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Abstract: In youths, two cut-offs (133 and 155 mg/dL) have been proposed to identify high glucose
levels at the 1 h (G60) mark during an oral glucose tolerance test (OGTT). We evaluated which cut-off
was more closely associated with isolated impaired glucose tolerance (IGT) and cardiometabolic
risk (CMR) in 1199 youth with overweight/obesity (OW/OB) and normal fasting glucose and/or
HbA1c. The disposition index (DI) was available in 724 youths. The sample was divided by two
cut-offs of G60: <133 mg/dL (n = 853) and ≥133 mg/dL (n = 346), or G60 < 155 mg/dL (n = 1050) and
≥155 mg/dL (n = 149). Independent of the cut-off, youths with high levels of G60 showed higher
levels of G120, insulin resistance (IR), triglycerides to HDL ratio (TG/HDL), alanine aminotransferase
(ALT), and lower insulin sensitivity (IS) and DI than youths with lower levels of G60. The percentage
of youths showing IGT, IR, low IS, high TG/HDL ratio, high ALT, and low DI was 50% higher in
the G60 ≥ 133 mg/dL group than in the G60 ≥ 155 mg/dL one. In youths with OW/OB and IGT, a
cut-off of G60 ≥ 133 mg/dL is more useful than G60 ≥ 155 mg/dL to identify those at high risk of
IGT and altered CMR profile.

Keywords: one-hour post-load plasma glucose; obese; youth; glucometabolic; impaired glucose tolerance

1. Introduction

In recent decades, with the rising prevalence of obesity (OB) in pediatric age, the
incidence of associated cardiometabolic comorbidities has also increased [1]. Glucose
dysregulation ranging from prediabetes to overt type 2 diabetes (T2DM) has often been
observed in youth with overweight (OW) or OB [2].

Prediabetes is a condition characterized by a concentration of glucose above the normal
level but lower than values that identify overt diabetes. It encompasses both impaired
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glucose tolerance and impaired fasting glucose [3]. A recent meta-analysis reported that
obese subjects have a three times higher prevalence of prediabetes than non-diabetic
individuals. Additionally, T2DM, prediabetes, and indices of glucose dysmetabolism are
positively correlated with body mass index (BMI) in obese children and adolescents [4].

Evidence suggests that prediabetes influences the development of atherosclerotic
cardiovascular diseases (CVDs) in adults [5]. On the other hand, young individuals affected
by T2DM display an accelerated decline of insulin secretion and are at risk of developing
related complications; hence, preemptive risk-based screening to detect asymptomatic
subjects is crucial to quickly manage the condition [3].

The oral glucose tolerance test (OGTT) represents the gold standard for the diagno-
sis of glucose dysregulation so that individuals at high risk can be referred for lifestyle
intervention to prevent the progression to T2DM and associated complications.

The diagnosis of prediabetes, according to the American Diabetes Association (ADA),
is based on the assessment of fasting glucose (G0), two-hour plasma glucose after OGTT
(G120), or glycosylated hemoglobin (HbA1c) [3]. These methods differ in sensitivity and
specificity, so they recognize distinct phenotypes with different risks of progression to
overt T2DM [3].

Previous data suggest that in 30 to 40% of the T2DM-affected subjects, there is no
evidence of any indicator suggesting the presence of the intermediate condition of impaired
fasting glucose (IFG) and/or impaired glucose tolerance (IGT) [6].

Recently, the one-hour post-load plasma glucose (G60) ≥ 155 mg/dL (8.6 mmol/L)
has been demonstrated to be highly prognostic for alterations of β-cell function and pro-
gression to overt T2DM in adults with normal glucose tolerance (NGT) [7,8]. Furthermore,
this threshold seems more predictive of cardiovascular events than fasting or two-hour
plasma glucose [9]. From previous studies, it appears that the G60 level may help identify
individuals at risk of diabetes better than traditional glucose tests [10,11].

Experts from the European Association for the Study of Diabetes (EASD) [7] have
raised a petition to associate G60 levels above 155 mg/dl with altered glucose toler-
ance in adults on the grounds that G60 is a more time-effective diagnostic marker for
prediabetes risk.

The relevance of G60 for identifying individuals at high risk for IGT or abnormal
cardiometabolic risk (CMR) profile has also been previously suggested in children with OB
using the same cut-off proposed in adults [12–15]. However, the assessment of the optimal
cut-off value of G60 in young people with OB might be a goal to identify, to an acceptable
level of accuracy, individuals at risk of developing prediabetes/T2DM and CMR factors.

Indeed, Manco et al. found that the best G60 cut-off associated with IGT corresponded
to a value ≥ 133 mg/dL (7.4 mmol/L) in youths with OB. They also demonstrated that this
cut-off was closely associated with low insulin sensitivity and altered β-cell function [16].
Subsequently, in a prospective study conducted in a multi-ethnic cohort of youths with OB
and NGT, Tricò et al. confirmed that this threshold is associated with a worse clinical and
metabolic phenotype, characterized by alterations in insulin sensitivity (IS), β-cell function,
and insulin clearance [17]. In addition, they demonstrated that G60 ≥ 133 mg/dL might be
an independent predictor of progression to prediabetes. Regarding the association with
CMR, Manco et al. [16] demonstrated higher levels of triglycerides in youths with G60 ≥
133 mg/dL compared to the group < 133 mg/dL, while this finding was not confirmed by
Marcovecchio et al. [18].

The aim of this cross-sectional multicenter study was to compare the performance
of G60 cut-off ≥133 mg/dL and ≥155 mg/dL to identify IGT, impaired insulin and β-cell
function, and altered CMR profile in young people with OW/OB and normal levels of
fasting glucose and HbA1c.
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2. Materials and Methods
2.1. Study Design, Study Site, and Study Population

This is a cross-sectional study conducted on behalf of the “Childhood Obesity” study
group of the Italian Society for Pediatric Endocrinology and Diabetology (ISPED). Nine
Italian centers provided data from the clinical records of 1199 non-diabetic children and
adolescents (mean age 11.7 years) with OW/OB consecutively observed in the period of
June 2016–June 2020, as previously described [19].

For the purpose of this present study, youths with impaired fasting glucose or HbA1c
≥ 5.7%, defined according to the ADA criteria [3], were excluded. Other exclusion criteria
were systemic and endocrine diseases and use of medications affecting glucose metabolism.

This study was conducted according to the principles expressed in the Declaration
of Helsinki. Written informed consent was obtained from the parents or tutors of all
participants. This study was approved by the Ethics Committee of the AORN Santobono-
Pausilipon (reference number 22877/2020).

2.2. Anthropometric, Clinical, and Biochemical Variables

Height and weight were measured for each patient using standard techniques. BMI
was calculated as the ratio weight (kg)/height2 (m2) and transformed to age- and sex-
specific standard deviation score (SDS) on the basis of reference data from Italian BMI
percentiles [20].

Blood pressure (BP) was measured three times 2 min apart, in a sitting position after
5 min of rest, using aneroid sphygmomanometers with appropriately sized cuffs, according
to standard procedures. The mean of the last two values was used [21].

Biochemical analyses were performed in the centralized laboratory of each center.
All laboratories belong to the Italian National Health System and are certified according
to International Standards ISO 9000 (www.iso9000.it/ accessed on 14 November 2022),
undergoing semi-annual quality controls and inter-lab comparisons.

After overnight fasting, biochemical markers of lipid metabolism and alanine-
aminotransferase (ALT) were analyzed. Triglycerides (TG) to HDL-cholesterol ratio was
also calculated (TG/HDL ratio). HbA1c was assessed via high-performance liquid chro-
matography as elsewhere described [2]. OGTT was performed using 1.75 g/kg of glucose
up to a maximum of 75 g [3,22]. Glucose and insulin levels at baseline (G0, I0), one-hour
(G60), and two-hour post-load glucose (G120) were analyzed. Data on glucose and insulin at
30′ during OGTT were available in a subsample of 724 youths, as previously described [2].

Insulin resistance (IR) was measured using the homeostasis model assessment (HOMA-
IR) index, calculated as insulin (µU/mL) × fasting glucose (mmol/L)/22.5 [23].

The insulin sensitivity (IS) was calculated as 1/ insulin at time 0 (1/I0) [24]. Insulino-
genic index (IGI) was calculated as ∆(I0 − I30)/∆(G0 − G30), where insulin was expressed
as µU/mL and glucose as mg/dL. DI was calculated via the following formula: IGI × 1/I0,
as described elsewhere [25].

2.3. Definition of Variables

OW and OB were defined on the basis of the finding of BMI ≥ 75th and ≥95th
percentile, respectively, in accordance with the Italian BMI standards [18]. IR was defined
using the 97th percentile of HOMA-IR distribution by age and gender in normal-weight
Italian children [26]. Low IS or low DI was defined by the 25th percentile of, respectively,
1/I0 or DI as calculated in our sample [2]. High TG/HDL ratio was defined by the 75th
percentile of TG/HDL ratio distribution in our sample. High ALT levels, as surrogate of
nonalcoholic fatty liver disease (NAFLD), were defined using a cut-point > 25.8 IU/L in
boys and 22.1 IU/L in girls, corresponding to the 95th percentile level for ALT in a healthy,
normal weight pediatric population [27].

www.iso9000.it/
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2.4. Statistical Analysis

Continuous data were expressed as mean ± standard deviation (SD), numbers and
proportions as percentages (%), and 95% confidence interval (CI). Variables with skewed
distribution (i.e., HOMA-IR, 1/I0, ALT, and DI) were log-transformed for the analysis and
expressed as median and interquartile range. Mean values were compared using Student’s
t test. Distribution of categories was compared by χ2, and, when needed, exact tests were
performed using the Monte Carlo method.

The relationships between two cut-offs of G60 (133 mg/dL or 155 mg/dL) with IGT,
IR, low IS, high TG/HDL ratio, and ALT were analyzed using receiver operator curve
(ROC) analysis. The area under curve (AUC) was obtained using IGT or the other metabolic
variables as dependent variables and G60 ≥ 133 mg/dL or G60 ≥ 155 mg/dL as variables
of interest. Sensitivity and specificity were calculated using 2 × 2 tables.

A p value < 0.05 was considered statistically significant. The statistical analysis was
performed using IBM SPSS Statistics, Version 20.0. Armonk, NY, USA.

3. Results

A total of 1199 young people aged 5–18 years were included in this study. Of these,
595 were boys, and 604 were girls. The characteristic of the study population by sex is
reported in Table 1. Boys showed slightly higher levels of fasting G0, ALT, and systolic BP
and lower levels of IS compared to girls. The prevalence of isolated IGT did not significantly
differ between boys and girls (5.4% vs. 7.6%, p = 0.116).

Table 1. Characteristics of the overall sample and by sex.

Overall Sample Boys Girls p Value

n 1199 595 604

Age (years) 11.6 ± 2.6 11.6 ± 2.5 11.6 ± 2.8 0.745
BMI (kg/m2) 30.7 ± 5.4 30.8 ± 5.3 30.5 ± 5.5 0.330

BMI-SDS 2.3 ± 0.6 2.3 ± 0.6 2.3 ± 0.6 0.706
G0, (mg/dL) 86.0 ± 8.1 86.8 ± 7.9 85.3 ± 8.2 0.001
G60, (mg/dL) 122.6 ± 28.0 124.0 ± 28.9 121.2 ± 27.1 0.095
G120, (mg/dL) 108.4 ± 19.5 108.9 ± 18.2 107.9 ± 20.7 0.367

HOMA-IR 3.8 (2.5–5.5) 3.4 (2.4–4.8) 3.7 (2.4–5.2) 0.169
1/I0 (µU/mL) 0.06 (0.04–0.08) 0.06 (0.05–0.09) 0.06 (0.04–0.09) 0.050
TC (mg/dL) 154.2 ± 29.4 153.7 ± 29.1 154.6 ± 28.9 0.597

HDL-C (mg/dL) 47.8 ± 10.4 47.7 ± 10.3 47.9 ± 10.6 0.711
Triglycerides (mg/dL) 81.0 (63.0–107.0) 77.0 (60.0–102.0) 79.0 (62.0–104.0) 0.330

TG/HDL ratio 1.8 (1.3–2.5) 1.7 (1.2–2.4) 1.7 (1.3–2.3) 0.516
SBP (mmHg) 113.3 ± 13.9 114.4 ± 13.4 112.2 ± 14.2 0.005
DBP (mmHg) 67.5 ± 9.4 67.6 ± 9.3 67.4 ± 9.4 0.652
ALT (IU/mL) 22.0 (16.0–31.0) 23.0 (17.0–34.0) 20.0 (15.0–27.0) <0.0001
DI (n = 724) 0.15 (0.10–0.23) 0.15 (0.10–0.23) 0.15 (0.10–0.23) 0.702

IGT (%) 78 (6.5) 32 (5.4) 46 (7.6) 0.116
Data are expressed as mean ± standard deviation or number (%) or median and interquartile range. ALT: alanine
aminotransferase; BMI: body mass index; DBP: diastolic blood pressure; DI: disposition index; G0: fasting glucose;
G60: 1 h glucose; G120: 2 h glucose; HDL-C: high-density lipoprotein cholesterol; HOMA-IR: homeostasis model
assessment; IGT: impaired glucose tolerance; 1/I0: 1/insulin at time 0; SBP: systolic blood pressure; TC: total
cholesterol; TG/HDL ratio: triglycerides to HDL-cholesterol ratio.

In the overall sample, the prevalence of youths with G60 ≥ 133 mg/dL was 28.9%
vs. 12.4% in youths with G60 ≥ 155 mg/dL (p < 0.0001). The features of the study sample
divided by the two G60 cut-offs are reported in Table 2.

Youths with G60 ≥ 133 mg/dL showed higher levels of G0, G60, G120, HbA1c, HOMA-IR,
TG, HDL-C, TG/HDL-C, ALT, and lower IS and DI than the group with G60 < 133 mg/dL.
Youths with G60 ≥ 155 mg/dL showed a similar profile to those with G60 < 155 mg/dL,
except for the G0.
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Table 2. Features of children and adolescents without IFG and high HbA1c according to different
cut-offs of G60.

G60 < 133 mg/dL G60 ≥ 133 mg/dL p Value G60 < 155 mg/dL G60 ≥ 155 mg/dL p Value

n = 1199 (100%) 853 (71.1) 346 (28.9) 1050 (87.6) 149 (12.4)

Age (years) 11.5 ± 2.7 11.8 ± 2.5 0.054 11.5 ± 2.7 11.9 ± 2.4 0.160
Girls, n (%) 438 (51) 166 (48) 0.290 538 (51) 66 (44) 0.113

BMI (kg/m2) 30.6 ± 5.2 30.9 ± 5.9 0.305 30.7 ± 5.4 30.4 ± 5.4 0.561
BMI-SDS 2.3 ± 0.6 2.3 ± 0.6 0.826 2.3 ± 0.6 2.3 ± 0.6 0.174

G0, (mg/dL) 85.7 ± 7.7 87.0 ± 8.8 0.008 86.0 ± 7.9 86.6 ± 9.3 0.346
G60, (mg/dL) 107.5 ± 16.3 155.2 ± 18.5 <0.0001 114.8 ± 20.6 171.8 ± 16.0 <0.0001
G120, (mg/dL) 103.5 ± 15.7 120.3 ± 22.4 <0.0001 106.3 ± 17.0 123.0 ± 27.8 <0.0001

HOMA-IR 3.4 (2.3–4.9) 4.0 (2.7–5.6) <0.0001 3.4 (2.3–4.9) 4.1 (2.8–6.1) <0.0001
1/I0 (µU/mL) 0.06 (0.04–0.09) 0.05 (0.04–0.08) <0.0001 0.06 (0.04–0.09) 0.05 (0.04–0.07) <0.0001
TC (mg/dL) 153.4 ± 29.9 156.2 ± 28.3 0.134 153.7 ± 29.5 157.5 ± 28.8 0.147

HDL-C (mg/dL) 48.1 ± 10.5 46.9 ± 10.2 0.077 47.9 ± 10.5 46.9 ± 9.8 0.267
TG (mg/dL) 76.0 (60.0–100.0) 87.0 (63.0–112.0) 0.002 77.0 (61.0–102.0) 88.0 (65.0–112.0) 0.033

TG/HDL ratio 1.6 (1.2–2.2) 1.9 (1.3–2.6) 0.001 1.7 (1.2–2.3) 1.9 (1.4–2.5) 0.031
SBP (mmHg) 113.3 ± 14.0 113.2 ± 13.6 0.932 113.4 ± 13.9 112.7 ± 13.8 0.571
DBP (mmHg) 67.7 ± 9.6 67.0 ± 8.7 0.246 67.5 ± 9.4 67.2 ± 9.0 0.717
ALT (IU/mL) 21.0 (15.0–28.0) 22.0 (16.0–33.0) 0.002 21.0 (16.0–29.0) 24.0 (17.0–34.0) 0.008
DI (n = 724) 0.17 (0.11–0.26) 0.11 (0.08–0.15) <0.0001 0.16 (0.10–0.24) 0.10 (0.07–0.14) <0.0001

Data are expressed as mean± standard deviation or number (%) or median and interquartile range ALT: alanine
aminotransferase; BMI: body mass index; DBP: diastolic blood pressure; DI: disposition index; G0: fasting glucose;
G60: 1 h glucose; G120: 2 h glucose; HDL-C: high-density lipoprotein cholesterol; HOMA-IR: homeostasis model
assessment; 1/I0: fasting insulin; SBP: systolic blood pressure; TC: total cholesterol; TG/HDL ratio: triglycerides
to HDL-cholesterol ratio.

After removing youths with G60 ≥ 155 mg/dL, 1050 young people were reclassified
according to the cut-off of G60 ≥ 133 mg/dL. Their features are reported in Table 3.

Table 3. Characteristics of youths with G60 <155 mg/dL reclassified by cut-off of 133 mg/dL.

G60 < 133 mg/dL G60 ≥ 133 mg/dL p Value

n = 1050 853 197

Age (years) 11.5 ± 2.7 11.8 ± 2.6 0.178
Girls, n (%) 438 (51) 100 (51) 0.882

BMI (kg/m2) 30.6 ± 5.2 31.3 ± 6.2 0.089
BMI-SDS 2.3 ± 0.6 2.4 ± 0.6 0.201

G0, (mg/dL) 85.7 ± 7.7 87.3 ± 8.4 0.008
G60, (mg/dL) 107.5 ± 16.3 142.7 ± 6.2 <0.0001
G120, (mg/dL) 103.5 ± 15.7 118.3 ± 17.1 <0.0001

HOMA-IR 3.4 (2.3–4.9) 3.8 (2.7–5.3) 0.005
1/I0 (µU/mL) 0.06 (0.04–0.09) 0.05 (0.04–0.08) 0.013
TC (mg/dL) 153.4 ± 30.0 155.2 ± 27.9 0.428

HDL-C (mg/dL) 48.1 ± 10.5 46.7 ± 10.5 0.171
Triglycerides (mg/dL) 76.0 (60.0–100.0) 85.0 (63.0–112.0) 0.019

TG/HDL ratio 1.6 (1.2–2.2) 1.9 (1.3–2.5) 0.011
SBP (mmHg) 113.3 ± 14.0 113.6 ± 13.4 0.757
DBP (mmHg) 67.7 ± 9.6 66.8 ± 8.4 0.243
ALT (IU/mL) 21.0 (15.0–28.0) 21.0 (16.0–31.5) 0.059
DI (n = 642) 0.17 (0.11–0.26) 0.12 (0.09–0.16) <0.0001

Data are expressed as mean ± standard deviation or number (%) or median and interquartile range ALT: alanine-
aminotransferase; BMI: body mass index; DBP: diastolic blood pressure; DI: disposition index; G0: fasting glucose;
G60: 1 h glucose; G120: 2 h glucose; HDL-C: high-density lipoprotein cholesterol; HOMA-IR: homeostasis model
assessment; IGT: impaired glucose tolerance; 1/I0: 1/insulin at time 0; SBP: systolic blood pressure; TC: total
cholesterol; TG/HDL ratio: triglycerides to HDL-cholesterol ratio.
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In this subsample, individuals with G60 ≥133 mg/dL showed similar features to
that observed in the whole sample in terms of parameters of insulin, β-cell function, and
CMR factors.

In the overall sample, the AUC (95%Cl) of G60 as a continuous variable was 0.86
(0.82–0.89) (p < 0.0001) compared to the isolated IGT. The G60 ≥ 133 mg/dL value showed
an AUC of 0.76 (0.71–0.82) (p < 0.0001), while the cut-off at G60 ≥ 155 mg/dL showed an
AUC of 0.75 (0.68–0.82) (p < 0.0001).

The percentage of youths with IGT, IR, low IS, high TG/HDL ratio, high ALT, and low
DI according to the cut-offs of G60 ≥ 133 mg/dL or ≥155 mg/dL was significantly higher
than their respective counterparts of G60 < 133 mg/dL or <155 mg/dL (Figure 1).
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G60 ≥ 155 mg/dL (black bars) (p < 0.0001 compared to their respective counterparts < 133 mg/dL or
G60 < 155 mg/dL). Youths in the G60 ≥ 133 mg/dL group showed an increase of 33% for IGT, 123%
for IR, 104% for low IS, 112% for high TG/HDL ratio, 114% for high ALT, and 103% for low DI, with
respect to individuals in the G60 ≥ 155 mg/dL group.

The performance of the two cut-offs at G60 in relation to IGT, metabolic abnormalities,
and CMRF is reported in Table 4. For each factor analyzed, the cut-off at G60 ≥ 133 mg/dL
showed higher sensitivity and lower specificity with respect to G60 ≥ 155 mg/dL.

Table 4. Performance of G60 ≥ 133 mg/dL and ≥155 mg/dL in relation to IGT, insulin resistance,
low insulin sensitivity, high TG/HDL ratio, high ALT, and low disposition index.

Factors Sensitivity Specificity PPV NPV

IGT

G60 ≥ 133 mg/dL 0.78 (0.76–0.81) 0.75 (0.72–0.77) 0.18 (0.16–0.20) 0.98 (0.97–0.99)
G60 ≥ 155 mg/dL 0.59 (0.56–0.62) 0.91 (0.89–0.92) 0.31 (0.28–0.34) 0.97 (0.96–0.98)

Insulin-resistance
G60 ≥ 133 mg/dL 0.33 (0.30–0.35) 0.77 (0.75–0.79) 0.70 (0.67–0.72) 0.41 (0.39–0.44)
G60 ≥ 155 mg/dL 0.15 (0.13–0.17) 0.91 (0.89–0.93) 0.73 (0.70–0.75) 0.40 (0.37–0.43)
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Table 4. Cont.

Factors Sensitivity Specificity PPV NPV

Low insulin-sensitivity
G60 ≥ 133 mg/dL 0.34 (0.32–0.37) 0.73 (0.70–0.76) 0.31 (0.28–0.33) 0.76 (0.74–0.79)
G60 ≥ 155 mg/dL 0.16 (0.14–0.18) 0.89 (0.87–0.91) 0.34 (0.31–0.36) 0.75 (0.73–0.78)

High TG/HDL ratio
G60 ≥ 133 mg/dL 0.37 (0.34–0.40) 0.74 (0.72–0.77) 0.34 (0.31–0.36) 0.77 (0.75–0.79)
G60 ≥ 155 mg/dL 0.17 (0.15–0.20) 0.89 (0.87–0.91) 0.36 (0.34–0.39) 0.75 (0.73–0.78)

High ALT
G60 ≥ 133 mg/dL 0.32 (0.30–0.35) 0.73 (0.71–0.76) 0.45 (0.42–0.47) 0.62 (0.59–0.65)
G60 ≥ 155 mg/dL 0.15 (0.13–0.17) 0.89 (0.87–0.91) 0.48 (0.46.0.51) 0.61 (0.59–0.64)

Low disposition index
G60 ≥ 133 mg/dL 0.45 (0.42–0.49) 0.74 (0.71–0.78) 0.40 (0.36–0.43) 0.78 (0.75–0.81)
G60 ≥ 155 mg/dL 0.21 (0.18–0.25) 0.92 (0.90–0.94) 0.51 (0.48–0.55) 0.76 (0.73–0.79)

ALT: alanine aminotransferase; G60: 1 h glucose; IGT: impaired glucose tolerance; NPV: negative predictive value;
PPV: positive predictive value; TG/HDL ratio: triglycerides to HDL-cholesterol ratio.

4. Discussion

This study demonstrates that in young people with OW/OB and normal fasting
glucose and HbA1c, a cut-off of G60 ≥ 133 mg/dL is more useful than G60 ≥ 155 mg/dL to
identify individuals with isolated IGT, β-cell impairment, and altered CMR profile.

Prediabetes in youth has become a more frequent challenge for patients, families,
and healthcare professionals. Knowledge of the natural history of prediabetes and T2DM
have demonstrated differences between these conditions in juveniles and adults, making
extrapolation from adult practice problematic. Furthermore, guidelines for the management
and treatment of prediabetes in young people are lacking. The screening of prediabetes or
T2DM in childhood is controversial. A recent statement from “The US Preventive Services
Task Force” concludes that the current evidence is insufficient to assess the balance of
benefits and harms of screening for T2DM in children and adolescents [28]. In contrast,
the ADA recommends screening for prediabetes/diabetes in youths with at least one risk
factor among obesity, family history of diabetes, gestational diabetes, and other conditions
associated with IR [3].

The one-hour plasma glucose during OGTT seems to be a useful early biomarker
of glucose dysregulation [29]. A cut-off value of ≥155 mg/dl (8.6 mmol/L) was initially
identified in the San Antonio Heart Study [30]. This finding was subsequently confirmed
in the Botnia Study that demonstrated a better predictive power of the one-hour post-load
plasma glucose for the risk of developing T2DM than fasting and post-load glucose at 120’
fasting glucose [31]. Several longitudinal studies have confirmed that individuals with
NGT and one-hour post-load plasma glucose value ≥ 155 mg/dl (≥8.6 mmol/L) are at
increased risk for T2DM [32–36].

Although a value of G60 ≥ 155 has been shown to be useful in predicting progression
to prediabetes and β-cell deterioration in Latino youths with OB and a family history of
T2DM [13], subsequent studies assessed the performance of diverse values of G60. For
instance, using ROC analysis, Manco et al. demonstrated that the cut-off of G60 ≥ 133
mg/dL was able to identify IGT with higher sensitivity and specificity than G60 ≥ 155
mg/dL in Caucasian youths with OB [16]. The efficacy of this lower cut-point in predicting
the progression to prediabetes was subsequently confirmed in a prospective study in
normoglycemic youths with OB [17].

Recently, an international panel of experts supported a petition for redefining the
current diagnostic criteria for prediabetes with the use of the elevated one-hour post-
load plasma glucose level [7]. Given the paucity of pediatric studies on this issue, it is
useful to provide more evidence about the most accurate cut-off of G60 for the screening
of prediabetes among youths. Compared to the study by Manco et al., we obtained a
similar performance in terms of accuracy to identify IGT using the G60 cut-off≥ 133 mg/dL
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(sensitivity 0.81 vs. 0.78 and specificity 0.74 vs. 0.75, respectively) or the G60 ≥ 155 mg/dL
(sensitivity 0.45 vs. 0.59 and specificity 0.91 vs. 0.91, respectively).

In our sample, 88.4% of youths showed at least one risk factor for diabetes, i.e.,
elevated BP, high TG, high ALT, low HDL-cholesterol, or a family history of T2DM. Indeed,
according to the consensus position statement of the ISPED (that implemented the ADA
guidelines), the presence of several associated cardiovascular risk factors suggests the
assessment of OGTT in youths with OB [22].

We extended our comparative analysis regarding the accuracy of the two thresholds to
identify altered insulin and β-cell function and abnormal CMR profile. The main finding of
our study supported the higher predictive ability of G60 ≥ 133 mg/dL to detect individuals
with several metabolic abnormalities and a worse CMR profile. This latter association
was demonstrated only for higher levels of triglycerides by Manco et al. [16] but not by
Marcovecchio et al. [18]. This discrepancy may be explained by the exclusion of individuals
with IFG and IGT by the latter. This finding extends previous studies that confirmed the
association between prediabetes, particularly IGT [2] and CMR [37,38]. In our study, the
high predictive ability of G60 ≥ 133 mg/dL was confirmed also in the subsample of youths
who were reclassified after the removal of individuals with G60 ≥ 155 mg/dL. The strong
association between G60 ≥ 133 mg/dL and CMR factors contributes to strengthening the
greater usefulness of this cut-off value in children and adolescents compared to that derived
from adults.

Although the determinations of fasting glucose and HbA1c are the most frequently
used tests for screening of prediabetes/diabetes in the pediatric population [39], the as-
sessment of G60 during the OGTT in children or adolescents might be considered an
early biomarker of glucose metabolism impairment compared to the complete OGTT. An-
other consideration in favor of one-hour post-load glucose is relative to the difficulties
in fulfilling the guidelines about sample centrifugation, storage, and transport in ice [40].
Delays in handling and analysis of samples might increase the risk of underestimation
of prediabetes/diabetes [41]. Interestingly, the one-hour post-load plasma glucose level,
among the high-risk OGTT-glucose phenotypes, represents a good biomarker in response
to lifestyle intervention [42].

Concerning the cost-effectiveness of performing 1 h afterload glucose in obese subjects
as a screening strategy to identify prediabetes, the data are heterogeneous as the success
of a screening program depends on the context (epidemiology, social factors, political
priorities, and budget constraints). A recent literature review shows that more cost-effective
evaluations of national and regional prevention programs for non-communicable diseases
are needed to guide policymakers [43]. We believe that good clinical practice would be to
implement screening for young people at risk for prediabetes and lifestyle modification
through improved nutrition and exercise. In some cases, pharmacological intervention may
even be warranted, but always in the context of lifestyle and behavioral changes.

Limitation and Strength

Limitations of this study include the following: (1) the cross-sectional observational na-
ture that precludes evaluation of the progression over time of children with the
G60 ≥ 133 mg/dL; (2) the evaluation of a sample of youths with OW/OB that limits the
extendibility of our results to the general population; (3) the derivation of the measures to
estimate insulin sensitivity and β-cell function from the OGTT.

The strength of our study includes a large sample of young people without impaired
fasting glucose and HbA1c ≥ 5.7% and the evaluation of metabolic and CMR profiles.

5. Conclusions

Our results confirm and extend the findings of previous studies about the use of
one-hour post-load glucose in identifying children and adolescents with isolated IGT
and metabolic abnormalities. An elevated one-hour post-load plasma glucose level, not
measured with current diagnostic standards, may provide an opportunity for the early
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identification of a large population despite normal levels of fasting glucose and HbA1c.
The finding of an elevated one-hour post-load plasma glucose level can allow lifestyle
intervention that has the greatest benefit for preserving or reversing β-cell function and
preventing further progression to prediabetes and diabetes.

We suggest that the higher accuracy in terms of sensitivity of a lower cut-off com-
pared to that proposed in adults is more appropriate to identify youths at risk of altered
glucose metabolism. Further studies are needed to assess the predictive value of the
cut-off ≥133 mg/dL on the monitoring of the cardiometabolic health of youths with OB.
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