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Abstract: Volatile organic compounds (VOCs) are major indoor air pollutants that contain several
toxic substances. However, there are few studies on health risk assessments of indoor VOCs in
China. This study aimed to determine the concentration characteristics of VOCs on college campuses
by collecting VOC samples from different locations on campus during different seasons combined
with the exposure times of college students in each location obtained from a questionnaire survey
to assess the possible health risks. The highest total VOC concentration (254 ± 101 µg/m3) was
in the dormitory. The seasonal variation of TVOC concentrations was related to the variation of
emission sources in addition to temperature. Health risk assessments of VOCs were evaluated using
non-carcinogenic and carcinogenic risk values, represented by hazard quotient (HQ) and lifetime
cancer risk (LCR), respectively. The non-carcinogenic risks at all sampling sites were within the safe
range (HQ < 1). Dormitories had the highest carcinogenic risk, whereas the carcinogenic risk in the
other three places was low (with LCR < 1.0 × 10−6). Moreover, 1,2-dichloroethane was identified
as a possible carcinogenic risk substance in the dormitory due to its high LCR (1.95 × 10−6). This
study provides basic data on health risks in different locations on campus and a basis for formulating
measures to improve people’s living environments.

Keywords: indoor VOCs; university campus; concentration characteristics; health risks; seasonal
variation

1. Introduction

People spend 80–90% of their time indoors every day [1–3], and indoor air quality
(IAQ) has a significant impact on human health. Indoor air pollution is estimated to
cost more than two million disability-adjusted life years (DALY) annually in Europe [4].
In addition, owing to the increase in energy-saving requirements for buildings, the
airtightness of buildings inhabited by humans has increased [5]. Therefore, the reduction
in air circulation may increase the concentration of pollutants and lead to increased
health risks in indoor environments.

Volatile organic compounds (VOCs) are organic gases with a boiling point between
50 and 260 ◦C [6] and are important indoor air pollutants. Exposure to VOCs poses a
considerable health concern owing to its potential associated chronic and acute health
risks [7], resulting in symptoms similar to those of sick-building syndrome (SBS), including
sensory and lung irritation, chronic obstructive pulmonary disease (COPD), asthma, and
cancer [2,7–11]. Indoor sources of VOCs include personal care products [12], cooking [13],
cleaning products [14], the respiratory metabolism of occupants [15,16], and volatile gases
from building materials [17]. The emission of VOCs from these sources depends on a
variety of factors [18]. For instance, higher temperatures increase the initial acetaldehyde
emissions and accelerate the decrease in later emissions, whereas higher humidity results
in greater values of the emission factor [19].

University campuses are the main places where young people study and live.
Owing to the development of education in China, the number of university enrollments
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is increasing [20]. However, studies on VOCs in universities are limited. Kumar et al. [21]
have conducted a health risk assessment of indoor VOCs in the university library of Delhi,
India, and found that the cancer risk associated with benzene (8.93 × 10−6) exceeded the
value (1 × 10−6) recommended by the United States Environmental Protection Agency
(USEPA) [21]. Jiang et al. [20] have measured VOCs in three universities and found
that the tested buildings have more than a 90% probability of exceeding the cancer risk.
Kang et al. [1] collected samples from the dormitory, teaching building, and library of a
university, and found that the total concentration of VOCs in the dormitory was higher
than the Chinese indoor environmental standard (0.6 mg/m3). Additionally, there are
more indoor pollution sources in universities [22]. Therefore, it is essential to focus on
IAQ on the university campus.

In this study, samples were collected from the dormitories, classrooms, canteens,
and libraries of the Zijingang Campus of Zhejiang University for four months. A total of
116 VOCs were quantified and combined with the survey results on the living habits of
college students to assess the health risks of VOCs in different indoor environments on
college campuses. This study provides insights into understanding the health risks of
VOCs in the study and living environments of college students, providing a reference
for improving the indoor environment.

2. Methods
2.1. Sample Collection

This study conducted sampling activities from April 2022 to January 2023 during
four months (namely, April, July, October, and January). Samples were collected in the
classroom, dormitory, canteen, and library for 3–4 consecutive days each month. The
sample sizes for each site are detailed in Table S1. One classroom and the first floor of
the library were chosen randomly, and samples were collected from each of them at
12:00 and 16:00 local time (LT) on each sampling day. The living place was chosen at
random from a dormitory room in the dormitory park and the second floor of the East
District Canteen; the dormitory collection times were 5:00 and 21:00 LT on each sampling
day, and the canteen collection time was 18:00 LT. The sampling was done during the
population’s most frequent exposure. The sampling point was fixed during the sampling
campaign. The samples were collected with vacuum stainless steel canisters (3.2 L,
Entech, Simi Valley, PA, USA) at 1.5 m above the ground (generally at the height of
breathing) in the center of the room. Given the limited samples of canteens and libraries,
the results of these two places in this study are for reference only.

2.2. Sample Analysis

The samples were analyzed using a gas chromatography–flame ionization/mass
spectrometry detector (GC–FID/MSD) (ZF-PKU-VOC1007, Beijing Pengyu Changya
Environmental Protection Technology Co., Ltd., Beijing, China). Detailed analytical pro-
cedures can be obtained from the previous study [23]. Offline samples were pumped at a
flow rate of 10 mL/min for 30 min into a cryogenic trap at −160 ◦C (ZF-PKU-VOC1007).
The analyte was then heated, released at 110 ◦C, and transferred with the carrier gas to
a dual-channel gas chromatography system. The C2–C5 hydrocarbons were separated
via DM-PLOT columns (15 m × 0.32 mm × 5 µm, Agilent Technologies, Santa Clara,
CA, USA) and then detected using FID. The C5–C12 hydrocarbons, halogenated hydro-
carbons, and oxygenated organic compounds (OVOCs) were separated using a DB-624
column (60 m × 0.25 mm × 1.4 µm, Agilent Technologies, Santa Clara, CA, USA) and
detected using MSD. Finally, the analytical assay system used in this study quantified
116 VOCs, including 58 non-methane hydrocarbons (NMHCs) (alkanes, alkenes, alkynes,
and aromatics), 35 halogenated hydrocarbons, 21 OVOCs, and 2 other compounds (i.e.,
carbon disulfide and acetonitrile).
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2.3. Health Risk Calculation

Based on the VOC data measured in the experiment, this study evaluated the life-
time cancer risk (LCR) and hazard quotient (HQ). The LCR value indicates the probability
of cancer occurrence and is usually expressed in terms of the number of individuals with
cancer in a certain population. For example, the carcinogenic risk value is 10−6–10−4,
that is, one cancer patient will be added for every 10,000 to 1 million people [24]; HQ
is the value obtained by dividing the average exposure concentration by the reference
concentration, indicating the maximum amount of pollutants that will not cause adverse
reactions in the human body ingested per unit weight per unit time. The average daily
dose of any compound (ED, mg·kg−1 day−1) was calculated using Equation (1) [25]. The
effective annual exposure (EY) in Equation (2) and the effective lifetime exposure (EL) in
Equation (3) was used to calculate the chronic non-cancer HQ and LCR, respectively [26]:

ED = (CA × IR × ET)/BW (1)

EY = ED × EF/365 (2)

EL = EY × ED/AT (3)

where CA is the average concentration of air pollutants (mg·m−3), IR is the inhalation
rate (0.83 m3·h−1 [25,26]), ET is the exposure time (hours day−1), BW is the weight
(64.3 kg [27]), EF is the exposure frequency (225 days/year, based on the average time
college students are in school), ED is the exposure duration (4 years, based on the average
time college students are in college), and AT is the average life span (74.875 years [28]).

The non-carcinogenic risk of VOCs is expressed as HQ, which is defined as the ratio of
the annual average daily dose (EY) to the reference dose RfD. The LCR was evaluated by
multiplying the effective lifetime exposure (EL) by the slope factor (SF):

HQ = EY/R f D (4)

LCR = EL × SF (5)

RfD (mg kg−1 day−1) is the level at which adverse health effects are unlikely to
occur, and SF is the slope factor or carcinogen potency slope (mg−1 kg·day). All exposure
parameters, RfD and SF, for each pollutant used in the analysis were obtained from the
USEPA [25,29] (Tables S2 and S3).

Inhalation exposure during the year was used to assess the carcinogenic and non-
carcinogenic risks of toxic VOCs in the teaching building, library, dormitory, and canteen,
respectively. A non-carcinogenic risk value greater than 1 indicates that the concentration
of toxic VOCs in the area poses a non-carcinogenic risk to residents, and a value less
than 1 indicates no risk. However, some researchers have found that compounds with
non-carcinogenic risks higher than 0.1 may also have potential non-carcinogenic risks [30].
For cancer risk, a compound with a risk value >1.0 × 10−4 is considered an “identified
risk”, a compound with a risk value between 1.0 × 10−5 and 1.0 × 10−6 is a “possible risk”,
and a compound with a risk value less than 1.0 × 10−6 is a negligible risk [24]. Species
with potential risks were also presented in this study.

A total of 31 questionnaires were collected for this study. The results show that college
students who were investigated spent 7.5 h a week in the canteen, 94.9 h in the dormitory,
40.5 h in the classroom, and 3.2 h in the library.

3. Results
3.1. VOCs Concentration Characteristics at Different Locations

During the sampling period, the total concentration of VOCs (TVOCs) in the dormitory
was the highest (254.3 ± 100.8 µg/m3), followed by the canteen (183.6 µg/m3), classroom
(154.0 ± 67.5 µg/m3), and library (139.4 µg/m3). The proportions of the different types



Int. J. Environ. Res. Public Health 2023, 20, 5829 4 of 16

of VOCs in the four locations were similar (Figure 1). At the four sites, the main chemical
composition was OVOC, accounting for 38–51%. Except for the proportion of halocarbon
(22 ± 7.3%) in the dormitory secondary to OVOC, the abundance of alkanes (17–27%) was
the second most abundant group among the other three sites. Volatile halocarbons can be
emitted by chlorine disinfectants in tap water and detergents containing chlorides [31–33];
therefore, the higher levels of halocarbons in dormitories may be related to the increased
use of disinfectants and detergents.
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Figure 1. Composition of alkane, alkene, aromatic, alkyne, halocarbon, OVOC, and other species in
the four sampling locations during the whole sampling period.

The average concentration level of each species during the whole sampling pe-
riod at the four places is listed in Table S4. Figure 2 shows the average proportion of
the top 39 VOCs from different locations, accounting for 88.5–89.7% of the total VOC
concentration, among which acetone (12–24%) had the highest percentage. The health
effects of acetone have been extensively studied; if inhaled, the compound is usually
classified as having low acute and chronic toxicity. Moreover, exhaust fumes from the
outer layer of furniture paint, organic solvents used daily (e.g., detergents), and personal
care products can raise indoor acetone levels [34–36]. In addition, in a well-ventilated
indoor environment, VOCs emitted by people (a major source of acetone [37]) account
for approximately 57% of the total concentration of VOCs distributed in the indoor
air [15]. Therefore, the abundant acetone in the four indoor environments may be related
to consumer products and human metabolism.
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In addition, we observed differences in the chemical profiles of the 39 VOCs across
the four places, suggesting differences in emission sources. For example, the proportion
of C2–C5 alkanes in the library and canteen were higher than that in the dormitory and
classroom (Figure 2). C2–C5 alkanes are mainly generated by fuel combustion, among which
ethane and propane are maker species in natural gases used for heating or cooking [38,39],
and isopentane mainly originates from traffic-related sources [40], which can enter the
room through natural ventilation, mechanical ventilation, and infiltration [41]. Given the
proximity of the library to the main road and the consumption of natural gas for cooking
in the canteen, the higher proportion of C2–C5 in the library and canteen was within
expectations. Moreover, a higher abundance of 1,2-dichloroethane was identified in the
dormitory compared to the other places (11 ± 8.7% compared to 1.9–2.4% at the other
three places), suggesting stronger emissions of 1,2-dichloroethane in the dormitory [42–45],
which are discussed in detail below in Section 3.3.

3.2. Temporal Variation of VOCs

In this study, we used samples collected in January, April, July, and October to char-
acterize VOCs in winter, spring, summer, and autumn, respectively. However, due to the
limited samples collected in the canteen and library, it was not possible to analyze the
seasonal changes in these two locations.

The seasonal variation in the average concentration of TVOCs was not consistent
in the classroom and dormitory (Figure 3). The average concentration of TVOCs in
summer (324.7 ± 44.2 µg/m3) in the dormitory was higher than that in the other three
seasons (220–223 µg/m3). In the classroom, the mean concentration of TVOCs was
highest in autumn (188.6 ± 89.7 µg/m3), followed by summer (163.7 ± 47.4 µg/m3).
According to the outdoor temperature measured by a weather station (30.14◦ N, 120.1◦ E)
in Hangzhou, the indoor TVOC concentrations increased with outdoor temperature
(Pearson’s r = 0.55, Figure S1), which is consistent with previous studies that higher
temperature favors VOC volatilization [18,35]. Therefore, higher concentrations of
TVOCs in summer and autumn (with temperatures of 26.8 ± 0.9 ◦C and 19.0 ± 5.0 ◦C,
respectively) were in line with our expectations. However, the higher concentration of
TVOCs in dormitories in summer may be attributed to the effect of high temperatures in
summer and the combined effects of other factors (such as ventilation rate, humidity,
human activities, etc.), which warrants further research. In addition, the concentration
levels of TVOCs in the afternoon (205.5 ± 93.6 µg/m3) were comparable to those in the
morning (200.0 ± 103.2 µg/m3), suggesting constant VOC emissions in indoor air during
the day.

As for individual species, the average concentration of ethane and propane, which
were mainly related to natural gas consumption [46], was higher in winter (7.7 ± 2.0
(6.1 ± 1.4) µg/m3 and 8.4 ± 3.3 (6.3 ± 2.0) µg/m3, respectively) than that in summer
(2.8 ± 0.6 (1.4 ± 0.3) µg/m3 and 6.0 ± 1.5 (0.9 ± 0.2) µg/m3, respectively) in the dormitory
(classroom), reflecting the variation in the strength of heating sources. Human breath and
biogenic sources were sources of isoprene [47–49]; in summer, the average concentration
of isoprene (9–12 µg/m3) was higher than in the other seasons (0.9–4.7 µg/m3). Consider-
ing human breath to be constant in general, the obvious high concentration of isoprene in
the dormitory (9.3 ± 2.2 µg/m3) and classroom (11.6 ± 3.1 µg/m3) in summer indicates
the obvious impact of biogenic sources (although the biological source is mainly outdoors,
it enters the room with air circulation) on indoor air. Species mainly associated with
solvent use or household products (such as m,p-xylene, toluene, octane, etc.) [50–52]
did not show consistent seasonal variation in dormitories and classrooms, suggesting
that indoor emissions of these substances are more likely to be randomly interred by
anthropogenic activities.
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April, July, and October in the dormitory (a) and classroom (b), respectively.

For the composition of major chemical groups, the proportion of alkanes in winter
(22.2 ± 4.5%) and autumn (22.3 ± 2.0%) in the dormitory were approximately two-fold
higher than those in spring and summer. In contrast, high and low abundances of alkanes in
the classroom were observed in winter (27.3 ± 4.5%) and summer (8.6 ± 1.2%), respectively.
The abundant alkanes in winter in the classroom and dormitory may be related to the
increased demand for natural gas for heating. Outdoors, the proportion of OVOCs usually
increases in summer along with increases in stronger photochemical reactions [53]. In
this study, the maximum proportion of OVOCs was observed in the summer both in the
dormitory (49.3 ± 3.7%) and classroom (64.9 ± 2.1%), which suggests the impact of the
outdoor environment on indoor VOCs. A higher proportion of OVOCs in the classrooms
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than in the dormitories in summer may be related to more crowded populations (indicating
greater metabolic emissions) and better ventilation rates (indicating the greater influence of
the outdoor environment on indoor air).

3.3. Health Risk Analysis
3.3.1. Non-Carcinogenic Risk Analysis of VOCs

There were no substances with non-carcinogenic risks at any of the four sites during
the sampling period, as the HQs of the various substances were less than 1 (Table S2).
The top 5 substances in terms of HQ in classrooms, dormitories, canteens, and libraries
all contained acrolein, benzene, chloroform, and trichloroethylene (Table 1). The non-
carcinogenic risk value for acrolein was the highest in each of the four sites and greater
than 0.1 in the dormitory. Acrolein is a known respiratory toxicant and one of the
188 most dangerous air pollutants identified by the US Environmental Protection Agency
(Washington, DC, USA). Studies have shown that outdoor air contributes little to acrolein
and that wood and cooking are potential sources of acrolein indoors [54–56]. Therefore,
wood-based furniture and desks in the dormitory, classroom, and library and the cooking
activity in the canteen are the possible sources of acrolein in this study.

3.3.2. Carcinogenic Risk Analysis of VOCs

Based on the average concentration of each toxic VOC, the LCR value of each toxic
substance during the sampling period was calculated (Table S3). In this study, most
of the top 5 compounds according to the LCR were halocarbons, indicating that halo-
carbons have a non-negligible impact on human health in indoor air (Table 1). The
compound 1,2-dichloroethane had the highest LCR in all the sampling sites, which was
also found in the indoor environment of an industrial area in Taiwan in a previous
study [57]. There was no carcinogenic risk in the classroom, canteen, and library during
the sampling period, as the LCR values for each carcinogen were less than 1 × 10−6,
indicating that 1,2-dichloroethane poses a possible carcinogenic risk to students living in
this environment for four years. However, the average LCR values of 1,2-dichloroethane
in dormitories (1.96 × 10−6) exceeded the safety threshold (1 × 10−6). Human ex-
posure to 1,2-dichloroethane is primarily through inhalation in urban or industrial
areas [57,58]. Owing to the lack of obvious industrial sources around the study area and
evidence that indoor sources of 1,2-dichloroethane are increasing [59], we speculate that
1,2-dichloroethane in this study mainly originates from indoor sources. During the
sampling period in this study, solvents such as laundry detergent and bleach were
placed in the dormitory, and toilet cleaners, deodorants, and other reagents were used
for cleaning. Moreover, the residences and bathrooms were not separated, and the venti-
lation of the bathroom was inadequate, thereby resulting in a high health risk related to
1,2-dichloroethane in the dormitory. In addition, the maximum tolerated concentration
of each toxic substance was calculated for students living on campus for 4 years based
on the identified carcinogenic risk of 1 × 10−4 (Table S3), and the maximum tolerated
concentration of each toxicant was higher than that of its corresponding average mea-
sured concentration by 1–5 magnitudes. Therefore, the campus in this study did not
pose a threat to human health, but it should be noted that the results are only for people
who have been exposed to it for 4 years, and the results for people with other exposure
times will vary.
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Table 1. The non-cancer (HQ) and cancer (LCR) risks of the top 5 species in the four sampling sites.

Parameter Species Classroom Species Dormitory Species Canteen Species Library

HQ

Acrolein 0.07 Acrolein 0.11 Acrolein 0.10 Acrolein 0.05
Trichloroethylene 0.02 Trichloroethylene 0.03 Trichloroethylene 0.03 Trichloroethylene 0.03

Benzene 0.02 Benzene 0.02 Benzene 0.02 Benzene 0.02
Chloroform 0.006 Chloroform 0.01 Chloroform 0.007 Toluene 0.004

Toluene 0.002 1,2,4-Trimethylbenzene 0.005 Bromomethane 0.004 Chloroform 0.004

LCR (×10−6)

1,2-Dichloroethane 0.22 1,2-Dichloroethane 1.95 1,2-Dichloroethane 0.23 1,2-Dichloroethane 0.21
Chloroform 0.08 Chloroform 0.18 1,2-Dibromoethane 0.20 1,2-Dichloropropane 0.06

1,2-Dichloropropane 0.04 1,2-Dichloropropane 0.13 Chloroform 0.09 Chloroform 0.05
1,2-Dibromoethane 0.04 1,2-Dibromoethane 0.06 1,2-Dichloropropane 0.08 Benzene 0.03

Benzene 0.03 Bromodichloromethane 0.06 Benzene 0.03 Ethylbenzene 0.01

Note: The results from the canteen and library should be treated with caution due to only 1 sample being collected at each of these two places.



Int. J. Environ. Res. Public Health 2023, 20, 5829 10 of 16

4. Discussion

This study provides an overview of the seasonal variation in the fractions and concen-
trations of indoor VOCs in different locations on campus (dormitory, classroom, library, and
canteen) and an assessment of their associated health risks. Although there are previous
studies on this topic, they are few in number and incomplete. Some studies have focused
on VOC pollution within study sites (e.g., libraries, laboratories, and classrooms) and
neglected the living places of students (e.g., dormitories and canteens) [44,60–62]; some
studies have focused on a few specific VOC substances (e.g., carbonyl compounds, BTEX,
formaldehyde, etc.) [36,61] or detected only a few dozen VOC substances [9,22,62]. In the
present study, we covered the living places that college students are often exposed to as
well as study places and detected a total of 116 VOCs, which is more comprehensive than
previous studies.

Compared with other measurements conducted in universities, the average indoor
TVOC concentration (203.3 ± 97.7 µg/m3) in this study was considerably lower than
those measured by Kang et al. [1] in Tianjin, China (120–1620 µg/m3), by Akal et al. [9]
in Ankara (770–2650 µg/m3), and by Mundackal and Ngole-Jeme [2] in South Africa
(260–1062 µg/m3). The lower TVOC concentrations observed in our study may be
attributed to several causes. First, they may be related to the environment around the
sampling location; Akal et al. [9] conducted sampling in laboratories, where a large
amount of volatile chemical reagents is usually consumed or stored. However, in our
study, sampling was mainly conducted in the classroom and dormitory, where VOC
emissions are usually lower than those in laboratories. Second, they may also be related
to the age or renovation activities of the buildings to be measured; Kang et al. [1]
collected samples at a university that had just been renovated two months ago, whereas
the buildings investigated in the present study had been renovated more than two
years ago. Finally, differences in the number of compounds quantified in different
studies will also lead to differences in TVOC concentrations. For example, as many as
568 compounds were detected by Kang et al. [1], but only 116 compounds were detected
in this study.

In the present study, we also focused on assessing the health risk associated with
VOCs. Benzene series, especially benzene, toluene, ethylbenzene, and xylene (commonly
known as BTEX) have received extensive attention in the health risk assessment of indoor
VOCs [20,63]. In our study, the average concentrations of benzene, toluene, ethylben-
zene, and xylene were 1.53 ± 0.84 µg/m3, 5.76 ± 3.89 µg/m3, 1.46 ± 0.81 µg/m3, and
4.18 ± 2.57 µg/m3, respectively, and that of BTEX was higher in the dormitory than in
the classroom. These observed concentrations were lower compared to those reported in
other studies conducted on university campuses [9,20,21,56,64–66] (Table 2).

Table 2. Comparison of the concentration (µg/m3) of BTEX across different studies.

Environment
Type Region Sample Place Benzene Toluene Ethylbenzene m,p-xylene o-xylene Reference

University

Hangzhou, China Dormitory 1.66 ± 0.81 7.25 ± 4.09 1.71 ± 0.76 3.50 ± 1.86 1.45 ± 0.72 This studyClassroom 1.40 ± 0.90 4.08 ± 3.13 1.16 ± 0.81 2.33 ± 1.87 1.01 ± 0.66
Wuhan, China Classroom a 97.5 11.4 13.7 3.5 3.0 [20]

New Delhi, India Library b 7.2 ± 4.2 94.0 ± 70.1 10.1 ± 6.6 28.7 ± 31.7 13.1 ± 12.6 [21]Library c 12.2 ± 7.9 66.7 ± 54.4 13.9 ± 8.6 22.2 ± 25.8 9.4 ± 11.8

Ankara, Turkey
Laboratories 15.5 ± 28.9 265 ± 591 5.63 ± 9.87 9.43 ± 13.3 1.6 ± 0.82

[9]Offices 6.42 ± 6.18 73.6 ± 57.4 5.31 ± 4.04 6.83 ± 3.98 1.72 ± 0.96
Classrooms 16.2 ± 16.5 44.1 ± 35.1 3.16 ± 2.86 5.25 ± 2.82 3.83 ± 6.64

Upper Silesia, Poland Offices b 1.13 ± 0.66 19.37 ± 26.63 2.32 ± 1.39 3.55 ± 2.35 0.87 ± 0.52 [66]Offices c 0.46 ± 0.44 25.24 ± 27.77 3.96 ± 4.88 4.24 ± 4.25 1.43 ± 1.16
Bairrada, Portugal Canteen 0.6–9.87 0.059–1.91 0.002–1.73 0.002–5.89 0.001–1.87 [56]

Eskişehir, Turkey
Offices,

demonstration room,
conference hall

2.50 ± 1.0 149.93 ± 84.2 5.90 ± 4.1 10.13 ± 7.3 4.49 ± 2.6 [64]

New Delhi, India Commercial
Shopping Complex 13.8 ± 8.9 67.1 ± 35.8 7.4 ± 4.1 40.6 ± 29.4 24.1 ± 21.1 [65]
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Table 2. Cont.

Environment
Type Region Sample Place Benzene Toluene Ethylbenzene m,p-xylene o-xylene Reference

School

Izmir, Turkey Classroom 10.4 20.3 1.18 1 [67]
Bari, Italy Classroom 0.11–5.93 0.73–6.81 0.11–2.34 0.25–21.03 [68]

Ho ChiMinh, Vietnam Classroom 0.94 ± 1.6 7.7 ± 5.1 1.5 ± 0.77 3.1 ± 1.1 [69]
Michigan, USA Classroom 0.09 2.81 0.24 2.3 [70]

Gran La Plata,
Argentina

Classroom d 2.26 12.05 1.44 5.24 1.71
[8]Classroom e 2.51 8.70 1.63 7.13 2.45

Classroom f 5.313 9.97 1.82 7.65 2.67

Gliwice, Poland Classroom g 1.37 ± 1.06 1.19 ± 0.95 2.11 ± 4.26 0.72 ± 0.66 3.31 ± 7.49 [71]
Classroom h 1.67 ± 1.25 1.63 ± 1.29 1.83 ± 3.23 0.87 ± 0.71 2.82 ± 5.99

Hanoi, Vietnam Classroom 1.2–6.9 1.2–125 0.6–25.1 1.3–15.1 0.5–4.7 [72]

Small
enterprise

Buenos Aires,
Argentina

Chemical analysis
laboratories 6.9 7.7

[73]Sewing workrooms 6.3
Electromechanical

repair and car
painting centers

59.2 243.1

Takeaway food shops 1.9
Photocopy center 3.3

Residential
home

Ashford,
United Kingdom 0.5 (0.2–1.8) 1.5 (0.2–10.4) 0.8 (0.07–6.7) 1.5

(0.2–28.1) [74]

Louisiana, US 1.14
(0.04–13.57)

4.91
(0.84–66.22)

0.74
(0.29–8.65)

2.09
(0.63–35.36) [75]

Taiwan, China 7.0 ± 4.1 67.0 ± 36.7 17.1 ± 22.4 50.8 ± 66.1 [76]

Hotel Michigan, USA Guest room 0.9 2.4 0.3 0.2 [77]

Note: a the average level in the three universities; b in the cold season; c in the warm season; d schools
in residential areas; e schools in urban areas; f schools in industrial areas; g classroom for older children;
h classroom for younger children.

Specifically, the concentration of benzene was considerably lower on our campus
than the average level of the three campuses in China that had just been renovated within
two years (benzene was as high as 97.5 µg/m3) [20]; however, it was comparable to that
in a newly renovated office in a campus in Poland (1.13 ± 0.66 µg/m3) [66], which may be
related to the varied benzene content of the building materials used in different campuses.
Moreover, compared to indoor places other than university campuses, the concentration
levels of benzene in this study were comparable to those reported in many primary and
secondary schools (0.11–5.93 µg/m3 in Bari, Italy [68]; 0.94 ± 1.6 µg/m3 in Ho Chi Minh,
Vietnam [69]; and 1.67 ± 1.25 µg/m3 in Gliwice, Poland [71]), slightly higher than the
average concentration in the residential homes in Ashford, UK (0.5 (0.2–1.8) µg/m3) [74]
and Louisiana, USA (1.14 (0.04–13.57) µg/m3) [75], and lower than those in electrome-
chanical repair and car painting centers (59.2 µg/m3) [73] and residential homes near an
industrial park (7.0 ± 4.1 µg/m3) [76]. The difference in the concentration of benzene in
these different types of places may be related to the surrounding environment and the
intensity of indoor emission sources. Moreover, the discrepancies for toluene, ethylben-
zene, and xylene between this study and other studies were similar to those of benzene
(Table 2). In the present study, from the perspective of health risk value, the average
HQ of benzene (0.018) and ethylbenzene (6.7 × 10−4) was approximately one order
of magnitude lower than that of other studies (Table 3) [8,21,64,65,67,69,71–73,75,76].
The HQ of toluene (0.003) was comparable to that in primary and secondary schools in
Hanoi, Vietnam (0.001–0.003) [72] and residential homes in Louisiana, USA (0.003) [75].
In addition, the LCR values of benzene and ethylbenzene were one to three orders of
magnitude lower than those reported in other studies (Table 3). These discrepancies
may be due to the low concentration of benzene, toluene, and ethylbenzene measured in
this study and the different parameters used in health risk assessments. For example,
in this study, the human inhalation rate and body weight were set as 0.83 m3/h and
64.3 kg, whereas those adopted by Tran et al. [72] were approximately 0.65 m3/h and
80 kg, respectively. The non-carcinogenic risks of benzene, toluene, and ethylbenzene
in many indoor living and learning places are generally less than one (Table 3), which
is within the acceptable range. However, the carcinogenic risk value of benzene still
exceeds the health risk threshold sometimes. For example, in the library of a university in
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New Delhi, India, the average LCR value of benzene was higher than 1 × 10−6 [21], and
that in residential homes in Louisiana, USA was 1.4 × 10−5–4.9 × 10−5 [75]. Therefore,
it is necessary to continue to pay attention to the health risks of benzene series in indoor
environments in the future.

Table 3. Comparison of the non-cancer risk (HQ) and cancer risk (LCR) values of BTEX across
different studies.

Environment Type Region Sample Place
Benzene Toluene Ethylbenzene

Reference
HQ LCR HQ HQ LCR

University

Hangzhou, China Dormitory 0.019 1.16 × 10−5 0.004 7.89 × 10−4 3.85 × 10−6
This study

Classroom 0.016 9.83 × 10−6 0.002 ± 0.002 5.33 × 10−4 2.6 × 10−6

New Delhi, India Commercial Shopping
Complex

0.0841
(0.0981) 1.97 × 10−5 (2.22 × 10−5)

0.0024
(0.0029)

0.0014
(0.0016) 1.50 × 10−6 (1.63 × 10−6) [65]

Eskişehir, Turkey Stained Glass Workshop
(for students) 2.06 × 10−7 [64]

New Delhi, India
Library a 0.248 (0.657) 5.27 × 10−6 (1.40 × 10−5)

0.0039
(0.0046)

0.0028
(0.0024) [21]

Library b 0.42 (0.49) 8.93 × 10−6 (1.04 × 10−5)
0.0028

(0.0033)
0.0028

(0.0032)

School

Izmir, Turkey Classroom 0.31 ± 0.29 1.0 × 10−6 ± 1.2 × 10−6 [67]
Ho Chi Minh, Vietnam Classroom 0–4.53 × 10−5 0.08 × 10−6–0.32 × 10−6 [69]

Gran La Plata, Argentina
Classroom c 1.04 × 10−6

[8]Classroom d 6.62 × 10−7

Classroom e 1.10 × 10−6

Gliwice, Poland Classroom 8.4 × 10−6–1.2 × 10−5 [71]
Hanoi, Vietnam Classroom 0.018–0.116 2.3 × 10−5–4.1 × 10−5 0.001–0.003 0.003–0.004 [72]

Residential home
Louisiana, US 0.145 1.4 × 10−5–4.9 × 10−5 0.003 0.002 [75]
Taiwan, China 1.8 × 10−4 [76]

Small enterprise La Plata city, Argentina

Chemical
analysis laboratories 8.71 × 10−5 0.023

[73]Sewing workrooms <2.43 × 10−6 0.004
Electromechanical repair
and car painting centers 1.44 × 10−4 1.504

Takeaway food shops <2.37 × 10−6 0.004
Photocopy center <1.29 × 10−6 0.007

Note: a in the cold season; b in the warm season; c schools in residential areas; d schools in urban areas; e schools
in industrial areas. Values in parentheses are for females and values outside parentheses are for males.

This study has some limitations. Although this study also evaluated the health
risks of VOCs in canteens and libraries, which are also the main places for the daily
activities of college students, due to the limited number of samples, the results may have
large uncertainties. In addition, we did not consider other factors, such as humidity and
the outdoor environment, which also have a significant impact on indoor VOCs [78–80].
Therefore, more samples need to be collected in these two places for more comprehensive
analysis in the future.

5. Conclusions

In this study, a sampling campaign was conducted on campus at four different types
of buildings (dormitory, canteen, library, and classroom) in different seasons, and a total of
116 VOCs were quantified using GC–MS/FID. The average indoor TVOC concentration
was 203.3 ± 97.7 µg/m3, and the decreasing order of VOC concentrations at the four
sampling points was as follows: dormitory (254.3 ± 100.8 µg/m3) > canteen (183.6 µg/m3)
> classroom (154.0 ± 67.5 µg/m3) > library (139.4 µg/m3). Among the four sampling points,
acetone (36.6–54.0 µg/m3) was the most abundant species, accounting for approximately
13.6−36.0% of the total VOCs. The dormitory, classroom, canteen, and library were free of
substances that exceeded the non-carcinogenic risk limit. Acrolein showed the highest non-
carcinogenic risk value at all four locations and was the most important non-carcinogenic
risk substance. The carcinogenic risk of VOCs detected in the classroom, canteens, and
library was acceptable. In the dormitory, the average LCR values of 1,2-dichloroethane
were higher than 1.0 × 10−6 during the sampling period, indicating a possible cancer risk.
Given the high health risks identified in the dormitory in this study, further research on
associated sources and air quality improvement is recommended.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph20105829/s1, Table S1: Sampling time and the number
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of samples collected in each place; Table S2: RfD of species used for calculating non-cancer risk
and the Hazard Quotient (HQ) of each species in the dormitory, classroom, canteen, and library;
Table S3: SF of species used for calculating lifetime cancer risk and the mean Lifetime Cancer Risk
(LCR) of each species in the dormitory, classroom, canteen, and library; Table S4: The concentration
(µg/m3) of each VOC detected in this study during the whole sampling period in the dormitory,
classroom, canteen, and library; Figure S1: Relationship between temperature and the concentration
level of TVOCs during the whole sampling campaign.
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