proposed double shrink-
age approach. They are referred to as LASSO-PCA-LR, EN-PCA-LR, RF-PCA-LR, LASSO-
sPCA-LR, EN-sPCA-LR, RF-sPCA-LR, LASSO-PLS-LR, EN-PLS-LR, RF-PLS-LR, LASSO-
PCA-LSTM, EN-PCA-LSTM, RF-PCA-LSTM, LASSO-sPCA- LSTM, EN-sPCA–LSTM, RF-
sPCA-LSTM, LASSO-PLS-LSTM, EN-PLS-LSTM, and RF-PLS-LSTM, which are described
in Table 4 under “Model Group” 6 and 7.

In addition, several groups of alternative models are included in our empirical analysis,
which are also summarized in Table 4. Model Group 1, which includes LR and LSTM,
is not augmented by the factor processing approach. Using this benchmark group, we
can emphasize the importance of factor selection methods and dimensionality reduction
methods for carbon price prediction. In Groups 2 and 3, denoted by LASSO-LR, EN-LR,
RF-LR, LASSO-LSTM, EN-LSTM, and RF-LSTM, we only employ the first step of our
double shrinkage approach. Namely, we apply the LASSO, EN, or RF to select a subset of
factors that may contain useful information for carbon price prediction. In Groups 4 and 5,
denoted by PCA-LR, sPCA-LR, PLS-LR, PCA-LSTM, sPCA-LSTM, and PLS-LSTM, we only
implement the second step of our double shrinkage approach. Namely, we use PCA, sPCA,
or PLS to reduce the dimensionality of the selected factors and estimate the latent factors
for carbon price forecasting. In summary, there are 32 carbon price forecasting models in
our empirical analysis, including 18 forecasting models based on our proposed double
shrinkage approach, and 12 alternative forecasting methods, which are all described in
Table 4.
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Table 4. Description of carbon price forecasting models.

Group Model Description

1 LR
LSTM Prediction models with only raw factor information

2
LASSO-LR Linear models augmented by factors selected using the LASSO method

EN-LR Linear models augmented by factors selected using the EN method
RF-LR Linear models augmented by factors selected using the RF method

3
LASSO-LSTM Nonlinear models augmented by factors selected using the LASSO method

EN-LSTM Nonlinear models augmented by factors selected using the EN method
RF-LSTM Nonlinear models augmented by factors selected using the RF method

4
PCA-LR Linear models augmented by the latent factors estimated using the PCA method
sPCA-LR Linear models augmented by the latent factors estimated using the s-PCA method
PLS-LR Linear models augmented by the latent factors estimated using the PLS method

5
PCA-LSTM Nonlinear models augmented by the latent factors estimated using the PCA method
sPCA-LSTM Nonlinear models augmented by the latent factors estimated using the s-PCA method
PLS-LSTM Nonlinear models augmented by the latent factors estimated using the PLS method

6

LASSO-PCA-LR Linear models augmented by the latent factors estimated using LASSO-selected
factors and the PCA method

EN-PCA-LR Linear models augmented by the latent factors estimated using EN-selected factors
and the PCA method

RF-PCA-LR Linear models augmented by the latent factors estimated using RF-selected factors
and the PCA method

LASSO-sPCA-LR Linear models augmented by the latent factors estimated using LASSO-selected
factors and the s-PCA method

EN-sPCA-LR Linear models augmented by the latent factors estimated using EN-selected factors
and the s-PCA method

RF-sPCA-LR Linear models augmented by the latent factors estimated using RF-selected factors
and the s-PCA method

LASSO-PLS-LR Linear models augmented by the latent factors estimated using LASSO-selected
factors and the PLS method

EN-PLS-LR Linear models augmented by the latent factors estimated using EN-selected factors
and the PLS method

RF-PLS-LR Linear models augmented by the latent factors estimated using RF-selected factors
and the PLS method

7

LASSO-PCA-LSTM Nonlinear models augmented by the latent factors estimated using LASSO-selected
factors and the PCA method

EN-PCA-LSTM Nonlinear models augmented by the latent factors estimated using EN-selected
factors and the PCA method

RF-PCA-LSTM Nonlinear models augmented by the latent factors estimated using RF-selected factors
and the PCA method

LASSO-sPCA-LSTM Nonlinear models augmented by the latent factors estimated using LASSO-selected
factors and the s-PCA method

EN-sPCA-LSTM Nonlinear models augmented by the latent factors estimated using EN-selected
factors and the s-PCA method

RF-sPCA-LSTM Nonlinear models augmented by the latent factors estimated using RF-selected factors
and the s-PCA method

LASSO-PLS-LSTM Nonlinear models augmented by the latent factors estimated using LASSO-selected
factors and the PLS method

EN-PLS-LSTM Nonlinear models augmented by the latent factors estimated using EN-selected
factors and the PLS method

RF-PLS-LSTM Nonlinear models augmented by the latent factors estimated using RF-selected factors
and the PLS method

4. Empirical Analysis
4.1. Forecasting Performance

This paper puts forward a hybrid carbon price prediction model based on the double
shrinkage methods, which combine factor screening and dimensionality reduction to
improve the accuracy of carbon price prediction. Taking Guangdong as a detailed case, the
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prediction results of all models are shown in Table 5. Based on all results, the analysis of
each model is as follows:

1. Our double shrinkage approach results in a significant improvement in out-of-sample
prediction accuracy when comparing out-of-sample R2 (R2_OOS), RMSE, and MAE.
For instance, in Table 5, we see that the LASSO-sPCA-LR generates an approximately
140.47% increase in out-of-sample R2, an approximately 70.53% decrease in RMSE, and
an approximately 61.21% decrease in MAE when compared to one of our benchmark
models (LR). The LASSO-sPCA-LSTM generates an approximately 169.90% increase in
out-of-sample R2, an approximately 87.77% decrease in RMSE, and an approximately
87.99% decrease in MAE when compared to another benchmark model (LSTM).
In addition, compared with carbon prediction models based on double shrinkage
methods, single prediction models (LR and LSTM), and prediction models based
solely on factor selection methods or the dimensionality reduction methods are very
poor, indicated by negative out-of-sample R2 values, and large RMSE and MAE
values. For instance, the out-of-sample R2, RMSE, and MAE values of the PCA-LR are
−2.3090, 23.8043, and 18.8319, respectively. The out-of-sample R2, RMSE, and MAE
values of the PCA-LSTM are −2.1217, 23.1345, and 15.2526, respectively.

2. Based on in-sample R2, we observe that the original prediction models (LR and LSTM)
generally have better in-sample fit than the carbon forecasting models based on
the factor selection methods (LASSO, EN, and RF) or the dimensionality reduction
methods (PCA, sPCA, and PLS), with the exception of the PCA-LSTM. In particular,
the decreases in in-sample R2 for carbon forecasting models based on the factor
selection methods or the dimensionality reduction methods range from 0.01% to
99.89% when compared with the in-sample R2 value of the LR and LSTM. Thus, based
solely on in-sample diagnostics, there are no significant gains associated with adding
a single shrinkage method to the benchmark LR or LSTM models. This indicates
that the single shrinkage method may not be effective when applied without the
use of the double shrinkage approach proposed in this paper. Moreover, in terms of
single prediction models or prediction models based on single shrinkage methods,
LR-based prediction models have better in-sample fit than LSTM-based prediction
models. For instance, the in-sample R2 of LASSO-LR is 0.9611, while the in-sample R2

of LASSO-LSTM is 0.0003.
3. Based on the DM test reported in Table 5, LSTM-based carbon forecasting models

show superior performance than LR-based carbon forecasting models among all
double shrinkage models. Here, the alternative hypothesis of the DM test is that the
prediction accuracy of the model is more accurate than that of the benchmark model.
The benchmark model is based on the historical average, which is a very stringent
out-of-sample benchmark for analyzing model predictability, according to Welch and
Goyal [38]. The results of the DM test are indicated with an asterisk. We find that
the models based on the double shrinkage methods generally have smaller RMSE
and MAE compared to the alternative models, with some exceptions for LR-based
prediction models. Moreover, considering all models based on the double shrinkage
methods, LR-based prediction models are dominated by LSTM-based prediction
models at a 1% significance level. Thus, most of our proposed models appear to be
adequate for carbon price prediction, especially LSTM-based prediction models.

In conclusion, the prediction results show that the carbon price forecasting model
based on the double shrinkage methods proposed in this paper usually performs better
among all the models, which confirms that the double shrinkage methods have effective and
superior performance in carbon price forecasting. In addition, the DM test further shows
that the LSTM-based carbon price forecasting model has higher stability and feasibility
among the double shrinkage methods.
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Table 5. Forecast results.

Model R2_IS R2_OOS RMSE MAE

LR 0.9611 −1.8576 22.1211 *** 14.3944 ***
LSTM 0.2813 −1.3796 20.1983 *** 15.0991 ***

LASSO-LR 0.9611 −1.8576 22.1211 *** 14.3944 ***
EN-LR 0.9611 −1.8576 22.1211 *** 14.3944 ***
RF-LR 0.9611 −1.8576 22.1211 *** 14.3944 ***

LASSO-LSTM 0.0003 −0.9249 18.1662 *** 12.7558 ***
EN-LSTM 0.0008 −0.9405 18.2396 *** 12.8149 ***
RF-LSTM 0.0003 −0.9230 18.1573 *** 12.7443 ***
PCA-LR 0.0949 −2.3090 23.8043 *** 18.8319 ***
sPCA-LR 0.0095 −1.0288 18.6389 *** 13.3949 ***
PLS-LR 0.6012 −0.3683 15.3074 *** 12.9321 ***

PCA-LSTM 0.9985 −2.1217 23.1345 *** 15.2526 ***
sPCA-LSTM 0.0174 −1.0586 18.7867 *** 13.5221 ***
PLS-LSTM 0.0115 −1.0159 18.5905 *** 13.2900 ***

LASSO-PCA-LR 0.7921 −2.1457 23.2094 *** 22.2432 ***
EN-PCA-LR 0.1583 −3.8264 28.7487 *** 23.3717 ***
RF-PCA-LR 0.6530 −1.9122 22.3313 *** 16.1361 ***

LASSO-sPCA-LR 0.0895 0.7518 6.5198 *** 5.5832 ***
EN-sPCA-LR 0.0087 −1.0069 18.5383 *** 13.2330 ***
RF-sPCA-LR 0.6327 0.4296 9.8829 *** 5.9880 ***

LASSO-PLS-LR 0.8186 0.1408 12.1300 *** 10.3330 ***
EN-PLS-LR 0.6671 −0.0103 13.1529 *** 10.8795 ***
RF-PLS-LR 0.6475 −0.6443 16.7803 *** 12.1148 ***

LASSO-PCA-LSTM 0.9918 0.9106 3.9159 *** 3.2590 ***
EN-PCA-LSTM 0.9971 0.9397 3.2161 *** 2.1659 ***
RF-PCA-LSTM 0.9989 0.8605 4.8900 *** 2.4780 ***

LASSO-sPCA-LSTM 0.9970 0.9644 2.4709 *** 1.8130 ***
EN-sPCA-LSTM 0.9934 0.935 3.3388 *** 2.1705 ***
RF-sPCA-LSTM 0.9922 0.7853 6.0667 *** 2.7855 ***

LASSO-PLS-LSTM 0.9919 0.9552 2.7724 *** 1.7157 ***
EN-PLS-LSTM 0.9933 0.9343 3.3555 *** 2.5518 ***
RF-PLS-LSTM 0.9941 0.9425 3.1398 *** 1.4301 ***

Note: *, **, and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively.

4.2. Selected Factors

Figure 3 and Tables 6–8 summarize the results from the first step of our proposed
double shrinkage methods.
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Table 6. Description of the most important selected factors, using LASSO.

Factor Sector Importance

GGOL Commodity factor 5.7600
EUA Commodity factor 5.2540
GCO Commodity factor 4.3160

GWHE Commodity factor 3.7520
GGP Commodity factor 2.4190

SHANGHAI Financial factor 1.7910
BOP Commodity factor 1.4640

GCOR Commodity factor 1.2700
USD/CNY Financial factor 1.2570

TREASURY RATE Financial factor 1.0360
Ssell

FR (k = 12,η = 5) Technical factor 0.5930
GALU Commodity factor 0.1990

Sbuy
FR (k = 9,η = 10) Technical factor 0.1000

Table 7. Description of the most important selected factors, using ElasticNet.

Factor Sector Importance

EUA Commodity factor 3.8300
GGOL Commodity factor 3.4500
CEP Commodity factor 3.3800
BOP Commodity factor 2.6310

GWHE Commodity factor 2.4450
GCO Commodity factor 2.1310

USD/CNY Financial factor 1.8330
GCOR Commodity factor 1.6020
GNIC Commodity factor 1.5330
GGP Commodity factor 1.1890

Table 8. Description of the most important selected factors, using random forest.

Factor Sector Importance

GNIC Commodity factor 0.9960
CEI Financial factor 0.0040

Specifically, Figure 3 shows the percentages of potential factors (by sector) selected in
the first step of our proposed approach. As shown in Figure 3, the commodity factors tend
to be selected most frequently in the first step of our approach, except for the ElasticNet
method. For the ElasticNet method, technical factors are chosen more often, with the com-
modity factors following closely behind. Additionally, another important and interesting
point worth noting is that compared to other factor selection methods, the random forest
method selects factors with a higher sector concentration, which mainly concentrates on
the commodity factors.

Tables 6–8 present the most important selected factors used to construct the latent
factors in the second step of our proposed approach, which are ranked by the factor
importance. As shown in Tables 6–8, commodity factors show greater importance in carbon
price prediction, whether using LASSO, ElasticNet, or random forest. In addition, there are
significant differences among the factor selection methods in terms of factor importance.
Specifically, for the LASSO method, commodity factors, financial factors, and technical
factors all emerge as the most important factors in carbon price forecasting, as shown in
Table 6. In contrast, Table 8 shows that for the random forest method, only one commodity
factor shows very high significance in carbon price forecasting (far above 0.5).
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4.3. Robustness Checks
4.3.1. Normalization of Carbon Data

We replicate all of our experiments using normalized data. Here, the MinMax method
is used for normalization. Table 9 shows the prediction results using this experimental
setup, which are similar to those reported in Table 5. In Table 9, we note the following.
First, and most important, the out-of-sample R2 values for LSTM-based double shrinkage
methods are generally much higher than that of LR-based double shrinkage methods and
other benchmark methods, with the exception of the LASSO-PLS-LR. The out-of-sample
R2 value for the LASSO-PLS-LR is 0.9584. We also observe that most LR-based double
shrinkage methods and other benchmark methods have poor prediction performance,
indicated by negative out-of-sample R2 values, and large RMSE and MAE. For instance,
the out-of-sample R2 values for LR, RF-LR PLS-LR and RF-PLS-LR are −1.1781, −1.8576,
−0.3683, and −0.7406, respectively. These findings indicate that the superior performance
of our proposed double shrinkage approach is largely preserved when normalization
is taken, especially for LSTM-based double shrinkage methods. Second, LR and LSTM
generally have a better in-sample fit than other single shrinkage methods, except for the
LASSO-LSTM and PCA-LSTM. Specifically, the in-sample R2 value of the LSTM is 0.0182,
while that of LASSO-LSTM and PCA-LSTM are 0.4432 and 0.7888, respectively. Moreover,
LR-based single shrinkage methods generally have a better in-sample fit than LSTM-based
single shrinkage methods, with the exception of PCA-LR and sPCA-LR. Specifically, the in-
sample R2 values of PCA-LR and sPCA-LR are 0.0086 and 0.0106, while that of PCA-LSTM
and sPCA-LSTM are 0.7888 and 0.0206, respectively.

Table 9. Forecast results using normalized data.

Model R2_IS R2_OOS RMSE MAE

LR 0.9611 −1.1781 19.3240 *** 14.0085 ***
LSTM 0.0182 −0.9285 18.1833 *** 12.7778 ***

LASSO-LR 0.9611 −1.8576 22.1211 *** 14.3944 ***
EN-LR 0.9611 −1.8576 22.1211 *** 14.3944 ***
RF-LR 0.9611 −1.8576 22.1211 *** 14.3944 ***

LASSO-LSTM 0.4432 −1.2709 19.7314 *** 14.7666 ***
EN-LSTM 0.0024 −0.9556 18.3105 *** 12.7730 ***
RF-LSTM 0.0001 −0.9284 18.1827 *** 12.7771 ***
PCA-LR 0.0086 −1.0283 18.6367 *** 13.4345 ***
sPCA-LR 0.0106 −1.0339 18.6625 *** 13.4205 ***
PLS-LR 0.6012 −0.3683 15.3074 *** 12.9321 ***

PCA-LSTM 0.7888 −0.1331 13.9299 *** 12.3688 *
sPCA-LSTM 0.0206 −1.0600 18.7931 *** 13.5422 ***
PLS-LSTM 0.0186 −1.0637 18.8098 *** 13.5756 ***

LASSO-PCA-LR 0.0107 −1.0811 18.8778 *** 13.6999 ***
EN-PCA-LR 0.0002 −0.9296 18.1775 *** 12.7151 ***
RF-PCA-LR 0.7026 −3.5688 27.9708 *** 23.6114 ***

LASSO-sPCA-LR 0.0058 −1.0064 18.5359 *** 13.2752 ***
EN-sPCA-LR 0.0084 −1.0240 18.6171 *** 13.3718 ***
RF-sPCA-LR 0.0098 −1.0529 18.7603 *** 13.5782 ***

LASSO-PLS-LR 0.9925 0.9584 2.6692 *** 1.7970 ***
EN-PLS-LR 0.7228 −0.1151 13.8187 *** 12.1050 *
RF-PLS-LR 0.7507 −0.7406 17.2646 *** 13.9340 ***

LASSO-PCA-LSTM 0.993 0.9621 2.5488 *** 1.7249 ***
EN-PCA-LSTM 0.9986 0.9785 1.9220 *** 0.9886 ***
RF-PCA-LSTM 0.9939 0.9268 3.5435 *** 2.9874 ***

LASSO-sPCA-LSTM 0.5862 0.4087 10.9099 *** 6.1710 ***
EN-sPCA-LSTM 0.994 0.9082 3.9678 *** 2.6631 ***
RF-sPCA-LSTM 0.9877 0.6045 8.9322 *** 4.5289 ***

LASSO-PLS-LSTM 0.9926 0.9187 3.7325 *** 2.4460 ***
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Table 9. Cont.

Model R2_IS R2_OOS RMSE MAE

EN-PLS-LSTM 0.9926 0.919 3.7261 *** 2.4405 ***
RF-PLS-LSTM 0.9935 0.9309 3.4414 *** 2.3839 ***

Note: *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively.

4.3.2. Different Data Frequencies

We also carried out experiments using monthly data. The results are presented in
Table 10. Again, we see that LSTM-based double shrinkage methods, which are described
in Group 7, generally yield larger out-of-sample R2, and smaller RMSE and MAE than that
of LR-based double shrinkage methods and all benchmark methods. This suggests that
LSTM-based double shrinkage methods are still superior, while the performances of LR-
based double shrinkage methods become worse, as data frequency decreases. Additionally,
all double shrinkage methods using monthly data have much worse performances than
those using daily data, including LSTM-based double shrinkage methods and LR-based
double shrinkage methods. We conjecture that this is because some volatile components
of carbon prices become more difficult to be excluded at lower frequencies, leading to a
reduction in the prediction accuracy of the double shrinkage methods. However, it should
be stressed again that LSTM-based double shrinkage methods still perform very well, at
the monthly frequency considered in this paper.

Table 10. Forecast results using monthly data.

Model R2_IS R2_OOS RMSE MAE

LR 0.9998 −106.5604 127.7246 *** 100.2299 ***
LSTM 0.2496 −1.9336 21.3694 *** 17.5679 ***

LASSO-LR 0.9998 −106.5604 127.7246 *** 100.2299 ***
EN-LR 0.9998 −106.5604 127.7246 *** 100.2299 ***
RF-LR 0.9998 −106.5604 127.7246 *** 100.2299 ***

LASSO-LSTM 0.2256 −1.3354 19.0666 *** 14.8047 ***
EN-LSTM 0.5956 −1.7625 20.7367 *** 17.1611 ***
RF-LSTM −0.0020 −0.8835 17.1226 *** 12.0430 ***
PCA-LR 0.0569 −0.9098 17.0192 *** 13.2268 ***
sPCA-LR 0.4768 −21.3069 58.1658 *** 49.9827 ***
PLS-LR 0.6787 −0.0624 12.6937 *** 10.6888 *

PCA-LSTM 0.1459 −1.7658 20.7492 *** 7.2182 ***
sPCA-LSTM 0.9371 −3.2593 25.7487 *** 20.7535 ***
PLS-LSTM 0.2858 −1.7450 20.671 *** 8.2773 ***

LASSO-PCA-LR 0.1666 −1.5844 19.7983 *** 16.4299 ***
EN-PCA-LR 0.0419 −0.8303 16.6611 *** 12.6514 ***
RF-PCA-LR 0.7375 −0.4339 14.7471 *** 12.4873 *

LASSO-sPCA-LR 0.0451 −1.0229 17.5161 *** 12.9175 ***
EN-sPCA-LR 0.0477 −1.0591 17.6722 *** 13.1878 ***
RF-sPCA-LR 0.9309 −0.0788 12.9589 *** 6.0113 *

LASSO-PLS-LR 0.7472 −0.0522 12.6328 *** 10.7025 *
EN-PLS-LR 0.6318 0.0730 11.8574 *** 9.9209 ***
RF-PLS-LR 0.7350 −0.1440 13.1725 *** 10.9729 *

LASSO-PCA-LSTM 0.9142 0.2862 10.5409 *** 8.7097 *
EN-PCA-LSTM 0.9131 0.4579 9.1858 *** 6.7665 *
RF-PCA-LSTM 0.9288 0.0396 12.2271 *** 10.4447 *

LASSO-sPCA-LSTM 0.9135 0.4666 9.1117 *** 16.5321 *
EN-sPCA-LSTM 0.9232 0.1690 11.3732 *** 16.4778 *
RF-sPCA-LSTM 0.9925 0.8094 5.7164 *** 2.7658 ***

LASSO-PLS-LSTM 0.6554 0.4490 9.7139 *** 10.3195 ***
EN-PLS-LSTM 0.9208 0.1656 11.3965 *** 8.6879 *
RF-PLS-LSTM 0.9326 0.1945 11.1972 *** 9.3815 *

Note: *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively.
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4.3.3. Different Data Sources

To further demonstrate the results of the above analysis, this section also uses the
carbon trading market in Shanghai as a supplementary case study. The prediction results
of each model in Shanghai are shown in Table 11. As shown in Table 11, LSTM-based
double shrinkage methods exhibit stronger prediction performance than LR-based double
shrinkage methods and all benchmark methods, indicated by positive and larger out-
of-sample R2, and smaller RMSE and MAE. This result shows that LSTM-based double
shrinkage methods still have advantages in carbon price prediction, while the performance
of LR-based double shrinkage methods deteriorates with the carbon trading pilot. Moreover,
LR has a better in-sample fit than other LR-based single shrinkage methods, while the
situation between the LSTM and LSTM-based single shrinkage methods is unclear. For
instance, the in-sample R2 value of LR is 0.9151, while that of PCA-LR, sPCA-LR, and
PLS-LR are 0.1723, 0.0553, and 0.3557, respectively. The in-sample R2 value of the LSTM
is 0.0070, while that of PCA-LSTM, sPCA-LSTM, and PLS-LSTM are 0. 0725, 0.0642, and
0. 955, respectively. These findings are largely consistent with that of the carbon trading
markets in Guangdong.

Table 11. Forecast results for Shanghai.

Model R2_IS R2_OOS RMSE MAE

LR 0.9151 −113.6345 46.3574 *** 40.3219 ***
LSTM 0.0070 −7.3804 12.5412 *** 11.8109 ***

LASSO-LR 0.9151 −113.6345 46.3574 *** 40.3219 ***
EN-LR 0.9151 −113.6345 46.3574 *** 40.3219 ***
RF-LR 0.9151 −113.6345 46.3574 *** 40.3219 ***

LASSO-LSTM 0.0076 −7.3904 12.5487 *** 11.8172 ***
EN-LSTM -0.0007 −7.5129 12.6400 *** 11.9172 ***
RF-LSTM 0.0500 −7.3255 12.5001 *** 11.7454 ***
PCA-LR 0.1723 −5.4494 10.9956 *** 9.8074 ***
sPCA-LR 0.0553 −7.9520 12.9545 *** 12.1597 ***
PLS-LR 0.3557 −2.1447 7.6781 *** 6.4188 ***

PCA-LSTM 0.0725 −7.5386 12.6590 *** 11.8781 ***
sPCA-LSTM 0.0642 −7.9157 12.9356 *** 12.0140 ***
PLS-LSTM 0.9955 −1.9432 7.4322 *** 6.5363 ***

LASSO-PCA-LR 0.1047 −9.2810 13.8828 *** 13.0996 ***
EN-PCA-LR 0.1726 −5.8431 11.3263 *** 10.2128 ***
RF-PCA-LR 0.0589 −1.3319 6.6118 *** 5.2805 ***

LASSO-sPCA-LR 0.2243 −6.7914 12.0856 *** 10.9651 ***
EN-sPCA-LR 0.0540 −7.9533 12.9555 *** 12.1673 ***
RF-sPCA-LR 0.0355 −14.3159 16.9446 *** 16.2228 ***

LASSO-PLS-LR 0.7143 −1.4267 6.7448 *** 5.0866 ***
EN-PLS-LR 0.3594 −2.0975 7.6202 *** 6.3697 ***
RF-PLS-LR 0.4758 −7.8180 12.8572 *** 9.8501 ***

LASSO-PCA-LSTM 0.9956 0.6019 2.7333 *** 1.4820 ***
EN-PCA-LSTM 0.9983 0.6304 2.6338 *** 1.4915 ***
RF-PCA-LSTM 0.9966 0.5131 3.0231 *** 2.0736 ***

LASSO-sPCA-LSTM 0.9986 0.6472 2.5734 *** 1.3672 ***
EN-sPCA-LSTM 0.9984 0.6244 2.6550 *** 1.4870 ***
RF-sPCA-LSTM 0.9986 0.6197 2.6715 *** 1.4868 ***

LASSO-PLS-LSTM 0.9992 0.5943 2.7593 *** 1.4090 ***
EN-PLS-LSTM 0.9987 0.4408 3.2397 *** 1.8249 ***
RF-PLS-LSTM 0.9977 0.6978 2.3816 *** 1.3975 ***

Note: *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively.

4.3.4. Different Dataset Divisions

Finally, we replicate our experiments using different dataset divisions. Specifically,
we divide our dataset into a training set (80% of the sample), a validation set (10% of the
sample), and a test set (10% of the sample). The prediction results are gathered in Table 12.
Inspection of the prediction results in this table shows that the double shrinkage methods
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proposed in this paper still generally outperform other benchmark methods, as evidenced
by larger out-of-sample R2, and smaller RMSE and MAE. The only two exceptions are the
LASSO-PCA-LR and EN-PCA-LR with R2 values of −0.9722 and −3.3258, respectively. In
addition, LSTM-based double shrinkage methods are still superior to LR-based double
shrinkage methods, except for the LASSO-sPCA-LR. Specifically, the R2, RMSE, and MAE
values of the LASSO-sPCA-LR are 0.8671, 5.1716, and 4.3180, respectively, while those
of the LASSO-sPCA-LSTM are 0.7636, 6.9061, and 4.3068, respectively. These results are
consistent with the prediction results using 60% of the sample as the training set, indicating
again the superiority of our proposed double shrinkage methods, especially LSTM-based
double shrinkage methods.

Table 12. Forecast results for different dataset divisions.

Model R2_IS R2_OOS RMSE MAE

LR 0.9525 −3.4916 30.0679 *** 23.1696 ***
LSTM 0.0018 −1.8725 24.0738 *** 19.4331 ***

LASSO-LR 0.9525 −3.4916 30.0679 *** 23.1696 ***
EN-LR 0.9525 −3.4916 30.0679 *** 23.1696 ***
RF-LR 0.9525 −3.4916 30.0679 *** 23.1696 ***

LASSO-LSTM 0.0007 −1.8742 24.0807 *** 19.4416 ***
EN-LSTM 0.0002 −1.8703 24.0646 *** 19.4217 ***
RF-LSTM 0.0007 −1.8778 24.0960 *** 19.4561 ***
PCA-LR 0.0327 −2.6362 27.0539 *** 22.8044 ***
sPCA-LR 0.0023 −1.9353 24.3069 *** 19.7415 ***
PLS-LR 0.9936 −0.0766 14.7380 *** 9.0126 ***

PCA-LSTM 0.0035 −1.8896 24.1454 *** 19.5212 ***
sPCA-LSTM 0.0157 −1.8800 24.1049 *** 19.3604 ***
PLS-LSTM 0.0029 −1.9345 24.3037 *** 19.7178 ***

LASSO-PCA-LR 0.3738 −0.9722 19.9242 *** 18.1494 ***
EN-PCA-LR 0.0514 −3.3258 29.5076 *** 25.2293 ***
RF-PCA-LR 0.5504 0.2802 12.0365 *** 9.6932 ***

LASSO-sPCA-LR 0.1078 0.8671 5.1716 *** 4.3180 ***
EN-sPCA-LR 0.4370 0.2115 12.5979 *** 10.8624 **
RF-sPCA-LR 0.5862 0.4087 10.9099 *** 6.1710 ***

LASSO-PLS-LR 0.5877 0.7369 7.2777 *** 5.6916 ***
EN-PLS-LR 0.5228 0.3315 11.5996 *** 9.4346 ***
RF-PLS-LR 0.5599 0.3465 11.4693 *** 9.0028 ***

LASSO-PCA-LSTM 0.9945 0.9583 2.9009 *** 1.2980 ***
EN-PCA-LSTM 0.9954 0.9331 3.6727 *** 1.8286 ***
RF-PCA-LSTM 0.9989 0.9679 2.5435 *** 1.0284 ***

LASSO-sPCA-LSTM 0.9964 0.7636 6.9061 *** 4.3068 ***
EN-sPCA-LSTM 0.9955 0.9540 3.0456 *** 1.3010 ***
RF-sPCA-LSTM 0.9877 0.6045 8.9322 *** 4.5289 ***

LASSO-PLS-LSTM 0.9973 0.9652 2.6482 *** 1.4527 ***
EN-PLS-LSTM 0.9971 0.9140 4.1648 *** 1.8921 ***
RF-PLS-LSTM 0.9989 0.9671 2.5762 *** 1.0513 ***

Note: *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively.

4.4. Main Contributions and Innovations

The main contributions and innovations of this paper include the following:

(1) This paper proposes a hybrid carbon price prediction model based on the double
shrinkage methods, which consist of three steps. First, the potential influencing
factors of carbon prices are selected by the factor screening methods. After that, the
dimensionality of the selected influencing factors is reduced by the dimensionality
reduction method to estimate the latent factors of carbon prices. Finally, the carbon
prices are predicted using the latent factors estimated in the previous step. The hybrid
carbon prediction model proposed in this paper not only improves the prediction
accuracy of the carbon price forecasting model, but also provides a new idea in the
field of carbon price forecasting.
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(2) In this paper, the double shrinkage methods are regarded as new keys to improving
the prediction accuracy of carbon prices. By combining factor screening methods
such as the LASSO, EN, and RF with factor dimensionality reduction methods such
as the PCA, s-PCA, and PLS, the potential influencing factors of carbon prices are
preprocessed and the latent factors of carbon prices are obtained, which are conducive
to enhance the prediction accuracy of carbon price prediction model. The study
results provide sufficient evidence that the use of the double shrinkage methods leads
to an improvement in prediction accuracy compared to other simpler variants of
our methods.

(3) In order to explore the superiority of the double shrinkage methods proposed in this
paper, both linear and nonlinear models are considered to predict carbon prices. Specif-
ically, this paper innovatively introduces the LR model and LSTM model into the field
of carbon price prediction, making important theoretical and practical contributions
to the literature in this area. By using the LR model and the LSTM model to predict
carbon prices, the superiority of the double shrinkage methods is verified. Moreover,
our empirical results fully reflect the advantages of the double shrinkage methods
using LSTM, a finding that provides new insights for carbon price forecasting.

5. Conclusions

This paper proposes a novel carbon price forecasting model based on the double
shrinkage methodology, which is composed of factor selection, dimensionality reduction,
and model prediction. Taking the carbon market in Guangdong as an example, we find
that the double shrinkage method greatly improves the out-of-sample forecasting accuracy
of the carbon price forecasting models, as measured by the out-of-sample R2, root-mean-
square error (RMSE), and mean absolute error (MAE). Additionally, LSTM-based double
shrinkage methods always show better prediction performance than LR-based double
shrinkage methods when predicting carbon prices, as indicated by higher R2, lower RMSE,
lower MAE, and higher stability. These findings are robust to the use of original or
normalized data in model specification, as well as the use of different data frequencies,
different data sources, and different dataset divisions.

Although the carbon price forecasting models proposed in this paper show superior
predictive performance, there are still limitations. First, this paper only uses some tradi-
tional factor selection methods (LASSO, ElasticNet, and RF) and dimensionality reduction
methods (PCA, sPCA, and PLS) to construct a double shrinkage procedure. In future
research, the applicability of other shrinkage methods can be further explored. Second, this
paper only employs linear regression (LR) and the LSTM to predict carbon prices; other
cutting-edge prediction methods can be considered in the future. Third, we could construct
investment portfolios to assess whether the proposed carbon price forecasting models can
be translated into profitable investments, in a real-time trading context.
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