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Abstract: H5Nx highly pathogenic avian influenza (HPAI) viruses of clade 2.3.4.4 have caused
outbreaks in Europe among wild and domestic birds since 2016 and were introduced to North
America via wild migratory birds in December 2021. We examined the spatiotemporal extent of HPAI
viruses across continents and characterized ecological and environmental predictors of virus spread
between geographic regions by constructing a Bayesian phylodynamic generalized linear model
(phylodynamic-GLM). The findings demonstrate localized epidemics of H5Nx throughout Europe in
the first several years of the epizootic, followed by a singular branching point where H5N1 viruses
were introduced to North America, likely via stopover locations throughout the North Atlantic.
Once in the United States (US), H5Nx viruses spread at a greater rate between US-based regions
as compared to prior spread in Europe. We established that geographic proximity is a predictor of
virus spread between regions, implying that intercontinental transport across the Atlantic Ocean is
relatively rare. An increase in mean ambient temperature over time was predictive of reduced H5Nx
virus spread, which may reflect the effect of climate change on declines in host species abundance,
decreased persistence of the virus in the environment, or changes in migratory patterns due to
ecological alterations. Our data provide new knowledge about the spread and directionality of
H5Nx virus dispersal in Europe and the US during an actively evolving intercontinental outbreak,
including predictors of virus movement between regions, which will contribute to surveillance and
mitigation strategies as the outbreak unfolds, and in future instances of uncontained avian spread of
HPAI viruses.

Keywords: Influenza A virus; outbreak; wild birds; phylodynamic-GLM; Europe; North America;
virus diffusion; phylogeography; BEAST

1. Introduction

Highly pathogenic avian influenza (HPAI) viruses of clade 2.3.4.4 (H5Nx) emerged
in Southeast Asia in 2014 prior to spreading across much of Asia, Europe, North America,
and Africa, causing frequent outbreaks and high rates of mortality in wild and domestic
birds [1–8]. H5Nx viruses, which are descendants of A/Goose/Guangdong/1/1996(H5N1)
(Gs/GD), first detected in 1996 in China, frequently reassort with other HPAI and locally
endemic low pathogenic subtypes, resulting in a constellation of novel reassortant virus
lineages that have been isolated from a wide range of avian species [1]. Following their
emergence in Asia in 2014, H5Nx viruses of clade 2.3.4.4 migrated with wild aquatic birds
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across the Pacific into North America later in the same year, causing outbreaks in wild and
domestic birds until mid-2015 [4,9]. Despite the substantial, though short-lived, spread of
H5Nx (specifically H5N8, H5N1, and H5N2) in North America from this incursion event via
the Pacific route, H5Nx viruses have continuously circulated throughout Eurasia from 2016
until present, with a gradual but steady northward trajectory of virus movement in Europe
observed between 2016 and 2021 [10,11]. In December 2021, the first-ever documented
incursion of HPAI via the Atlantic route into North America was detected in St. John’s,
Newfoundland and Labrador, Canada, and subsequently caused significant mortality
among wild birds throughout the United States and Canada [12]. This novel introduction
of H5Nx viruses into North America via the Atlantic route raises questions about factors
that govern virus movement and spread within this multi-continent outbreak system
(through March 2022) and how changes to these factors over time may have facilitated the
first documented interhemispheric introduction of H5Nx viruses from Europe to North
America in late 2021.

Environmental, ecological, and anthropogenic factors have been investigated as
drivers of host and virus movement via Bayesian phylodynamics previously, including
H9N2 in Asia, H5N1 in Egypt, multiple subtypes of Influenza A virus (IAV) among wildlife
in North America, and Ebola virus during the 2013–2016 West African epidemic [13–18].
Northern temperate zones at the margins of the Atlantic Ocean are undergoing shifts in
climate regimes (i.e., increased air temperature, precipitation, and sea-surface temperature)
due to global climate change (GCC), which has been linked to alterations in avian host
ecology including migratory patterns, reproduction cycles, and trophic interactions [19–21].
Northward shifts in population distributions, for example, may increase the density of sus-
ceptible hosts for IAV infection year-round and the risk for more frequent interhemispheric
virus movement via short-distance flights across the Arctic perimeter [20,22–24]. Much
remains unknown, however, about the impact of environmental factors on the dispersal of
viral lineages, particularly during active epizootics of HPAI viruses at a multi-continental
scale [21,25–30].

This study combines Bayesian phylodynamic and generalized linear modeling (Phylod
ynamic-GLM) to uncover ecological and environmental predictors of H5Nx HPAI virus
diffusion in Europe and the US between 2016 and early 2022. We hypothesize that ge-
ographic proximity between regions and higher latitude are predictive of greater H5Nx
HPAI virus movement. Additionally, we project that changes in air temperature and
precipitation over time (which have almost universally increased on average across the
globe in recent decades) will be predictive of decreased virus movement due to ecological
disturbance these changes may cause, resulting in altered avian host distributions and
lessened environmental virus survival due to higher air temperature and greater rainfall.
Uncovering environmental and ecological factors that predict HPAI virus dispersal will
provide increased insights into how current and future ecosystem shifts may impact host
and pathogen ecology and will demonstrate the importance of climate-aware surveillance
and mitigation strategies.

2. Materials and Methods
2.1. Dataset

All publicly available avian-derived (domestic and wild) H5Nx HA segment sequences
of clade 2.3.4.4 from Europe and North America between 2016 and 2022 were downloaded
from the Influenza Research Database (IRD) [31] on 12 May 2022 (n = 321). The date
range for this analysis reflects the period of viral circulation in avian hosts in Europe
and North America following its eradication from North America in 2016 and prior to
subsequent introduction back to North America in 2021. We added 170 publicly available
H5Nx HA sequences from 2021 to 2022, downloaded from GISAID on 15 May 2022, as
these were unavailable on IRD at the time of sequence acquisition, and 15 novel H5N1
HA sequences from avian surveillance in Massachusetts, USA, by our research group in
2022 (described elsewhere [32]), totaling 546 HA sequences. Metadata for each sequence
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were collected, including sampling date, season, host species, and geographic sampling
location. Only IAV sequences from wild avian species or environmental matrices were
included. Duplicate sequences; sequences with less than 75% unambiguous bases; all
vaccine derivative and recombinant sequences; and sequences with unavailable isolation
date, location, or host species were excluded, resulting in 506 sequences. Downsampling
was performed to ensure relative evenness of geographic state groupings while preserving
genetic diversity of the dataset, using the geographic state and year for random stratification.
To root and historically time-calibrate the tree, H5 subtype HA avian sequences from
IRD were downloaded for the period 1979–2015 from Europe and North America and
randomly downsampled by year, resulting in 33 historic sequences. These sequences
were ‘masked’ to ensure their contribution to the tree structure but not to quantification of
diffusion rates or the GLM [33]. The total downsampled dataset, including the outgroup
(GISAID sequences from North America (n = 170), unpublished Massachusetts sequences
acquired by our group (n = 15), publicly available H5Nx sequences from Europe 2016 to
early 2022 (n = 160)), and historic sequences (n = 33) resulted in a total of 378 sequences
(Supplementary Table S1). Multiple sequence alignments were performed using MUSCLE
in Geneious Prime 2022.05.14 and trimmed to the open reading frame.

2.2. Time-Scaled Bayesian Phylogenetic Analyses

Bayesian molecular clock analyses were conducted using the Markov chain Monte
Carlo (MCMC) method in BEAST v.1.10.4 [34] to construct time-scaled phylogenetic trees.
Phylogenetic analyses implemented a Generalized Time-Reversible model (GTR) of nu-
cleotide substitution [35] with a gamma plus invariant sites distribution of site heterogeneity
(the Yang96 model [36]), with a lognormal uncorrelated relaxed molecular clock [37], and a
constant coalescent population model [38]. The BEAGLE library, which optimizes computa-
tional efficiency, was used [39]. Eight independent MCMC analyses were run for 200 million
generations, sampled every 20,000 runs, and parameter convergence and effective sample
size (ESS) (required to be >200) were evaluated in Tracer v.1.7.1 [40]. Using LogCombiner
v.1.10.4, 10% or greater burn-in was removed from each run, and independent runs were
combined to establish the maximum clade credibility (MCC) tree, from which the last 500
trees from the posterior distribution were extracted and used as the empirical tree set for
all subsequent phylodynamic analyses [41]. Trees were visualized using Figtree v1.4.4 [42].

2.3. Discrete Trait Diffusion Analyses between Geographic Regions

To infer significant discrete trait transition rates along phylogenetic tree branches of
H5Nx subtype HA sequences between geographic regions, discrete trait diffusion Bayesian
phylodynamic analyses were performed using BEAST v.1.10.4 [34]. We used an asymmetric
substitution model with Bayesian stochastic search variable selection (BSSVS) and a strict
clock model to estimate the most parsimonious diffusion between discrete states [43].
Sampling locations were grouped into geographic state categories, based on modified
National Oceanic and Atmospheric Administration (NOAA) historical climate regions
(locations in the US) and grouped countries by latitude (locations in Europe). Posterior
inference of the complete Markov jump history through time was evaluated by quantifying
transitions between discrete states (Markov jumps, i.e., the frequency of transitions from
one geographic state to another along phylogenetic branches) and the duration of time
viruses spend in each discrete state (Markov rewards) [44].

2.4. Generalized Linear Models and Empirical Predictors

As an extension to the discrete trait diffusion models, GLMs were implemented to
quantify and evaluate predictors of transitions between geographic states along phylo-
genetic branches. GLM models parameterize transition rates between discrete states as
outcomes of a log-linear combination of matrixed covariate predictors [45]. Specifically, we
modeled diffusion between geographic region states, using a non-reversible continuous-
time Markov chain (CTMC) process expressed as an X-by-X rate matrix of discrete state
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change (Λ) among X discrete states (geographic regions) [45,46]. The rate of transition from
discrete state i to discrete trait j (Λij) is modeled through a linearized log function which
incorporates all pairwise predictors (p1, . . . , pn) in the following equation:

logΛij = β1δ1 log(p1{ij}) + β2δ2 log(p2{ij}) + · · · + βnδn log(pn{ij}),

where βi is the relative contribution of predictor pi to the whole GLM across the empirical
phylogenetic tree space, and δ is a binary indicator of a predictor’s inclusion in the MCMC
simulation [46,47]. A Bernoulli prior probability distribution was used to equally weigh
the probability that a given predictor would be included or excluded from the model [45].
The probability that a single parameter is included in the model is as follows:

qq = 1 − eˆ[ln(p)/n],

where p is the probability of no coefficients are included (0.5 as default), and n is the number
of total coefficients. Statistical support for diffusion among discrete states was determined
by Bayes Factors (BFs): 3 ≤ BF < 20, 20 ≤ BF <150, and BF ≥ 150, denoting positive,
strong, and very strong support, respectively [48]. BFs represent the odds of the posterior
probability (pp) of a coefficient’s inclusion in the model over its prior probability (qq):

BF = [pp/(1 − pp)]/[qq/(1 − qq)],

where pp is calculated from BSSVS results, and qq is calculated based on the prior assump-
tion that there is a 50% probability that none of the coefficients are included in the model.
In addition to BFs, 95% Highest Posterior Density (HPD) credible intervals were derived
for each predictor, and these provide information on the certainty of each parameter value.
Posterior probabilities were calculated to demonstrate a predictor’s inclusion in the model
(only predictors with BF ≥ 3 and posterior probability ≥ 0.25 were considered statistically
supported for model inclusion), and GLM coefficients provide conditional effect sizes
for each predictor. All non-binary (i.e., not labeled as 0,1) continuous predictors were
log-transformed and standardized prior to implementing the model in BEAST v.1.10.4 [34];
therefore, a GLM coefficient of 1.0 can be interpreted as an increase of one transition per
year for every one unit increase in the log-transformed predictor. Each GLM was performed
with at least four independent MCMC runs, containing 200 million generations which were
sampled and logged every 20,000 runs.

To inform the diffusion of H5Nx viruses between geographic regions, several envi-
ronmental, ecological, and geographical predictors were selected. Predictors were selected
following a review of the literature regarding ecological and environmental factors that
have been or are hypothesized to be associated with the movement and spread of IAV and
other pathogens by wildlife [15,16,18,49,50]. We also included predictors not previously
evaluated, including predictor value change through time (i.e., change in precipitation
across years (mm)). These were selected based on hypotheses associated with the relation-
ship between climate change and alterations in host–pathogen ecology of IAVs [20,23,51,52].
Variables reflecting the relationship between regions (i.e., distance between centroids, and
shared borders) were included in the model once, whereas all other predictors were in-
cluded twice, to measure the directionality of rates of virus transitions between geographic
regions. For example, the values of average precipitation at both the geographic region of
origin and destination of viral transitions were included to determine whether precipitation
at the region of origin or the region of destination was predictive of spatial movement of
H5Nx between geographic states. Continuous variables represent the average value for
each geographic region and timeframe. All predictors are further described in Table 1.
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Table 1. Environmental, ecological, and geographic predictors of virus diffusion in the Europe-North
American system of H5Nx of clade 2.3.4.4.

Predictor Justification Value Data Source

Distance between
centroids

Decreased distance between states has been
shown to relate to viral spread between
geographic states in several
phylogeographic-GLM models [15–17,45].

Great circle distance in
kilometers (km)
between geographic
state centroids

Google Earth

Latitude

Given that many migratory avian species
breed in northern latitudes, higher latitudes
may increase global dispersal of IAVs due to
transmission dynamics between adults and
juveniles at breeding ranges, spreading
viruses globally [13,15–17,24].

Decimal latitude at
exact centroid of
geographic region

Google Earth

Shared borders

Shared borders have been implicated in the
spread of viruses between both humans and
animals due to geographic proximity and
movement patterns [13,50].

Binary 0/1 (no/yes) Google Earth

Northward movement

Northward movement has been associated
with global spread of IAVs due to the
condensed land masses around the
circumpolar perimeter of the Arctic that
connect hemispheres, particularly following
breeding season [10,11]. Northward
movement has not been previously used as a
predictor in standard GLMs.

Binary 0/1 (no/yes)
whether geographic
state of origin is north
by latitude of state of
destination

Google Earth

Precipitation
Precipitation has been modeled in GLMs
previously, with varying significance
[13,15–17,49].

Mean yearly
precipitation in mm,
2020

US: NOAA National Centers
for Environmental
Information; Europe: The
World Bank Open Data

Change in
precipitation

Change in precipitation has not been
previously used as a predictor in
standard GLMs.

Difference between
mean precipitation of
1901–2000 and that of
2020

US: NOAA National Centers
for Environmental
Information; Europe: The
World Bank Open Data, The
World Bank Group Climate
Change Knowledge Portal

Air temperature
Air temperature has been modeled in GLMs
previously, with varying significance
[13,15,16,18,49].

Mean yearly air
temperature in Celsius,
2020

US: NOAA National Centers
for Environmental
Information; Europe: The
World Bank Open Data

Change in air
temperature

Change in air temperature has not been
previously used as a predictor in
standard GLMs.

Difference between
mean temperature of
1901–2000 and that
of 2020

US: NOAA National Centers
for Environmental
Information; Europe: The
World Bank Open Data, The
World Bank Group Climate
Change Knowledge Portal

Sample size

Commonly included in GLMs to account for
different sample sizes by state, which can
bias results. GLM assumes that the sample
sizes across subpopulations are proportional
to the subpopulation sizes [13].

Count of virus
sequences from each
geographic state

Downsampled dataset

Continental location of
sequence:
Europe or
North America

There may be geographic differences in virus
diffusion due to continental land size,
proximity to nearby regions, or composition
of host diversity and abundance in given
regions. This has not been
modeled previously.

Binary (0/1) Downsampled dataset
metadata
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3. Results
3.1. Bayesian Phylogeography of the H5Nx HPAI Virus Clade 2.3.4.4 Outbreak in Europe and
United States, 2016 to Early 2022

H5Nx viruses circulated in Europe for almost 5 years prior to a singular intercontinen-
tal introduction event of H5N1 from Central Europe to the US (most likely via Canada, as
detailed in the Discussion), specifically to South Carolina in the Midwest and Mid-Atlantic
region (BF = 76) (Figure 1 and Supplementary Table S2).
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Figure 1. Markov Chain Monte Carlo (MCC) time-scaled phylogeographic tree of H5Nx Influenza
A viruses (IAV) of clade 2.3.4.4. HA gene segments, color-coded by geographic source region.
The phylogeographic tree with 95% Highest Posterior Density intervals featured in Supplementary
Figure S1.

Prior to and following the intercontinental incursion of H5N1 to North America in
late 2021, H5Nx viruses circulated within Europe, transitioning with the most intensity and
highest statistical support from Northern to Central Europe (BF = 47,475). Central Europe
served as a highly significant source region to both southern (BF = 2152) and northern
(BF = 14) regions (Supplementary Table S2). The Southern European region acted as a sink
of virus and not a source back to other European regions (Figure 2A,B and Supplementary
Table S2). H5Nx viruses circulated in Northern Europe for the greatest duration of time
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between 2016 and 2022 (32.8% of this time period), as measured by Markov rewards, which
represent the mean proportion of time that viruses circulate in each geographic region
during an outbreak, followed by Central Europe (30.0%) and Southern Europe (10.2%).
H5Nx viruses continuously circulated in Mainland Europe for 73.0% of the time between
2016 and February 2022 (Supplementary Table S3).
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spread within the United States, with no statistically supported transitions back to any 
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Figure 2. (A) H5Nx circulation in Europe and the US during outbreaks between 2016 and 2022.
Significant discrete phylogeographic transitions between regions are represented by arrows from
Northern Europe to Central Europe (BF = 47575), Central Europe to Southern Europe (BF = 2152),
Midwest and Mid-Atlantic to Northern Rockies and Plains (BF = 1526), Midwest and Mid-Atlantic
to Upper Midwest (BF = 858), Midwest and Mid-Atlantic to Northeast USA (BF = 692), Central
Europe to Midwest and Mid-Atlantic (BF = 76), Central Europe to Northern Europe (BF = 14), Upper
Midwest USA to Northern Rockies and Plains (BF = 12), and Northern Rockies and Plains to Upper
Midwest USA (BF = 9). Only BFs > 3 with corresponding posterior probability (PP) estimates > 0.25
are presented as statistically supported. Arrows signify directionality, and greater arrow width corre-
sponds to higher BF support of phylogeographic transitions between intracontinental geographic
states. The bullseye signifies the first detection of HPAI in December 2021 in St. John’s, Canada,
likely via Iceland and/or Greenland (Caliendo et al., see references), prior to introduction to the
Midwest and Mid-Atlantic region. BFs and PPs for state transitions between all regions can be found
in Supplementary Table S2. Map is not drawn to scale. (B) Mean transition rates between global
regions. Chord diagrams depicting Bayes factors (BFs) for virus movement between regions within
and between Europe and the US. Chord width is proportional to the mean transition rate from origin
regions to destination regions. Statistically supported BFs (BF > 3.0) are depicted by red-shaded
chords, with the strength of statistical support increasing with intensity of shading from pink (statisti-
cally supported) to bright red (very strong statistical support). Gray chords demonstrate possible
transition between regions that demonstrated no statistical support (Supplementary Table S2).

Following the intercontinental introduction to North America, H5N1 viruses spread
rapidly between geographic regions in the United States. The Midwest and Mid-Atlantic
region served as a significant source of virus to both the Upper Midwest (BF = 858) and
Northern Rockies and Plains (BF = 1526). Transitions along an east–west axis occurred,
for example, between the Upper Midwest and the Northern Rockies and Plains (eastward
movement (BF = 9), westward movement (BF = 12)), though to a lesser extent than overall
transitions along a predominantly northward in direction south–north axis (Figure 2A
and Supplementary Table S2). Between approximately December 2021 and March 2022,
after viral introduction to North America via the Atlantic route, H5N1 viruses circulated
for the greatest duration of time in the Midwest and Mid-Atlantic USA (32.8%), 26.4%
of time Northeastern USA, 21.9% of time in the Northern Rockies and Plains, and 18.9%
of time in the Upper Midwest region (Supplementary Table S3). Of all geographic viral
transitions between US regions (represented by Markov jumps, which are defined as the
percent of regional transitions between regional states along phylogenetic tree branches),
37.1%, 33.1%, and 11.8% migrated at high rates from the Midwest and Mid-Atlantic to the
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Northern Rockies and Plains, Upper Midwest, and Northeast, respectively (Figure 2A,B
and Supplementary Table S2). All other transitions between US regions occurred at rates
less than 7%. Between December 2021 and March 2022, H5N1 viruses circulated and spread
within the United States, with no statistically supported transitions back to any European
regions (Figure 2A,B and Supplementary Table S2).

3.2. Generalized Linear Model of Ecological and Environmental Predictors of H5Nx Diffusion in
Europe and the US, 2016–2022

Among continuous (Table 2) and binary predictor variables used to inform the
phylodynamic-GLM, summary statistics ranged widely between geographic regions, in-
cluding distance between centroids (km), latitude at origin, European region as a destina-
tion, annual temperature change at origin (◦C), annual temperature change at destination
(◦C), and location USA at origin. Given that the analysis was completed using all publicly
available H5N1 HA sequences in the United States during an ongoing outbreak, downsam-
pling the dataset to ensure relatively similar sequence counts by region was not possible.
To account for this variability (sample size per region ranged from 33 to 80) sample size was
included as a covariate predictor in the model to evaluate whether inclusion probabilities
of other predictors were sensitive to the sample sizes in each geographic state (Table 2).
The final model contained 19 predictor variables, six of which were demonstrated to be
statistically supportive of inclusion within the model of viral spread between geographic
regions.

Table 2. Summary statistics of continuous predictor variables used to inform the Bayesian discrete
diffusion generalized linear model describing H5Nx HPAI of clade 2.3.4.4 diffusion in Europe and
the US, from 2016 to early 2022. Additional binary predictors not featured in the table include shared
borders, continent location USA (origin and destination), continent location Europe (origin and
destination), and northward movement.

Variable Name Mean Standard Deviation Range

Distance between centroids (km) 4587.3 3101.5 690–7564
Precipitation (mm) 838.2 262.8 473.8–1163.2

Precipitation change (mm) 34.8 38.2 −2.35–108.0
Temperature (◦C) 10.13 2.66 7.60–14.39

Temperature change (◦C) 1.37 0.092 1.23–1.48
Latitude 43.7 5.9 34.9–52.9

Sample size (count) 50.3 15.78 33–80

The phylodynamic-GLM analyses found that geographic proximity (i.e., the distance
between geographic centroids of each region) revealed very strong support for model
inclusion (BF = 253.24), demonstrating that virus movement between regions was inversely
associated with greater distance between regional geographic centroids (median coeffi-
cient = −2.13). Overall, viral transitions to European regions resulted in less onward viral
movement (median coefficient = −2.27; BF = 9.43); however, when the origin location of
viral transitions was in the US, significantly greater viral movement was found (median
coefficient = 0.92; BF = 6.22), revealing increased viral spread in the United States as com-
pared within Europe following the December 2021 introduction of H5Nx viruses to North
America via wild bird migration. Contrary to our hypothesis, northward movement of
viral diffusion was not statistically associated with increased geographic spread (BF = 2.07),
and a higher latitude at the origin of viral transitions between regions was associated
with less viral movement overall (median coefficient = −2.27; BF = 12.29). The results
demonstrated that a location in Central Europe was the most statistically supported origin
for the intercontinental transmission of H5N1 to North America in late 2021. Greater
changes in air temperature over time at the origin (BF = 17.44) and destination (BF = 9.28)
of viral transitions between regions were found to be associated with decreased H5Nx
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spread in Europe and the US. The additional 13 predictors included in the model failed to
demonstrate statistical support (Figure 3 and Supplementary Table S4).
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through circles) demonstrate certainty of the conditional effect. On the right panel, a predictor is
included in the model when a Bayes factor (BF) > 3.0 (dashed vertical line) and posterior probability
≥ 0.20. Gray, blue, and red circles and bars signify no association, statistically supported negative
association, and statistically supported positive association, respectively.

4. Discussion

The findings from this study provide novel data on the migration of clade 2.3.4.4 H5Nx
HPAI viruses among geographic regions within and between Europe and the US during
2016 and early 2022, as well as geographic and environmental predictors of virus spread.
Specifically, we found that greater spread was associated with virus migration originating
in US regions and between geographically proximal regions, and virus migration was
negatively associated with regional temperature change overall. Given the novel Atlantic
route introduction and unprecedented geographic scope of the outbreak among wild and
domestic birds, as well as terrestrial and marine mammals, these data provide important
ecogeographic context regarding factors predictive of virus spread within the dual continent
outbreak system [1,2,32,53–55].

The first recorded introduction of H5N1 viruses from Europe to North America, most
likely via long-distance migratory birds, was detected following an unusual mortality event
on an exhibition farm in Newfoundland and Labrador, Canada, in December 2021. This
was the first detection of H5Nx HPAI viruses in North America since previous outbreaks in
2014–2015 spread by wild birds migrating across the Pacific route from East Asia [12]. Our
Bayesian phylodynamic analysis of the HA segment of H5Nx HPAI viruses in Europe and
the US establishes that a divergence event occurred sometime during 2020–2021, where
North American viruses split from their most recent common ancestor with European
lineage H5Nx viruses (Figure 1 and Supplementary Figure S1). Though H5N1 viruses were
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not detected in Newfoundland and Labrador until the end of 2021, circulation across the
Atlantic may have been facilitated by (a) the seasonal spring migration of Anseriformes (e.g.,
Eurasian Wigeon, Barnacle Geese, or Greylag Geese) from Mainland Europe to breeding
grounds in Iceland or Greenland, and (b) the subsequent autumn migration of several gull
species (e.g., Greater Black-Backed, Lesser Black-Backed, and Black-Headed Gulls) whose
pelagic migratory patterns link these regions with Northeastern Canada [12,56,57]. Though
a direct nonstop transatlantic incursion is possible, it is far more probable that interspecies
transmission events on breeding grounds in the North Atlantic, particularly from adult
to immune-naïve juvenile birds, enabled the necessary conditions for intercontinental
spread [12,24,58].

Our phylogeographic analysis supports data demonstrating that the first detected
introduction to the United States occurred in South Carolina in the Midwest and Mid-
Atlantic region in late December 2021 [58]. H5N1 was first detected in this region in an
American Wigeon and American Blue-Winged Teal (Supplementary Table S1). Though
the ancestral and epidemiological relationship between H5N1 isolates detected in Canada
and South Carolina remain unknown, it is most likely that the virus was introduced to
late-season birds migrating southward from Canada along the Atlantic flyway in late 2021,
which then seeded populations of birds migrating northward through the Carolinas in the
subsequent spring, as is supported by our phylogeographic analysis depicted in Figure 2A.

Geographic proximity has previously been shown to be predictive of virus movement
between global regions [15,16,18]. In our analysis, less distance between geographic regions
was associated with increased viral diffusion, specifically 2.13 times more transitions per
year for every one unit increase in the log-transformed predictor value. Our findings
support observations that short-distance transmission drives global spread of H5Nx HPAI
among avian populations and that long-distance trans-ocean or trans-continental virus
movement by a single infected bird is a less frequent ecologic phenomenon. Gravity models,
in which infectious-disease transmission is a function of population size and geographic
distance, were first described for Influenza epidemics by Viboud et al. in 2006, and later
adopted by Dudas et al. (2017) regarding the spread of Ebolavirus during the West African
epidemic during 2013–2016 [18,59]. Early work conducted by members of our group
also demonstrated strong seasonal synchronization of human influenza outbreaks in the
continental US, accounting for seasonal human migration patterns [60–62]. Our finding that
geographic proximity predicts the viral spread of H5Nx HPAI follows the same mechanism.
Our findings demonstrate that highly synchronized local epidemics occurred throughout
Mainland Europe during 2016–2021, which led to time-bound interactions between infected
and susceptible wild birds in Central Europe, facilitating the gradual migration of H5Nx
HPAI viruses across the North Atlantic to North America.

Our findings also reveal greater geographic viral spread from regions originating in
the USA. Given our data also demonstrate no viral transmission events from the USA back
to Europe following the December 2021 introduction event, these findings signify greater
spread within the USA (in 2021–2022) as compared to Europe (in 2016–2022). Reasons
for such rapid and uncontrolled spread within the US may include the (a) differential
native species composition of North American birds; (b) high rate of susceptibility of
diverse immune-naïve avian species to H5N1; and/or (c) geographic size of the continent,
which may encompass the entire annual cycle for many bird species [4], increasing the
likelihood of endemic local circulation. Additionally, previous research has demonstrated
that HPAI introduction events to North America have increased the likelihood of onward
viral transport to South America via north–south axis flyways, as was recently documented
by our group [24,63].

There are roughly four times as many individual species of birds in North America as
compared to Europe (2059 species versus 544 species) [64,65]. While evidence is lacking
with respect to the relationship between avian species diversity and IAV spread, recent
data have demonstrated that transmission relies on ecologically divergent bird hosts, and
taxonomic diversity is associated with differences in H5N1-associated wild bird mortality
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between global regions [63,66]. Increased virus diffusion in the US may also relate to
the relative immune naivety of avian species in the US versus Europe (or differences in
susceptibility between Old and New World species), given that H5Nx HPAI viruses did not
circulate in the North American region for approximately 6 years between 2015 and 2021 [1].
Comparatively, the endemicity of H5Nx viruses in Europe could have created a cycle of
largely immune species due to frequent exposure during 2016–2022, lessening opportunities
for viral spread compared to the novel introduction event to North America and subsequent
rapid spread. Phylogeographic data from the US also indicate far more south-to-north virus
migration than east–west migrations in either direction. While data on interactions between
migratory flyways in North America have historically been contradictory, a recent study
demonstrated that IAV dispersal within flyways was up to 13 times greater than between
flyways, suggesting that the predominant gradient of diffusion of IAVs transpires along
the north–south axis of within-flyway migration in North America, which our findings
support [15,67].

Environmental factors and their average change over time have been shown to im-
pact both host and pathogen ecology for a variety of wildlife species and infectious dis-
eases [52,66,68,69]. The role of temperature fluctuation in the origin and destination regions
of viral transitions, defined as the difference (in ◦C) in 2020 from the mean temperature
recorded during the preceding century (1901–2000), was determined to be a predictor of
decreased geographic viral spread of H5Nx HPAI viruses in GLM analyses. Though our
model does not measure the directionality of temperature change itself, air temperature
in all regions featured in the analysis increased between the latter time periods; therefore,
our findings indicate that greater increased mean temperature values through time in
both origin and destination regions of viral transitions are predictive of reduced H5Nx
HPAI virus diffusion. There are several explanations for this finding. First, increased tem-
perature has been associated with decreased survival of IAVs in environmental matrices
(a major contributor to seasonal transmission dynamics), resulting in decreased indirect
exposure among birds migrating to and from regions with increased average temperature
change over time [19,69–74]. Second, climate-change-driven wetland loss may result in
shifts in migratory strategy (timing and length of stay) to regions with more stable envi-
ronmental trends in temperature change over time. Previous research, for instance, has
proposed that climate change, including increases in temperature, will alter the distribu-
tion, migratory behavior, and residency of avian hosts to regions with milder temperature
fluctuation [20,21], which we suggest may concentrate host abundance and shedding away
from temperature-variable regions to regions experiencing less variability in temperature
shifts. Finally, it should be noted that environmental factors are unlikely to impact host and
pathogen ecology in isolation, and interactions between precipitation and air temperature
(and other factors) may be heterogenous between global regions, thus adding complexity
that our phylodynamic-GLM is not designed to measure [75]. More research is needed to
understand the combined impacts of temperature change and other environmental trends
on IAV movement between global regions and among wild and domestic avian hosts.

Multiple research avenues derived from the findings of this study are warranted. First,
while our data present important findings regarding H5Nx HPAI diffusion in Europe and
the US, we encourage comparison of these findings to similar analytical output from the
2014–2015 outbreak in North America which was seeded by virus migration from Asia via
the Pacific route. We expect that differences in species diversity and the rate of transmission
between North American regions will elucidate important ecological differences between
outbreaks seeded by Asian-versus-European-origin migratory birds. Such a comparative
analysis will provide novel insights into the ecology of HPAI outbreaks in North America
and will contribute to future predictive models and surveillance strategies. Second, there is
a need to innovate methods to facilitate the integration of publicly available IAV sequence
data with ecological and environmental data associated with sampling dates and GPS
locations. Such an effort would make predictive models of ecogeographic drivers of
IAV transmission and movement more accessible and precise. For instance, metadata
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associated with publicly available sequences are most often limited to origin location
of sequence isolate, host species, sampling date, and subtype. An algorithm (similar to
GeoBoost2, a natural language processing pipeline for location extraction of molecular
sequences [76]) may be designed to extract important metadata from location attributes
of IAV sequences, including but not limited to the following environmental metadata:
elevation, mean air temperature in sampling season, mean precipitation in sampling season,
Normalized Difference Vegetation Index (NDVI) value on date of sampling, mean wild
avian population density, and mean domestic avian farm density, among others. These data
would be easily downloadable using GenBank accession IDs and may facilitate ecological
and environmental analyses associated with IAV movement, interspecies transmission,
geographic spread, and environmental persistence, among many other topics.

4.1. Limitations

This study does have limitations. First, at the time of the analysis, the availability of
published sequence data for the actively unfolding outbreak of H5Nx of clade 2.3.4.4 in
North America following its 2021 introduction was limited due to non-uniform practices
related to publishing virus sequence data, among other reasons. Second, due to the
fact that avian surveillance is not systematic across space and time, regional groupings
for this analysis were necessarily geographically vast, encompassing multiple countries
(Europe) and states (USA). For Europe, regional groupings were determined based on
relative latitude, given that environmental factors tend to trend by the earth’s latitudinal
gradient [77]. For the USA, regional groupings were determined by modifying NOAA’s
US Climate Regions to ensure that all publicly accessible data from the USA would be
included in the model and maintain a reasonable sample size, while preserving climactic
consistency. USA regions of Northeast, Upper Midwest, and Northern Rockies and Plains
were well-represented in terms of sample size and geographic coverage; however, the
Midwest and Mid-Atlantic zone includes states within three distinct climate zones. While
these states generally lie within the same latitudinal range, the Midwest and Mid-Atlantic
regional grouping may have limited the model’s power regarding transitions involving
this region or the GLM’s predictors themselves. Third, host immune defenses exert more
selective pressures on the HA gene than other non-external genes; therefore, unmeasured
non-ecological forces may have influenced our evolutionary phylogenetic reconstruction
more so than if we had chosen to model one or more different gene segments. Fourth,
Markov rewards, the duration of time viruses will circulate in each region relative to all
global regions, indicated that H5Nx HPAI viruses circulated in Europe for 73% of the time
in the sampling timeframe of 2016–March 2022. Inversely, during 27% of the latter period,
viruses were circulating in the United States. While H5N1 was first detected in December
2021, these viruses could have been introduced prior to this date; however, it is highly
doubtful that the introduction occurred approximately 1.6 years prior (the equivalent
of 27% of time during 2016–March 2022). We believe that the inferred underestimation
of duration of virus circulation in Europe is due to our downsampling strategy, which
attempted to preserve virus diversity while ensuring relative evenness of sequence counts
per region. The vast majority of viruses circulating during this time period was doing so in
Europe; therefore, we could have downsampled the dataset relative to prevalence by region.
However, this was not possible given the dearth of available prevalence data by region
in the emergent North American outbreak at the time of analysis, which was restricted to
several states within the US. Fifth, given the ongoing nature of the outbreak, data included
and findings from this study are limited to a cross-section of time from January 2016 to
March 2022. As the outbreak has evolved beyond March 2022, new data have emerged
that warrant a follow-on inquiry, including H5N1 incursions via the Pacific route at about
the same time as viruses were introduced across the Atlantic to North America in early
2022 [78]. Viral genetic sequences demonstrating H5N1 incursion events via the Pacific
were not publicly available at the time of this analysis and may have contributed to a more
comprehensive picture of viral diffusion in North America as of late 2021 until March 2022.
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4.2. Conclusions

The findings from this study reveal the geographic extent and directionality of the
H5Nx HPAI virus outbreak within and between Europe and the US from 2016 and through-
out the early few months following the introduction to North America in 2022. The data
demonstrate localized epidemics of H5Nx throughout Europe in the first several years of
the epizootic, followed by a singular branching point where H5N1 viruses were introduced
to North America across the Atlantic via wild migratory birds. Once in the US, H5Nx HPAI
viruses spread at a greater rate between US-based regions along migratory flyways, and
no evidence points to spread back to any European region by March 2022. Overall, our
GLM demonstrated that geographic proximity is a predictor of virus diffusion between
regions, which implies that intercontinental spread across the Atlantic is relatively rare and
may coincide with spring migration of susceptible avian species to regions in the North
Atlantic. Finally, greater positive temperature change in both origins and destinations of
viral transitions was predictive of reduced H5Nx HPAI virus spread, which may reflect
reduced environmental persistence of the virus in higher ambient temperatures, declines in
host species abundance in regions with elevated temperature, and changes in migratory
patterns due to ecological alterations. Our data provide new knowledge about the spread
and directionality of H5Nx HPAI virus dispersal throughout Europe and the US, includ-
ing predictors of virus movement between regions which will contribute to surveillance
and mitigation strategies as the outbreak unfolds, and can be used for future instances of
uncontained avian spread of HPAI viruses.
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the analysis; Figure S1: 95% Highest Posterior Density Tree of phylogeographic transitions between
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