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Abstract: Soil moisture plays an important role in ecology, hydrology, agriculture and climate change.
This study proposes a soil moisture prediction model, based on the depth and water balance equation,
which integrates the water balance equation with the seasonal ARIMA model, and introduces the
depth parameter to consider the soil moisture at different depths. The experimental results showed
that the model proposed in this study was able to provide a higher prediction accuracy for the soil
moisture at 40 cm, 100 cm and 200 cm depths, compared to the seasonal ARIMA model. Different
models were used for different depths. In this study, the seasonal ARIMA model was used at 10 cm,
and the proposed model was used at 40 cm, 100 cm and 200 cm, from which more accurate prediction
values could be obtained. The fluctuation of the predicted data has a certain seasonal trend, but the
regularity decreases with the increasing depth until the soil moisture is almost independent of the
external influence at a 200 cm depth. The accurate prediction of the soil moisture can contribute to
the scientific management of the grasslands, thus promoting ecological stability and the sustainable
development of the grasslands while rationalizing land use.

Keywords: soil moisture prediction; water balance equation; seasonal ARIMA model; sustainable
development; land use

1. Introduction

As a natural ecohydrological resource, soil moisture (SM) is an important aspect of the
heat transfer process and energy exchange between the surface and atmospheric system,
as well as the key link of the surface and groundwater circulation and the land carbon
cycle [1]. It plays an important role in many aspects. In the ecological field, changes in the
soil moisture are associated with changes in the vegetation cover and have a significant
impact on the forest decline, land degradation and loss of biodiversity [2]. In the field of
hydrology, soil moisture is an important indicator to assess the degree of drought, and
different soil moisture levels can bring about deviations in the physical patterns [3]. In
agriculture, on the one hand, soil moisture affects the length of the grass growing season,
the growth rate of grasses and the nutrient uptake; too much soil moisture affects the crop
root respiration and too little soil moisture limits the crop uptake of fertilizers [4]. On the
other hand, it limits the dissolution and transfer of nutrients and the microbial activity in
the soil [5], leading to the nutrient loss to the wider environment and thus affecting the crop
yields. In the climate domain, soil moisture limits transpiration and the photosynthesis
of plants, which in turn has an impact on water, energy and biogeochemical cycles, while
the persistence of soil moisture leads to persistence of the climate system. Conversely,
changes in climate also have an effect on soil moisture, creating a soil moisture-climate
interaction [6]. Therefore, soil moisture is of critical importance in ecology [7], hydrology [8],
agriculture [9] and climate change [10,11] research, and the accurate prediction of the soil
moisture can provide important guidance for drought prevention, grazing irrigation and
other scientific applications [12].
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Soil moisture is influenced by a variety of factors, such as precipitation [13], evap-
oration [14], soil properties [15] and vegetation [16], and the predictability of the soil
moisture may result from its own persistence or external forcing factors [17]. Thus, the soil
moisture prediction exhibits a degree of uncertainty, and the highly nonlinear variation
relationship between the explanatory variables and the soil moisture makes its prediction
very difficult [18]. Prediction methods for the soil moisture fall into two main categories:
physics-based process models [19] and data-driven empirical models [20]. Physics-based
process models focus on the hydrological processes that control the soil moisture trans-
fer mechanisms through physical equations, and calculate the explanatory variables as
part of the land surface data assimilation techniques [21]. Factors, such as precipitation,
atmospheric temperature and solar radiation, driven by model-generated or observation-
ally obtained factors, can be used for the seasonal flow prediction, such as soil moisture,
runoff and so on [22]. For example, Huang explored the dynamics of the soil moisture in
the Weihe River basin through water balance equations [23]; Tang used a two-parameter
monthly water balance model to predict the runoff [24]. However, the physical model
is complicated, and the absence or lack of information may bring some errors to the soil
moisture prediction. Furthermore, because the equations are based on the assumption
of the distinctiveness of the partial rules, they are not applicable to the medium- and
long-term predictions. The data-driven empirical models are based mainly on constructing
maps of explanatory variables and soil moisture. The widely used statistical methods
include multiple linear regression models [25,26], Bayesian models [27] and support vector
machine models [28,29]. For example, time series analysis methods are used to build
autocorrelation models of the historical soil moisture for predicting the future soil mois-
ture [30]. Multiple regression analysis methods are also used to estimate forecasts by
establishing multiple regression equations between the explanatory variables and the soil
moisture [31]. Currently, many artificial intelligence methods and techniques also exist
for the soil moisture prediction [32,33], and the data sources are mainly satellite remote
sensing data and microwave radar data [34]. Satellite remote sensing imaging, although
intuitive, is often only applicable to the exploration and monitoring of materials visible on
the surface [35]. In addition, it is difficult to predict the soil moisture at sites or areas where
data are sparse or unavailable, and at the same time, changes in weather patterns, as well
as the persistence and severity of precipitation events, can produce a high randomness in
the observed values [36].

In order to accurately predict the soil moisture at different depths in the Xilingol
League grassland of Inner Mongpolia, and then to provide reference for the research of
the grazing ecology theory and sustainable grassland utilization practice, a soil moisture
prediction model, based on the depth and water balance equation is proposed to address
the shortcomings of the physically based process model and the data-driven empirical
model. The model combines a water balance equation and the seasonal ARIMA model.
The model predicts the soil moisture at 10 cm, 40 cm, 100 cm and 200 cm in the test plots,
by considering the effect of the depth variation on the soil moisture and thus introducing
a depth parameter y. The model has a high prediction accuracy in predicting the soil
moisture at 40 cm, 100 cm and 200 cm. Different models were used for different depths.
In this study, the seasonal ARIMA model at 10 cm and the proposed model at 40 cm,
100 cm and 200 cm resulted in more accurate prediction values and provided an important
reference for developing the appropriate irrigation, grazing plans and water management,
as well as improving drought prediction and agricultural crop yields.

2. Materials and Methods
2.1. Study Area and Data Acquisition

The Xilingol League grassland in Inner Mongolia is located on the Xilin River in the
Inner Mongolia Plateau, with geographical coordinates between 110°50'~119°58’ E and
41°30'~46°45’ N. The total area of the Xilingol League grassland is 19.2 million hectares,
and the grassland landscape is a high plain with an elevation between 800 and 1200 m.
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In the climate zone, the Xilin River basin belongs to the temperate subarid region, and
its climate type belongs to the temperate semi-arid grassland climate in the continental
climate. The four seasons are distinct: spring is often accompanied by windy weather and
summer is warm and humid, while autumn and winter are cold and dry. According to
the meteorological monitoring data of the Inner Mongolia grassland station, the annual
sunshine hours in the area is 2603.8 h. The average annual temperature is 0.96 °C and the
potential annual evaporation is about 1664.6 mm. The annual precipitation is about 340 mm,
and the inter-month variation of the precipitation is large, mainly concentrated in June-
September, accounting for about 74.4% of the annual precipitation. The specific soil type
is mainly kastanozem, and the plant community is most widely distributed by the sheep
grass (Leymus chinensis) community and big needle grass (Stipa grandis) communities.
The Inner Mongpolia Xilingol League grassland is not only an important national livestock
production base, but also an important green ecological barrier that plays a role in reducing
the occurrence of dust storms and severe weather. It is also one of the typical areas for
studying the ecosystem response mechanisms to human disturbance and global climate
change, as well as an important part of the terrestrial sample belt in the International
Geosphere-Biosphere Program (IGBP)—Northeast China Terrestrial Ecosystem Sample Belt
(NECT). Therefore, the accurate prediction of the soil moisture has a positive impact on the
sustainable development of the grasslands.

The geographic location of Xilingol League is shown in Figure 1. The observation
point for this study was 115°22.5' E, 44°7.5' N and the soil type studied was kastanozem.
The soil is classified as kastanozem, based on the World Reference Base for Soil Resources,
with 37% clay content (<0.002 mm), 42% silt content (0.002-0.02 mm), and 21% sand content
(0.02-2 mm). The profile construct is the Ah-Bk-C type. The organic matter content of this
soil is 1.2%, the soil pH—7.3, the cation exchange capacity—22 cmol/kg, the base saturation
percent—100%, the calcium carbonate content—6%. The variables used were precipitation
(P), soil evaporation (SE), normalized difference vegetation index (NDVI), vegetation
coverage rate (VCR), soil depth, and leaf area index (LAI). The data were obtained from
the National Glacial Tundra Desert Science Data Center (http:/ /www.ncdc.ac.cn/portal/,
accessed on 10 October 2022), the U.S. Geological Survey (https:/ /ladsweb.modaps.eosdis.
nasa.gov/search/, accessed on 10 October 2022), the Ecology Discipline Data Center of
the Chinese Academy of Sciences (http://www.nesdc.org.cn/, accessed on 10 October
2022), and the wheatA small malt-agrometeorological big data system (v1.5.1) software
(Wheat Bud Big Data Information (Ningbo) Co., LTD, Zhejiang, China) (It integrates
multiple sections of the agricultural production, markets, meteorology, soil, marine and
environmental monitoring) (http://www.wheata.cn/, accessed on 10 October 2022). The
information of each variable is summarized in Table 1.

Table 1. Observed values of each variable.

Variables  Longitude Latitude Starting Time  End Time Unit N
LAI m?/m? 123
NDVI — 123
SE mm 123
P mm 123
10 cm SM 115.375 44.125 20121 2022.3 kg/m3 123
40 cm SM kg/m?3 123
100 cm SM kg/m? 123
200 cm SM kg/m?3 123

VCR 2020.7 Y% 21
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Figure 1. Study area of the Xilingol League grassland.

2.2. Methods

The overall empirical procedure is shown in Figure 2 below.
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Figure 2. Empirical flow chart of the soil moisture prediction model.

In this study, two models were used to make comparative predictions of the soil
moisture at different depths. In Model A, the variables are mainly integrated into the water
balance equation, and the depth coefficient 7 is derived by the co-integration, and then
the soil moisture prediction at different depths is performed. Model B directly uses the
seasonal ARIMA model for the soil moisture prediction at different depths.
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2.2.1. A Soil Moisture Prediction Model, Based on the Depth and Water Balance Equation

The water variation in the grassland is cyclic, with the water vapor transported
through precipitation, infiltration and evaporation. The water balance equation of the
soil-vegetation-atmosphere system, without considering the anthropogenic factors is [37]:

ABt = Bt — Bt—1 = Pt + Gut + Ry — (Etat + Gap + Routt + ICstore t) (1)

In Equation (1), B; is the soil moisture in period ¢t and Af is the variation of the soil
moisture. At time ¢, P} is precipitation, G, and G, are the groundwater capillary rise and
soil water infiltration. Et, is the soil evaporation, which is expressed by SE in this study.
Riy s and Royt ¢ are the inlet and outlet runoff, and ICsere ¢ is the vegetation interception flow.

In typical grassland areas, the runoff and seepage are weak, and the precipitation and
evapotranspiration represent the vast majority of the water balance [38]. The grassland of
Xilingol League is located in the plain area, as the terrain is flat, the precipitation distribution
is unbalanced, the intensity of the precipitation is generally low, the water circulation is
mainly through a vertical exchange and the inlet and outlet runoff of the whole grassland
can be regarded as roughly equal, so for the simplification of the model we assume that
Rint — Routt = 0. Since the data of the groundwater resource circulation are not available,
the groundwater and soil contact, as well as the exchange water resources can also be
assumed to be roughly equal, which means that G, ; — G;; = 0. Therefore, the amount of
the soil moisture change is mainly related to the precipitation, evaporation and vegetation
interception flow.

The vegetation interception flow is a variable that is mainly positively corelated with
the precipitation, vegetation coverage rate and the leaf area index [39,40], which means that
the higher the precipitation, the vegetation cover rate and the leaf area index, the higher
the vegetation interception flow. It can be expressed as [41]:

—kxPy
ICstoret = Cpt X IChax % (1 — elCmax) 2

In Equation (2), c;+ denotes the vegetation coverage rate in period t, which is repre-
sented by VCR in this study; k is the correction factor for the vegetation density, which is
related to the leaf area index; P; is the precipitation. ICay is the maximum interception of
the particular vegetation, which can be estimated by the LAI [42], whose expression is:

ICpiax = 0.935 + 0.498 x LAI — 0.00575 x LAI> 3)

Since LAI, P, SE and VCR are all time series, they are greatly influenced by the seasonal
environment. Therefore, the seasonal ARIMA model is used for the prediction, and the
specific steps are as follows:

1.  Determine the stationarity of the series. Testing the stationarity of the series with the
unit root test. If the series is non-stationary, it needs to be differenced to eliminate the
series fluctuations to make the data stationary, and extract the effective information in
the series;

2. Model order determination. The optimal order is firstly determined by the trailing
and truncation of the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) (the ACF and PACEF are two statistics that describe the degree of
correlation between the current value of a time series and its past values, they are
both used to describe the autocorrelation of the time series itself, the difference is
that the PACF controls for some intermediate periods that are constant), and then the
final parameters are determined by the trial-and-error method, based on the Akaike
information criterion (AIC) in the approximate range of the initially determined
parameters (the AIC is a measure of the goodness of fit of a statistical model, and the
smaller the value of the AIC, the better the model);
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3. Model testing. The white noise test is for testing the residuals of the model. If there
are insignificant parameters, they need to be removed and the model structure is
readjusted. The white noise test ensures that the model can fully extract the relevant
information of the series.

As a result, we obtain the prediction model as: B;+1 = B+ + AB. Considering the effect
of the depth h variation on the soil moisture, the depth parameter 7 is introduced, and
finally the soil moisture prediction model, based on the depth and water balance equation
is obtained, as follows:

,Bh,tJrl = “.Bh,t + 7 X A,B = ,Bh,t + T X [Pt - (SEt + ICstore,t)] (4)

In Equation (4), « is the adjustment coefficient, B, ; is the soil moisture at depth &
and time f, 7}, is the depth parameter at depth h, P; is the precipitation, SE; is the soil
evaporation, ICsore  is the vegetation interception flow.

2.2.2. A Soil Moisture Prediction Model, Based on the Seasonal ARIMA Model

The soil moisture is a time series that only considers its own variation and changes
with the months, which has certain seasonal characteristics. The univariate prediction of
the soil moisture is thus validated for comparison using a seasonal ARIMA model.

In practice, the stationary process and parameter adjustment process for the time series
is very time consuming. It is necessary to keep the data stationary when constructing the
ARMA or ARIMA models, and the process of determining the p and q values is tedious and
it is not easy to reach the exact values. The auto.arima function can eliminate the process
of determining the p and q values and make the model more acceptable to the data [43].
Therefore, this study uses the auto.arima function to determine each parameter.

The seasonal ARIMA (p, d, q) (Ps, Ds, Qg) model is based on the ARIMA (p, d, q)
model and is used to deal with the series where there is a significant periodicity, due to the
seasonal variations. The seasonal ARIMA model automatically determines the d, p and
q values through the auto.arima function and fits the model on a univariate series, from
which the soil moisture inputs at different depths can be predicted.

2.2.3. Error Estimation

For the purpose of assessing the validity and accuracy of the model, this study uses the
MSE (mean squared error), the RMSE (root mean squared error), the MAE (mean absolute
error) and the MAPE (mean absolute percentage error) to evaluate the model.

1 n
MSE = - Y (4 = yi)* (5)
i=1
1&, .
RMSE = |~ Y (d; = y)* (6)
i=1
1 n
MAE = 0} i — il @)
i=1
100 [ 9i — yi

MAPE = == ) ®)

i=1

Yi

In the above equation 7 is the total number of test sets, ¥J; is the predicted value and y;
is the actual value.
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3. Results and Discussion
3.1. Model Construction and Prediction
3.1.1. The Soil Moisture Prediction Model, Based on the Depth and Water Balance Equation

To begin with, this study conducted a descriptive statistical analysis of the variables
involved, as shown in Table 2. The main independent variables involved were the soil
evaporation (SE), precipitation (P) and normalized difference vegetation index (NDVI).
Among them, the coefficient of variation of the P is the largest, with a range of 891.79, which
means that there is a large amount of precipitation in the rainy season and no precipitation
for a month during the dry season, and the precipitation fluctuates. The coefficient of
the variation of the NDVI is the smallest, and the minimum value —0.02 means that the
ground cover is highly reflective of visible light, such as water and snow. The coefficient of
variation of the SE is in between that of the P and the NDVL.

Table 2. Descriptive statistics of the P, NDVI and SE, from January 2012 to March 2022.

Independent .. . Standard Coefficient of
Variable Range Minimum Maximum Mean Deviation Variation
p mm/month 891.79 0 891.79 80.83 143.07 1.77
NDVI 0.62 —0.02 0.61 0.24 0.15 0.63
SE mm/month 38.99 0.27 39.26 9.87 9.75 0.99
The dependent variable to be studied is the soil moisture at different depths, and the
descriptive statistics table of known data is shown below in Table 3. The coefficient of the
variation of soil moisture at different depths has been clearly calculated from the table:
100 cm > 10 ecm > 40 cm > 200 cm. The external factors, such as the vegetation, can have
a significant effect on the soil moisture [44], especially near the surface at a 10 cm depth,
hence the large variation in the soil moisture at 10 cm. As the surface deepens (0-50 cm),
the spatial heterogeneity of the soil moisture decreases [45], so that the variation of the soil
moisture at 40 cm decreases. Until 100 cm, the soil is more active [46], and the soil moisture
variation is at its maximum. As the soil depth increases, the stability of the soil moisture
continues to increase [47], so that the 200 cm soil moisture varies the least.
Table 3. Descriptive statistics of the soil moisture data at different depths, from January 2012 to
March 2022.
Dependent Variable Unit Minimum Maximum Mean Standard Deviation = Coefficient of Variation
10 cm SM kg/m3 9.64 22.1 14.57 2.85 0.20
40 cm SM kg/rn3 29.71 61.7 42.38 7.48 0.18
100 cm SM 1<g/m3 42.36 93.45 55.35 14.54 0.26
200 cm SM kg/m3 164.48 168.56 167.22 0.98 0.01

In order to visualize the variation of the soil moisture at different depths, a line graph
was drawn, as shown in Figure 3. It is also clear from this graph that the soil moisture at
200 cm is almost a straight line with small variations. The soil moisture at 10 cm fluctuates
back and forth within a small interval. The variation in the soil moisture was greater at
40 cm and 100 cm and was similar for both.

According to the soil moisture prediction model, based on the depth and water balance
equation constructed above, the data of the VCR are needed to be obtained. However,
the VCR has only partial data from August 2020 to 2022, and the data are relatively
few. There is a close relationship between the NDVI and VCR [48], so this study uses a
regression model to construct a model of the NDVI and VCR. Then, the VCR from 2012 to
July 2020 was obtained by substituting the known NDVI from 2012 to July 2020 into the
regression equation.
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Figure 3. Line graph of the historical soil moisture data at different depths.

In order to investigate which model is more suitable for fitting the NDVI and VCR,
linear regression, quadratic regression and cubic regression models were constructed, and
the model summary is listed in Table 4. It shows that the F-test of the linear, quadratic and
cubic regressions are significant. Since the adjusted R-squared of the cubic regression is the
largest and all of the coefficients in the cubic regression are significant at the 0.05 level, the
method used in this paper is the cubic regression.

Table 4. Analysis of the different regression fitting results.

Models Summary Parameter Estimates
Model
Adjust R-Squared Prob (F-Test) c bl b2 b3
linear 0.764 0.000 —0.055 * 0.607 ***
quadratic 0.826 0.000 —0.011 0.067 0.941 **
cubic 0.864 0.000 0.008 —0.894 * 5.827 ** —5.778*

* Note: “*” means significant at 0.05; “**” means significant at 0.01; “***” means significant at 0.001.

The regression equation for the NDVI and VCR can be obtained from the parameter
estimates in Table 4 as:

VCR = 0.008 — 0.894NDVI + 5.827NDVI2 — 5.778NDV I3 9)

Upon completing the data on the VCR, the line graphs of the SE, P, LAl and VCR were
plotted in Figure 4, from which it was clear that there was a direct and significant seasonal
trend in these four variables. From this, the seasonal ARIMA model can be used to estimate
the prediction of the time series.

The predicted data of the SE, P, LAl and VCR by the seasonal ARIMA model are shown
in Table 5. From the predicted data and model calculations, ICy;y = 1.419. To simplify the
model, we assume that the vegetation density has little effect, so the value of k is set to 1
by default in this study. ICsore and AB can be calculated by substituting the data, both of
which are also shown in Table 5.
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T T T T T T T
2013.8  2015,4 2016, 12 2018,8  2020,4 2021, 12 2023, 8

Table 5. Prediction data for SE, P, LAI and VCR, and the fitted values of ICstor and AB.

Year Month SE P LAI VCR ICstore AB
4 10.8614 0.0000 0.7270 0.0140 0.0000 —10.8614
5 18.3533 65.4249 0.7390 0.0319 0.0452 —162177
6 23.1401 77.9889 0.8270 0.0919 0.1304 —20.6709
7 27.0137 89.3870 0.9640 0.2348 03332 —243674

2022 8 17.4328 69.7163 0.9830 0.2893 0.4106 —155195
9 13.1105 81.2433 0.8470 0.1724 0.2447 —10.6471
10 8.8015 64.5582 0.7380 0.0582 0.0825 —6.7321
1 23674 230.9857 0.7100 0.0102 0.0144 5.3177
12 0.9876 125.7876 0.6480 0.0007 0.0010 3.2044
1 0.6344 257.7069 0.6364 0.0059 0.0083 7.9474
2 0.7005 2925912 0.6507 0.0021 0.0030 9.0495
3 45560 88.0504 0.7168 0.0120 0.0170 —1.6379
4 9.9031 57.6033 0.7270 0.0186 0.0264 —8.0093
5 18.0552 83.1367 0.7390 0.0420 0.0596 153435
6 23.0474 83.1367 0.8270 0.1080 0.1532 —20.4294

2023 7 26.9849 83.1367 0.9640 0.2814 0.3992 246129
8 17.4238 83.1367 0.9830 0.3535 0.5016 —15.1542
9 13.1078 83.1367 0.8470 0.2137 0.3033 ~10.6398
10 8.8006 83.1367 0.7380 0.0701 0.0994 ~6.1288
1 23671 83.1367 0.7100 0.0078 0.0111 0.3930
12 0.9875 83.1367 0.6480 0.0002 0.0002 1.7835
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Since ICsope is directly related to the P and VCR, ICsye is 0 when there is no rainfall
in the dry season and no vegetation covered by snow and ice in winter. According to
the model constructed above, the soil moisture B, ;1 at depth h of the nth + 1st month
can be calculated by the soil moisture variation AB, the depth coefficient y and the soil
moisture fj, ; of the nth month. The regression models were performed for Af and the
soil moisture at different depths, from which coefficients y were obtained for the different
depths, and the p-values of the tests for the coefficients were all less than 0.05, indicating
that all coefficients were significant. The resulting soil moisture prediction data are shown
in Table 6.

Table 6. Predicted values of the soil moisture, based on the depth and water balance equation.

10 cm SM 40 cm SM 100 cm SM 200 cm SM
Year Month
Y10 = —0.1069 Y10 = —0.1357 Y100 = —0.0652 Y200 = —0.0018
4 15.12 52.35 94.11 164.44
5 15.59 52.23 96.09 164.32
6 15.91 51.57 98.81 164.15
7 16.12 50.45 102.15 163.94
2022 8 14.94 47.35 105.22 163.71
9 14.28 45.48 107.23 163.56
10 13.76 4412 108.58 163.47
11 12.41 41.95 108.80 163.42
12 12.68 42.66 108.14 163.47
1 12.21 42.26 107.35 163.51
2 12.16 4273 106.09 163.59
3 13.39 44.89 105.43 163.66
4 14.05 45.63 106.09 163.63
5 14.76 46.00 107.77 163.54
6 15.17 45.49 110.40 163.38
2023 7 15.42 44.46 113.73 163.17
8 14.18 41.26 116.81 162.94
9 13.56 39.46 118.79 162.79
10 12.98 38.02 120.09 162.70
11 12.22 36.66 120.58 162.65
12 12.08 36.50 120.43 162.65

3.1.2. The Soil Moisture Prediction Model, Based on the Seasonal ARIMA Model

In order to compare the accuracy of the predictions, a soil moisture prediction model,
based on the seasonal ARIMA model, was constructed in this study. The auto.arima
function is used to select the model with the smallest AIC and BIC, and the constructed
10 cm, 40 cm, 100 cm and 200 cm models are shown in Equations (10)—(13).

(1-0.7593B12)

— _ .
VizBio (1= 058528) * (10)
v/io\'* - (1—1.0677B + 0.225%3_2)0(? 8—6?)].34)081312 —0.2313B8%4) & (11)
VB10os = (1+0.5308B)e; (12)

— 1 — 0.9237B — 0.6746B2 + 0.8232B3) (1 — 0.3649B12 4 0.4964B%*
V2Baoo,; = ( il )( il )€t (13)

(1 —0.7436B — 0.59230B2 + 0.8941B%) (1 — 0.6271B12)

In Equations (10)—(13), B is the soil moisture at the different depths, B is the lag
operator, ¢; is the error term, and V means the difference.

Meanwhile, the QQ plots of the fitted models with the residuals are plotted separately,
as shown in Figure 5.
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Figure 5. QQ plots of the predicted residuals of the seasonal ARIMA model at the different depths.

Most of the residuals in Figure 5 closely follow the median trend line. The p-values of
the Ljung—Box test are greater than 0.05, none of which rejects the original hypothesis (the
Ljung—-Box test is used to test the randomness of the time series). These indicate that the
residuals meet the normality assumption and pass the white noise test, then the model can
be considered to have adequately fitted the data and can be used in the next step of the
forecasting process. The final predicted data were obtained, as shown in Table 7.

Table 7. Predicted values of the soil moisture, based on the seasonal ARIMA model.

Year Month 10 cm SM 40 cm SM 100 cm SM 200 cm SM
4 14.92 50.85 93.41 164.43
5 15.94 49.00 93.41 164.34
6 17.48 49.40 93.41 164.11
7 19.81 58.23 93.41 163.85

2022 8 18.51 55.37 93.41 163.54
9 17.64 56.20 93.41 163.23
10 15.71 53.16 93.41 162.94
11 14.00 51.28 93.41 162.78
12 13.34 50.99 93.41 162.72
1 12.60 50.81 93.41 162.69
2 11.98 50.68 93.41 162.64
3 12.73 50.57 93.41 162.57
4 13.62 49.84 93.41 162.45
5 15.18 4855 93.41 162.32
6 17.03 48.63 93.41 162.02

2023 7 19.54 55.45 93.41 161.69
8 18.36 52.96 93.41 161.32
9 17.55 54.00 93.41 160.97
10 15.66 51.72 93.41 160.66
1 13.97 50.32 93.41 160.50
12 13.32 50.18 93.41 160.41
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The soil moisture predictions, based on the seasonal ARIMA model, were obtained by
combining the predicted data with the original data, while 95% confidence intervals were
plotted for the predicted data, as shown in Figure 6.
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Figure 6. Soil moisture prediction results, based on the seasonal ARIMA model with a 95% confi-
dence interval.

From Figure 6, it can be seen that the predicted values and the confidence intervals
of the soil moisture at a 10 cm depth and 40 cm depth showed periodic fluctuations, but
the confidence intervals were larger at the 40 cm depth. At 100 cm, the model predicted a
horizontal straight line with a significant increase in uncertainty and a flared spread of the
confidence intervals. By the 200 cm depth, the variation in the soil moisture was smaller
and the confidence intervals were not significant.

3.2. Model Comparison

In order to see the trend of the prediction results more clearly, a comparison chart of
the prediction trend is drawn, as shown in Figure 7. Model A represents the soil moisture
prediction model, based on the depth and water balance equation, and Model B represents
the soil moisture prediction model, based on the seasonal ARIMA model.

The predicted data and the known data were combined to draw a line graph, as shown
in Figure 7. It can be seen from Figure 7 that the prediction results of Model A show a
fluctuating decreasing trend at 10 cm, 40 cm and 200 cm, and at 100 cm, the prediction
value increases with the previous trend, while Model B shows a different change. At a
depth of 10 cm, Model A predicts smaller periodic fluctuations in the soil moisture with a
small range of variation, while Model B predicts a larger trend of the periodic fluctuations
in the soil moisture with a large range of variation. At a depth of 40 cm, Model A predicts a
fluctuating decline in the soil moisture with time, but with large fluctuations, while Model
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B predicts that the soil moisture fluctuates back and forth within an interval with small
changes. At a depth of 100 cm, Model A predicts that the soil moisture will continue to
fluctuate upward with the previous trend, while Model B predicts that the soil moisture
will remain constant. At a depth of 200 cm, Model A predicts a small fluctuating decrease
in the soil moisture, while Model B predicts a much larger fluctuating decrease in the soil
moisture. On the whole, the soil moisture showed a regular pattern of periodic changes
involving large fluctuations, which is consistent with Cai’s findings [49]. Model A showed a
more moderate fluctuation at 10 cm and 200 cm, rising at 100 cm, according to the previous
trend, and fluctuating downward at other depths. Model B showed a clear cyclical pattern
at 10 cm and 40 cm, it predicted to remain constant at 100 cm, and declined more at 200 cm.
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Figure 7. Comparison of the overall trend of the soil moisture prediction by the different models.

Using the data from January 2012 to December 2020 as the training set, and January
2021 to March 2022 as the test set, the prediction errors of Model A and Model B were

obtained, as shown in Table 8.

Table 8. Comparison of the soil moisture prediction errors of the different models.

10 cm SM 40 cm SM 100 cm SM 200 cm SM
A B A B A B A B
RMSE 2.853 2.138 5.666 10.072 4.732 6.981 0.682 0.739
MSE 8.138 4.571 32.108 101.437 22.392 48.729 0.465 0.547
MAE 2.083 1.603 4.253 9.379 3.717 5.584 0.518 0.578
MAPE 13.369 9.299 7.969 17.529 4.231 6.207 0.315 0.351

Note: The values marked in bold are the smaller error values at the same depth.

It is clear from Table 8 that, as a whole, the prediction errors of both models increase
and then decrease with the increasing depth, with the largest prediction error at 40 cm
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and the smallest prediction error at 200 cm. This may be due to the regularity of other
influencing factors close to the surface, which creates a strong cycle. As the depth increases,
the soil moisture is less affected by the external influences until 200 cm, when it basically
maintains a stable state, so the prediction error at 200 cm is the smallest.

The error of Model A is larger than Model B at 10 cm because the soil at 10 cm is
affected by the atmosphere, vegetation and other factors [50,51], creating stronger cyclical
fluctuations, thus it is more consistent with the time series forecasting methods. However,
with the increase of the depth, the influence of uncertainties becomes larger and the
advantage of Model A comes into play. The errors of Model A were smaller than Model B
at 40 cm, 100 cm and 200 cm depths, and Model A has a high accuracy in predicting the
soil moisture with a weaker periodicity and regularity.

The prediction residuals for the different depths are plotted as area plots, as shown
in Figure 8. From Figure 8, it can be seen that the error fluctuation of Model A at 10 cm,
is larger than that of Model B, resulting in a lower overall prediction accuracy at 10 cm,
than that of Model B. However, the prediction residuals of Model A at 40 cm, 100 cm
and 200 cm, are smaller than that of Model B, with smaller prediction errors and a higher
prediction accuracy.
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Figure 8. Predicted residual area charts of different models at different depths.

The prediction of Model B was better at 10 cm; the prediction of Model A was better at
40 cm, 100 cm and 200 cm. This demonstrates the effectiveness of the soil moisture predic-
tion model, based on the depth and water balance equation, which exhibits a satisfactory
prediction performance and prediction accuracy. More importantly, in the soil moisture
prediction, the more accurate prediction values can be obtained using the different methods.
In this study, for example, a soil moisture prediction model, based on the seasonal ARIMA
model, can be used at 10 cm, and a soil moisture prediction model, based on the depth and
water balance equation can be used at 40 cm, 100 cm and 200 cm.
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4. Conclusions

In summary, this study proposes a soil moisture prediction model, based on the depth
and water balance equation that combines the water balance equation and the seasonal
ARIMA model. Compared to predicting the soil moisture using methods, such as machine
learning [52-54], the model can explain the variables and the model principles with a
theoretical significance. Compared to the monitoring and prediction of the soil moisture
using remote sensing data [55-57], the model is not only able to predict the soil moisture at
the surface, but also at different depths, based on the inclusion of the depth coefficients.
The experimental results showed that the model proposed in this study was able to provide
a higher prediction accuracy for the soil moisture prediction at 40 cm, 100 cm and 200 cm,
compared to the soil moisture prediction model, based on the seasonal ARIMA model. The
RMSEs of the model were 2.853, 5.666, 4.732 and 0.682 at 10 cm, 40 ¢cm, 100 cm and 200 cm,
respectively, and the overall predicted values were close to the true values, which could
accurately predict the soil moisture.

4.1. Theoretical Contributions

The soil moisture plays a key role in the sustainability of the grasslands, as predicting
the soil moisture helps to improve the drought prediction and agricultural crop produc-
tion, leading to the appropriate irrigation, grazing plans and water management. The
physics-based process model is more complex, and the absence or lack of information can
introduce some errors into the soil moisture prediction. Since the equations are built on
the assumption of the independence of local laws, they are not suitable for the medium to
long term predictions. The data-driven empirical models, such as machine learning, are
questionable because the principles of prediction are not available, and a small amount of
data can lead to underfitting and other problems. To address these shortcomings, this study
proposes a novel hybrid model for predicting the soil moisture, a soil moisture prediction
model, based on the depth and water balance equation, which integrates the water balance
equation with the seasonal ARIMA model and introduces a depth parameter to predict
the soil moisture at different depths. The model has a high prediction accuracy at 40 cm,
100 cm and 200 cm. This study also proposes that different models can be used for the
prediction at different depths, for example, using the soil moisture prediction model, based
on the seasonal ARIMA model at 10 cm and the soil moisture prediction model, based
on the depth and water balance equation at 40 cm, 100 cm and 200 ¢cm, from which more
accurate prediction values can be obtained.

4.2. Policy Implications

At present, due to population growth and economic development, the intensity of
land use has been increasing, leading to the destruction of the ecological environment
of the land resources and the emergence of more and more fragile ecological areas. This
seriously threatens the ecological security of the regional land resources and directly affects
the sustainable development of the region. The scientific evaluation of the ecological
safety of the regional land resources and the rational use of land are related to the fate
of the country and social development. The soil moisture plays an important role in the
research and application of the climate, environment and ecology, which can well reflect
the ecological environment quality status of the region, and is an important indicator for
monitoring the surface environment. The accurate prediction of the soil moisture can
provide an important theoretical basis for sustainable land use, water resources planning
and management and agricultural production. This has important implications for the
regional ecosystem conservation.

Different types of soils require different policies to protect the regional ecosystems. In
this study, the Xilingol League grassland is used as an example. The prediction shows that
by December 2023, the soil moisture at 10 cm will show a strong periodic fluctuation as
before, the soil moisture at 40 cm and 200 ecm will fluctuate down, and the soil moisture
at 100 cm will maintain the previous trend of rising. Overall, the moisture at 40 cm,
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100 cm and 200 cm, is roughly 3.18, 7.79 and 11.72 times that of the moisture at 10 cm.
The Xilingol League grassland in Inner Mongolia has a low precipitation and uneven
distribution, and in the process of promoting its sustainable development, the ecological
protection should be the center, and some local areas with severely degraded grasslands
should be the priority areas for construction and protection work. In order to prevent
the increase of the soil aridity and thus prevent the land desertification and soil slabbing,
the appropriate irrigation plans can be made and appropriate grazing can be achieved
to realize the scientific management of the grasslands [58]. This promotes the ecological
stability and the sustainable development of the grasslands, while rationalizing land use.

4.3. Limitations

Soil moisture is a complex nonlinear coupled system, which is greatly influenced by
the external environment and other factors. The limitations of this study mainly exist in
the following two points. First, the nature of the different soils is different. This study was
carried out only for the kastanozems in the grasslands of Xilingol League, and there is a
lack of research on the soil moisture relationships in other types of soils. Second, in order to
simplify the study, more assumptions were set in this study, which may be different from
the real situation.

4.4. Future Research Perspectives

In view of the shortcomings of the research in this paper, the paper can be improved in
the following two aspects when the conditions allow. First, the different soils are classified,
the exclusive models are constructed for the different types of soils and different depths,
and professional policies are provided, according to the regional conditions. Second, the
soil moisture is influenced by more external factors, and since the parameters are related to
the fixed-point data, the association between the local factors can be studied in depth, and
the association between the soil moisture and its influencing factors in the different regions
can also be explored. Thus, the constraint assumptions can be released, as much as possible,
to improve the generalization ability of the model and form a model that can be further
promoted. Subsequent research can be conducted, based on the above two aspects, to
obtain more accurate soil moisture prediction values, which can then promote sustainable
land use and the sustainable development of the regional ecology.
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