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Abstract: China is facing the dual challenges of fostering economic growth and mounting an effective
response to climate change, so it is vital to continue promoting industrial carbon emission reduc-
tion. This paper uses panel data from 1998 to 2019 to measure the industrial carbon emissions of
30 provinces in China. The Tapio decoupling and IPAT (Impact = Population × Affluence × Technology)-
based decoupling models are used to analyze each province’s velocity and quantity decoupling index
for industrial carbon emissions. The fixed effect model analyzes the influencing factors for carbon
decoupling. The results show that the industrial carbon emissions of various provinces in China are
increasing yearly, but there are significant differences among provinces. The carbon decoupling of the
industrial economy in most provinces is weak, and the quantitative decoupling index is better than
the velocity decoupling index. The cleanliness of energy, balance, and labor productivity significantly
affect the velocity decoupling index. The cleanliness of energy, the industry’s structure, and the
population significantly affect the quantity decoupling index. Based on empirical results, the study
puts forward some policies to promote the efficient carbon decoupling of the industrial economy.

Keywords: industrial growth; carbon emissions; velocity decoupling; quantity decoupling; panel
regression analysis

1. Introduction

Since its reform and expansion, China’s industrial economy has proliferated, and
China became the world’s top manufacturing country in 2010. China also became the only
country in the world among all the categories in the United Nations Industrial Classification
with a complete industrial system. China’s industrial value added increased 43.73 times
in 2019 compared to 1978 at comparable prices. However, China’s high industrial growth
has come at the cost of high energy consumption and high CO2 emissions. The growth
of the industrial economy has been accompanied by a significant increase in China’s total
carbon emissions, and China became the world’s top carbon emitter in 2005. In 2019,
China accounted for 29.4% of total global CO2 emissions [1], with industrial CO2 emissions
accounting for 79.3% of all emission sources [2]. As the first developing country to submit
an autonomous national contribution, China has committed to achieving carbon peaking in
2030 and strives to achieve carbon neutrality by 2060 [3]. Compared with some developed
countries whose emissions have peaked, China’s carbon emissions are still in the growth
period. Achieving carbon neutrality in such a short period is a massive challenge for China.
Therefore, it is necessary and urgent to break the inevitable link between “high industrial
economic growth and high CO2 emissions” to study the sustainable development strategy
of Chinese industry.
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At present, the research on the relationship between industrial economic growth
and carbon emissions is mainly focused on the following aspects: (1) using the environ-
mental Kuznets curve to study the relationship between industrial growth and carbon
emissions [4]; (2) testing the causal relationship between industrial economic growth and
carbon emissions by econometric means [5,6]; (3) quantitative analysis of the related factors
of carbon emissions by exponential decomposition method [7,8]; and (4) constructing a
decoupling index to measure the relationship between industrial economic growth and
environmental problems [9–11]. Among them, decoupling has attracted scholarly attention
as an essential indicator of the successful integration of the economy and the environment.
Its essence is to measure whether economic growth is at the cost of resource consumption
and environmental damage. Carbon decoupling refers to the relationship between CO2
emissions and changes in economic growth. A negative growth or slowdown in CO2
emissions can be seen as decoupling when the economy grows.

From the perspective of decoupling measurement methods, the existing literature
mainly uses four methods to study the decoupling relationship between economic growth
and carbon emissions: (1) the OECD (Organization for Economic Co-operation and Develop-
ment) decoupling index model includes absolute decoupling and relative decoupling [12];
(2) the Tapio decoupling model introduces the idea of elastic decoupling into the OECD de-
coupling model [13]; (3) the environmental Kuznets curve model [14]; and (4) a decoupling
model based on the IPAT equation [15]. The above four decoupling analysis methods can
be divided into two categories: velocity decoupling analysis and quantitative decoupling
analysis. The carbon emission velocity decoupling model quantifies the decoupling state
through the relationship between the CO2 emission change rate and economic growth rate,
including the OECD decoupling model and the Tapio decoupling model. Compared with
the OECD decoupling model, the Tapio decoupling model has become the most widely
used decoupling model because of its advantages of being insensitive to the choice of
the base period and not being affected by differences in statistical dimensions [16]. Un-
like velocity decoupling, quantitative decoupling focuses on quantitative relationships,
meaning that carbon emissions tend to stabilize or decrease with economic growth, mainly
including the EKC model and the decoupling model based on the IPAT equation. Thus,
scholars generally believe that the carbon intensity target is a total carbon emission control
target [17].

In the studies, scholars mainly applied one of the above decoupling models to ex-
plore the decoupling state between economic growth and carbon emissions. Freitas and
Kaneko [18], and Xiao et al. [19] used the decoupling model to analyze the long-term decou-
pling state of economic growth and carbon emissions in Brazil, China, and the United States.
Wu et al. [20], Wang et al. [21], Li et al. [22], and Liu et al. [23] measured the decoupling
state of economic growth and carbon in Beijing, Shaanxi, Shanxi, and Jiangxi provinces of
China, respectively. A large number of studies have shown that there is a close relationship
between industrial activities and carbon decoupling, and the final energy consumption of
the industrial sector has become carbon-intensive. Liu et al. [24] analyzed China’s indus-
trial sector, using the decomposition method from 1998 to 2005, and found that industrial
activity and energy intensity factors were dominant contributors to the change in CO2.
Zhao et al. [25] employed decomposition analysis for industrial emissions in Shanghai
city from 1996 to 2007 and found that energy intensity and industrial structure were key
factors in reducing CO2. Wen et al. [26] found similar results for 38 sub-industries in China
from 2000 to 2017 and estimated that investment, output, and energy scale were the major
contributors to raising CO2. Wang et al. [27] analyzed the data of various industries in the
United States from 1997 to 2016. Their investigation showed that the industrial sector was
the main factor in the rise in CO2. Therefore, the further reduction of carbon intensity must
depend on the efforts of the industrial sector [28,29].

Some scholars have also studied carbon decoupling for the industrial economy.
Gong et al. [30], Huang et al. [31], and Yue et al. [32] analyzed the carbon decoupling
status of the industrial economy in Wuhan, the Yangtze River Economic Zone, and the
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western region, respectively. Yu [33], Jie et al. [34], and Lv [35] analyzed the carbon de-
coupling status of China’s power industry, energy extraction industry, and commerce and
distribution industry, respectively, using decoupling models.

However, the decoupling analysis method can only reflect the dependency relationship
between the two and cannot explore the reasons for the said dependency relationship.
To break through this limitation, some scholars have studied the driving mechanism of
decoupling by combining the decoupling model with the decomposition method. Many
scholars researched the decoupling model, Log-averaged Dependent Decomposition Index
(LMDI) model, and the panel regression model. Yuan et al. [36] and Zhang et al. [37]
studied the internal mechanism of decoupling from the perspective of the whole country.
Lv et al. [38] and Wang [39] explored the factors influencing the decoupling relationship
between carbon emissions and economic growth in one or several provinces.

In summary, the current research has mostly used panel data to analyze economic car-
bon decoupling, and the results have provided some theoretical support and reference for
further research. However, there is still room for improvement in related research. Among
the research perspectives on the decoupling of economic growth and carbon emissions,
many scholars have examined the decoupling status and internal driving mechanisms for
the whole of China or a few provinces and cities. Since carbon emission reduction targets
require the joint efforts of all provinces, it is necessary to investigate the decoupling status
of all provinces to develop tailor-made emission reduction measures for different provinces.
From the perspective of decoupling industrial economic growth and carbon emissions,
some scholars have examined a limited number of industrial sectors. However, not all
industrial sectors have been included in the study. From the perspective of the carbon
decoupling driving mechanism, most scholars have only considered a limited number of
driving indicators. They have not considered external drivers such as the economy, energy,
innovation, and productivity. In addition, no scholars have been found who have combined
velocity decoupling and quantity decoupling to analyze industrial economic growth and
carbon emissions.

Based on the above, this paper adopts the Tapio decoupling model and the decoupling
model based on the IPAT equation to measure the industrial production in China (Tibet,
Hong Kong, Macau, and Taiwan are not discussed due to the lack of data) for 22 consecutive
years from 1998 to 2019. The two models are based on incremental data and the IPAT
equation. Moreover, this paper adopts the fixed effect model to analyze the effectiveness of
the driving factors of velocity decoupling and quantitative decoupling in 30 provinces in
China from 2003 to 2019—for 17 consecutive years after China approved the Kyoto Protocol
of the United Nations Framework Convention on Climate. Finally, according to the results,
this paper put forward relevant countermeasures from the perspective of government and
industrial companies.

2. Materials and Methods
2.1. Study Area

In this study, 30 provinces in China were selected as study areas. The paper will
use the word “province” to refer to these study areas throughout the rest of the paper.
The research period of industrial decoupling state accounting was from 1998 to 2019 (the
carbon dioxide data for some provinces were missing before 1998.) The research period
of industrial carbon decoupling driver analysis was from 2003 to 2019 (The year 2003 was
the first year after China approved the Kyoto Protocol to the United Nations Framework
Convention on Climate change, and it was a key time point for China to carry out carbon
dioxide emission reduction).

2.2. Research Hypothesis

Chinese industrial enterprises face two major demands: high economic growth and
carbon emission reduction. However, the demand for economic development inevitably
leads to an increase in energy consumption, increasing CO2 emissions, which runs counter
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to the demand for carbon emission reduction in industrial enterprises. Under the premise of
economic development, promoting carbon emission reduction in industrial enterprises has
become an important breakthrough point to resolving the above contradictions. Industrial
enterprises and the government will implement measures to balance the “economy and
being green.” The transmission mechanism for decoupling the industrial economy from
carbon is shown in Figure 1.
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As shown in Figure 1, at the national level, the government can adjust the structure
of industrial industries through economic measures, such as tax reduction, loan subsidies,
export credits, and other policy support, in order to reduce the proportion of resource-
intensive industries and increase the proportion of capital-intensive and labor-intensive
industries, thereby reducing carbon dioxide emissions. At the same time, the government
can also strengthen the investment in scientific research and increase the intensity of
investment in science and technology in industries to achieve the goal of reducing carbon
dioxide emissions to ensure economic growth. However, if a company does not meet
the carbon market threshold to trade in the carbon market, it will reach its emission
reduction needs in other ways. The first way is to adjust the energy structure to increase
the proportion of clean energy in the energy consumption structure. “Clean” energy here is
relative, depending on the carbon content of the energy source. For example, the carbon
content of coal is about 30% higher than that of oil and about 70% higher than that of natural
gas [40]. The second way is to improve the balance of the energy consumption structure,
diversify energy consumption varieties, and break the dilemma that energy consumption
depends on coal. Industrial enterprises can also achieve their emission reduction needs by
improving their labor–output ratio through training and upgrading human and material
resources to reduce CO2 emissions for the same output unit.

In summary, from a theoretical point of view, reforming the industrial structure, im-
proving scientific and technological inputs, reforming the energy structure, and improving
the labor–output ratio can all drive the level of carbon decoupling in industrial economies
to some extent.
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It is hard to simply measure whether the intrinsic drivers of the industrial carbon
decoupling effect are effective using a theoretical analysis. It is necessary to quantita-
tively and empirically analyze whether the intrinsic drivers of the industry, such as the
energy consumption structure, industrial structure, technology input intensity, and labor
productivity, can effectively enhance carbon decoupling.

Hypothesis H1: When the industrial energy consumption structure tends to be cleaner, the level
of industrial carbon decoupling increases.

Hypothesis H2: When the industrial energy consumption structure tends to diversify, the level of
industrial carbon decoupling increases.

Hypothesis H3: When industrial industry structure tends to be non-resource-intensive, the level
of industrial carbon decoupling increases.

Hypothesis H4: When the labor–output ratio of industrial enterprises increases, the level of
industrial carbon decoupling increases.

Hypothesis H5: When the ratio of R&D input from local governments increases, the level of
industrial carbon decoupling increases.

Hypothesis H6: When investment in the environment increases, the level of industrial carbon
decoupling increases.

Hypothesis H7: When the regulation strength of local governments increases, the level of industrial
carbon decoupling increases.

Hypothesis H8: When the urbanization ratio increases, the level of industrial carbon
decoupling increases.

2.3. Data Sources and Descriptions

(1) Industrial added value: Industrial added value is obtained from provincial and
municipal statistical yearbooks. In order to eliminate the influence of price factors on the
study, this paper takes 1995 as the base period and applies the deflator to the industrial
ex-factory price index to obtain the actual industrial added value in all years.

(2) Carbon emissions of the industry: The data come from Carbon Emission Accounts
& Data. Using the IPCC sector emission accounting method [41], 41 industrial sectors and
17 kinds of fossil fuels in China’s energy system are selected, and the fuels consumed in
thermal energy and thermal energy production are considered [42,43]. According to the
formula “carbon emissions = energy consumption × emission factors,” the carbon dioxide
produced by fossil fuel combustion in different industrial sectors is obtained. Finally, the
carbon emissions of different industrial sectors are summed up, and the industrial carbon
emissions of provinces and cities are calculated.

(3) Cleanliness of energy: EC = g3
gt

. According to the relative principle, this paper
selects natural gas and oil consumption, which contain less carbon, to represent clean
energy, and uses the ratio of their consumption to industrial energy consumption as a
measure of the cleanness of industrial energy consumption. The larger the indicator is, the
higher the degree of cleanliness of the industrial energy consumption structure.

(4) Balance of energy: EB =∑m
k=1

ln(gk/gt)
ln m · gk

gt
. In this paper, we construct the formula

for the industrial energy consumption balance degree based on information entropy, which
is the ratio of information entropy to maximum entropy. m refers to the number of industrial
energy consumption categories. Because in this paper, coal, crude oil, and natural gas will
be recorded as the primary energy species, m = 3; gk/gt represents the percentage of energy
k consumption out of the total energy consumption gt after the calorific value is converted
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into standard coal. The energy balance represents the difference between the proportions
of industrial energy consumption. The indicator is between 0 and 1; the larger the indicator,
the more balanced the energy consumption.

(5) Productivity of labor: LP = industrial value−added
average number of workers in industrial sector . The average

number of laborers includes the average number in both state-owned and private enter-
prises. The larger the indicator, the higher the labor productivity in the industry.

(6) Structure of industry: SIO =Value added of resource−intensive industries
Value added of whole industry . This paper draws

on the classification standard of the United Nations SITC and related research [44] and
defines it as the ratio of the value added of resource-intensive industries to the value added
of the whole industrial industry. The smaller indicator represents a relative decrease in
the share of value added of resource-intensive industries. It also represents the existence
of economic actions of the government or enterprises that lead to a tilt in the structure
of industrial industries toward non-resource-intensive industries, which may lead to a
decrease in industrial carbon emissions.

(7) The intensity of technology investment: STS =
R&D spent

GDP . This refers to the propor-
tion of GDP actually spent on basic research, applied research, and experimental develop-
ment by the society during the year. The higher the society-wide spending on science and
technology-related expenditures, the more likely it is to have a spillover effect on improving
science and technology levels in industries.

(8) Increase environmental investment: This refers to the local government’s
annual industrial investment. The higher the index level, the lower local industrial
carbon emissions.

(9) Number of population: This term refers to population figures from year-end statis-
tics for each province. Theoretically, carbon emissions also increase when the population
number increases and social activity increases.

(10) Urbanization ratio: Urban Population
Number of Population . When a province’s urbanization ratio

increases, the degree of industrial agglomeration increases, and the industrial carbon
emissions decrease.

(11) Government regulation: ∑ SO2 + PM. This refers to the degree of government
regulation of industrial carbon emissions. Carbon dioxide and air pollutants are “homoge-
nous,” and industrial production emits carbon dioxide and air pollutants. Therefore, many
scholars consider the emissions of air pollutants as the level of government environmental
regulation of the industry.

The descriptive statistics of the above variables are shown in Table 1.

2.4. Calculation Method of Industrial Carbon Emission Velocity Decoupling Index

Tapio index is not sensitive to the selection of the base period, nor is it affected by
differences in statistical dimensions. In order to fully reflect the volatility of the dynamic
data decoupling state and the objective accuracy of decoupling prediction, this paper
chooses the Tapio decoupling model combined with incremental data to calculate the
industrial carbon emission velocity decoupling index. The formula is shown in (1):

Ds =
∆I
I0

∆G
G0

=

In−I0
I0

Gn−G0
G0

(1)

where Ds is the velocity decoupling index between industrial carbon emissions and indus-
trial economic growth, In and Gn are the current values of industrial carbon emissions and
industrial value added, respectively, and I0 and G0 are the base period values of industrial
carbon emissions and industrial added value, respectively.

The decoupling states are divided into 8 categories according to the size of ∆I/I0,
∆G/G0, and the velocity decoupling elasticity, as shown in Table 1.
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Table 1. Descriptive statistics of variables.

Variable Meaning Numbers Mean Value Standard
Deviation

IAD Industrial added value 660 4701.31 1658.40

ICE Carbon emissions of the
industry 660 202.29 170.30

Ds velocity decoupling index 510 0.59 0.48

Dq quantity decoupling index 510 0.17 1.92

EC Cleanliness of energy 510 0.83 0.15

EB Balance of energy 510 0.42 0.21

LP Productivity of labor 510 27.45 14.21

SIO Structure of industry 510 0.37 0.19

STS The intensity of technology
investment 510 1.42 1.07

IIE Increase investment in
environmental 510 190,676.3 190,053.1

NP Number of population 510 4470.58 2730.86

UR Urbanization ratio 510 53.33 14.5535

GR Government regulation 510 85.69 55.77
Note: The data are obtained from previous years of the China Statistical Yearbook, national and provincial
statistical bureaus, and provincial input-output tables. Some of the data are missing and abnormal. This paper
uses the trend method and regression method of conversion, and the data are substituted and processed to obtain
the results of the above table.

2.5. Calculation Method of Industrial Carbon Emission Quantitative Decoupling Index

A decoupling state can be considered to occur only when there is an increase in the
total amount of the economy and a flat or decreasing amount of environmental pollution.
Lu et al. [45–48] proposed a functional relationship between the rate of change in carbon
emission intensity and the GDP growth rate based on the IPAT equation [49] to investigate
the quantitative decoupling of economic growth and carbon emission. Some scholars
believe that quantitative decoupling can be a more practical measurement method as it can
provide more guidance in environmental resource protection.

Based on the IPAT equation and referring to the relevant studies of Lu, the formula for
calculating the quantitative decoupling index of industrial carbon emissions is derived:

In = Pn × An × Tn = Gn × Tn = G0 × (1 + g)n×T0×(1 − t)n = G0 × T0 × [(1 + g)× (1 − t)]n (2)

where In, Pn, An, Tn, and Gn are current industrial carbon emissions, population, per capita
industrial added value, industrial carbon emission intensity and industrial added value,
respectively. I0, T0, and G0 are the base period values of industrial carbon emissions,
industrial carbon emissions intensity, and industrial added value, respectively.

In order to realize the absolute decoupling of industrial carbon emissions from in-
dustrial economic growth, it is necessary to meet the annual increase of industrial car-
bon emission intensity kr ≤ 0. According to the nature of the inequality, we derive
(1 + g)n × (1 − t)n ≤ 1. It is known that the relationship between t and g is very important,
so the ratio of t to g is taken as the quantitative decoupling index, which is recorded as Dq.
The decoupling states are divided into 8 categories according to the size of g, t, and the
quantity decoupling elasticity, as shown in Table 2.
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Table 2. Division of velocity decoupling and quantity decoupling state.

Division of Decoupling
State

Velocity Decoupling State Quantity Decoupling State

∆I/I0 ∆G/G0 Ds g t Relationship Dq

Negative
decoupling

Expansion
negative

decoupling
>0 >0 (1.2, +∞) >0 ≤0 g > t (−∞, 0)

Strong
negative

decoupling
>0 <0 (−∞, 0) <0 >0 g ≤ t (−∞, 0)

Weak negative
decoupling <0 <0 [0, 0.8] <0 <0 g ≤ t (0, 1)

Decoupling

Weak
decoupling >0 >0 [0, 0.8] >0 >0 g/(g + 1) ≤ t < g (0, 1)

Strong
decoupling <0 >0 (−∞, 0) >0 >0 g ≤ t [1, +∞]

Recession
decoupling <0 <0 (1.2, +∞) <0 <0 g/(g + 1) ≤ t < g (1, +∞)

Link
Extended

connection >0 >0 [0.8, 1.2] >0 >0 t < g/(t + 1) (0, 1)

Decline link <0 <0 [0.8, 1.2] <0 <0 t < g/(t + 1) (0, +∞)

2.6. Method for Calculating the Effectiveness of Industrial Carbon Decoupling Drivers

Panel data regression models are well-suited for factor analysis. First, panel data can
analyze comprehensive factors. Because panel data regression includes both cross-sectional
and temporal dimensions, it can solve the problems that separate cross-sectional and
temporal data cannot solve. For example, cross-sectional data regression cannot observe
the effect of labor productivity over time. Second, the panel data can expand the number
of samples and increase the stability and accuracy of the model regression results. Third,
when conducting factor analysis, panel data fixed effects regression can solve the problem
of factor omission. When factors are omitted in the panel data regression, the unobserved
factors are differenced out when demeaning. This reduces the endogeneity problem due to
unobserved factors that may correlate with the explanatory variables [50,51].

Therefore, this paper used two panel data regression models to study the driving
effect of decoupling between provincial industrial economic growth and industrial carbon
emissions in China.

The decoupling index rate is the industrial CO2 emissions required to increase 1 unit of
industrial value added. The quantity decoupling index is the rate of decrease in industrial
carbon intensity that accompanies a 1 percentage point increase in industrial value added.
A combination of factors determines the decoupling index. Therefore, this paper establishes
a regression model, as shown in Equation (3).

Dit = αit + β1EBit + β2ECit + β3LPit + β4SIOit + β5STSit + β6 I IEit + β7NPit + β8URit + β9GRitµit (3)

In this model, Dit represents the velocity decoupling index or quantity decoupling
index between industrial economic growth and industrial carbon emissions in a province,
period t; EBit is the energy balance in province i, period t; ECit is the energy cleanliness
in province i, period t; LPit is the labor productivity in province i, period t; SIOit is the
industrial industry structure in province i, period t; STSit is the science and technology
input intensity in province i, period t; I IEit is the increase in environmental investment
in province i, period t; NP is the number of population in province i, period t; URit is the
urbanization ratio in province i, period t; GRit is the government regulation in province i,
period t; and µit is a random perturbed variable.
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3. Results
3.1. Analysis of Decoupling and Carbon Emissions in China’s Provinces
Accounting Results and Analysis of Industrial Carbon Decoupling in Different Provinces
of China

The average industrial value added of China’s provinces grew from 100,638.1 million
yuan in 1997 to 866,588.4 million yuan in 2019, with a general upward trend from 1997 to
2017, and a slight downward trend after 2016. The average industrial carbon emissions
increased from 0.817 billion tons in 1997 to 310.21 million tons in 2019, with the growth rate
of industrial carbon emissions showing a decreasing trend year by year since 2003, and
a slightly increasing trend since 2015. The average industrial value added and industrial
carbon emissions of each province in China show regional differences.

Generally, China can be divided into eight economic zones. The industrial structure
and development level of each economic zone are different, resulting in obvious regional
differences in industrial added value and industrial carbon emissions. (See Figures 2 and 3
for details.) The most influential and multifunctional manufacturing center on the Eastern
coast and the manufacturing center of high-tech products on the southern coast always have
the highest average industrial added value, and the average industrial carbon emissions on
the eastern coast are also high. Northwest is an important energy strategic replacement
base, and the tertiary industry in the southwest is developing rapidly. These two economic
zones are both vast and sparsely populated, and their economic development conditions
are poor, so the average industrial added value is the lowest, and the average industrial
carbon emissions are always low. The middle reaches of the Yellow River are the largest
coal mining and deep processing base, natural gas and hydropower development base,
iron and steel industry base, and non-ferrous metal industry base. The northern coastal
area is one of the most powerful high-tech R&D and manufacturing centers. The average
industrial carbon emissions of these two economic zones are always high. The northeast
is the manufacturing base of energy and raw materials, with large energy consumption
but a low level of economic development, so the average industrial added value is smaller,
but the average industrial carbon emissions are higher. The middle reaches of the Yangtze
River are a raw material base dominated by iron and steel and non-ferrous metallurgy, and
the average industrial carbon emissions and average industrial added value belong to the
medium level in the eight major economic zones.

The changes in the average industrial value added and industrial carbon emissions
of the eight major economic regions in China are shown in Figures 2 and 3. The average
industrial value added in the eastern and southern coastal regions is always the highest, and
the average industrial value added in the great northwest region is always the lowest. The
average industrial value added in the remaining five regions shows a slightly decreasing
trend after 2016. The average industrial carbon emissions in the middle reaches of the
Yellow River and the northern and eastern coast are always at the top of all regions. The
average industrial carbon emissions in the Great Northwest and the Great Southwest are
always less.

Furthermore, the decoupling model quantifies the relationship between industrial car-
bon emissions and industrial economic growth in the various provinces of China. Figure 4a
shows the change in velocity decoupling distribution in various provinces in China. Due
to space limitations, this paper only presents the relevant data from three long-interval
years, 2000, 2009, and 2019. As can be seen from the figure, the overall velocity decoupling
of Chinese provinces has proceeded from a strong decoupling to a weak decoupling to a
gradual recovery of a strong decoupling. In 2019, 83.33% of China’s provinces achieved
industrial carbon emission decoupling (including strong decoupling and weak decoupling),
most of which were weak decoupling, while 16.67% of the provinces had not yet achieved
industrial carbon emission decoupling. This shows that the industrial development of
most provinces in China has entered the stage of carbon emission decoupling. Only a
few provinces have achieved the best state of decoupling, while some provinces have not
achieved industrial carbon decoupling and are still in the state of expansion connection
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or expansion-negative decoupling. Figure 4a shows the change in quantity decoupling
distribution in various provinces in China. For comparison purposes, only the distribution
of relevant results in 2000, 2009, and 2019 is shown here. It can be seen that the quan-
tity decoupling state is relatively concentrated, which is mainly divided into three types:
strong decoupling, weak decoupling, and expansion negative decoupling. In 2019, 86.67%
of China’s provinces achieved industrial carbon emission decoupling (including strong
decoupling and weak decoupling), most of which were also weak decoupling, and 13.33%
of the provinces were in the state of expansion negative decoupling.
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growth in various provinces of China.

It can be seen from Figure 4, from a spatial point of view, that there are some differences
in the decoupling state and decoupling process between industrial economic growth and
industrial carbon emissions in China’s eight major economic zones. Nevertheless, on the
whole, the velocity decoupling, quantitative decoupling state, and development process
of each region are similar. The analysis combined with the decoupling index results is as
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follows: the velocity decoupling in the middle reaches of the Yellow River from 2007 to
2017 is in a weak decoupling state, repeatedly in other years, while quantitative decoupling
is stable after 2001. Velocity decoupling and quantitative decoupling are repeatedly linked
in the northwest region. Gansu and Qinghai have reached a weak decoupling state, while
Ningxia and Xinjiang are still in a state of expansion negative decoupling, reflecting the fact
that industrial economic growth in these areas is very dependent on energy. The northern
coastal area has gradually changed from weak decoupling to strong decoupling, but there
is a big difference. Beijing is in a state of strong decoupling, Hebei is in a state of expanding
connection, and the northeast region has gradually changed from strong decoupling to
weak decoupling. Heilongjiang Province is in a state of expansion negative decoupling.

The rest of the major regions, namely, the eastern coastal area (1998–2019), the mid-
dle reaches of the Yangtze River (2006–2019 velocity decoupling, 2002–2019 quantity de-
coupling), the southern coastal area (2010–2019 velocity decoupling, 2006–2019 quantity
decoupling), the southwest region (2014–2019 velocity decoupling, 2012–2019 quantity de-
coupling) are always or after a time node in a stable weak decoupling state. This shows that
although industrial carbon emissions increase with the growth of the industrial economy,
the growth rate of industrial carbon emissions is lower than that of the industrial economy,
and preliminary decoupling can be achieved.

The decoupling analysis method can only reflect the dependent relationship between
industrial economic growth and industrial carbon emissions at the provincial level in China.
However, it cannot explore the reasons for the above dependent relationship. The velocity
decoupling index and quantity decoupling index for each province in China differ from the
decoupling status to the development history of decoupling, so this paper further analyzes
the driving factors of industrial carbon emission velocity and quantity decoupling.

3.2. Empirical Analysis on the Effectiveness of Decoupling Drivers
3.2.1. Robustness Test

If there is a random or definite trend between variables, it may be because sometimes
variables are highly correlated because they have an upward or downward trend over
time at the same time and are not related, resulting in a “pseudo-regression.” In order to
avoid pseudo-regression and ensure the validity of the regression estimation results, this
paper uses the IPS, Hadri LM, and Fisher-PP methods simultaneously to test the stability
of the original and first-order differential panel data series. Suppose that among the three
methods, there are at least two methods rejecting the original hypothesis of the existence
of the unit root. In that case, this series can be considered stable, and vice versa. The test
results are shown in Table 3. All 11 samples are stable panel data, and the next step in
regression estimation can be performed.

3.2.2. Cointegration Test

Because the variables STS, NP, GR, and UR are unstable, their first-order difference
is stable. Therefore, it is necessary to test further whether the series of both models are
first-order stable and cointegrated. Suppose both are first-order stable and cointegration.
In that case, it is proved that a long-term equilibrium relationship between the variables
and subsequent regression analysis can be conducted. The test results are shown in Table 4.
The long-run cointegration relationship exists, and the subsequent empirical analysis can
be conducted.

3.2.3. Model Selection

Considering that the random perturbation term µit is correlated with the explanatory
variables, this paper has to screen between the fixed-effects regression model and the
random-effects regression model. The fixed-effects regression model considers individ-
ual effects, while random effects require that all explanatory variables are uncorrelated
with individual effects, i.e., the nuisance terms. In this paper, the Hausman test selects
the fixed-effects model or random-effects model. The test results are shown in Table 5.
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Prob > chi2 for both the velocity decoupling model and the quantity decoupling model
is 0.0000, both showing strong rejection of the original hypothesis, indicating that the
fixed-effects model is superior to the random-effects, and the fixed-effects model regression
results are accepted. Therefore, this paper chooses to establish a fixed-effects model with
relevant parameters based on the results.

Table 3. Robustness test.

Variable Phillips-Perron
Tests

Hadri LM
Test

Im-Pesaran-Shin
Unit-Root Test Result

p-value

Ds 0.0000 *** 0.0000 *** 0.0000 *** stable

Dq 0.0000 *** 0.0000 *** 0.0000 *** stable

EB 0.0016 *** 0.0000 *** 0.0000 *** stable

EC 0.0001 *** 0.0000 *** 0.0000 *** stable

SIO 0.0002 *** 0.0000 *** 0.0000 *** stable

LP 0.6018 0.0000 *** 0.0003 *** stable

IIE 0.0030 ** 0.0000 *** 0.0000 *** stable

STS 0.2014 0.0000 *** 0.0053 *** unstable

NP 0.9998 0.0000 *** 0.9871 unstable

UR 0.3011 0.0000 *** 0.1298 unstable

GR 0.9776 0.0000 *** 0.0254 ** unstable

dSTS 0.0000 *** 0.0000 *** 0.0000 *** stable

dNP 0.0000 *** 0.0000 *** 0.0000 *** stable

dGR 0.0000 *** 0.0000 *** 0.0000 *** stable

dUR 0.0000 *** 0.0443 ** 0.0000 *** stable
Note: **, *** represent significance at the level of 5%, 1% respectively; both represented with a coefficient of 0 reject
the hypothesis.

Table 4. Test of cointegration relationship.

Model Ho: No Cointegration p-Value Result

Velocity decoupling
Pedroni test for cointegration 0.0000 long-term cointegration

Westerlund test for cointegration 0.0000 long-term cointegration
Kao test for cointegration 0.0000 long-term cointegration

Quantity decoupling
Pedroni test for cointegration 0.0000 long-term cointegration

Westerlund test for cointegration 0.0000 long-term cointegration
Kao test for cointegration 0.0000 long-term cointegration

3.2.4. Heteroscedasticity and Autocorrelation Tests

Before setting up the parameters associated with the fixed effects model, the het-
eroskedasticity and autocorrelation properties of the data are considered. Whether the data
are homoscedastic or heteroscedastic and whether there is autocorrelation determine the
difference in the parameters set for the model regression. Therefore, to set up reasonable
regression models, it is necessary to test whether the data have homoscedasticity and auto-
correlation. The results are shown in Table 6, and heteroscedasticity and autocorrelation
exist between the two model series.

3.2.5. Establish Regression Model

Based on the heteroscedasticity and autocorrelation properties of the sample, the
nonparametric covariance matrix estimator is chosen in this paper. This estimation model
was proposed by Driscoll et al. [52] and can obtain consistent standard errors considering
heteroscedasticity and autocorrelation and applies to fixed-effects models. In Stata, the
command to obtain the Driscoll & Kraay standard errors is xtscc. Therefore, this paper uses
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the fixed effects model with the xtscc command for the regression of the panel data. Table 7
shows the regression results.

Table 5. Hausman test.

Variable

Velocity Decoupling Regression Model Quantity Decoupling Regression Model

Coefficient Coefficient

Fixed-Effects
Regression Model Random-Effects Model Fixed-Effects

Regression Model Random-Effects Model

EB −0.7961285 −0.5828243 2.384521 0.3736852

EC −0.5017271 −0.4469303 −3.578881 −1.141502

SIO −0.6331995 −0.262268 2.592519 −1.221513

LP −0.0060619 −0.0055131 −0.002814 0.0092246

IIE 3.35 × 10−8 8.92 × 10−8 1.26 × 10−7 3.18 × 10−7

STS −0.0237336 −0.0642919 −0.192964 0.4952351

NP −0.0000679 −0.0000407 0.0009458 −0.0000576

UR −0.0039099 −0.0015072 −0.0091967 −0.0412733

GR 0.0002312 −0.0000142 0.0030897 0.0034554

Chi2(8) = 66.44
Prob > Chi2 = 0.0000

Chi2(8) = 54.74
Prob > Chi2 = 0.0000

Table 6. Heteroscedasticity and autocorrelation test.

Heteroscedasticity Cross-Sectional
Correlation

Serial
Correlation

Result
Breusch-Pagan

Test White’s Test Pesaran’s Test Wooldridge
Test

p-value

Velocity
decoupling 0.0000 0.0000 0.0000 0.0933 Heteroscedasticity and

autocorrelation exist

Quantity
decoupling 0.0007 0.0276 0.0000 0.9385

Heteroscedasticity
exists; autocorrelation

does not exist

According to the regression results in Table 3, it can be found that, first, there are
differences between the regression results of the velocity decoupling model and the quantity
decoupling model.

In the velocity decoupling model, the balance of energy, the cleanliness of energy,
and labor productivity are significant factors. These three indices all have negative effects
on velocity decoupling. When the balance of energy, cleanliness of energy, and labor
productivity increased by 1%, the velocity decoupling index decreased by 0.8%, 0.5%, and
0.006%, respectively.

In the quantity decoupling model, the cleanliness of energy, industry structure, and
population number are significant factors. The number of population and structure of the
industry have positive effects on the quantity decoupling index, while the cleanliness of
energy has a negative effect. This means that the quantity decoupling index increases when
the number of population increases and the value added of resource-intensive industries
increases. When the structure of the industry and number of population increase by 1%,
the quantity decoupling index increases by 2.6% and 0.0009%.

Compared with the two models, it can be found that the cleanliness of energy has a
negative effect on the two models, but the parameter is different. When cleanliness increases
by 1%, the quantity decoupling index decreases by 3.6%, while the velocity decoupling
index decreases by 0.5%.
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Table 7. Regression results of the model.

Variable

Velocity Decoupling Regression Model Quantity Decoupling Regression Model

Coefficient t P > |t|
(Robust Std) Err Coefficient t P > |t|

(Robust Std) Err

EB −0.7961285 −2.04 0.050 **
(0.3894124) 2.384521 1.57 0.118

(1.521888)

EC −0.5017271 −1.83 0.078 *
(0.2747573) −3.578881 −1.79 0.074 *

(2.001074)

SIO −0.6331995 −1.41 0.168
(0.4482697) 2.592519 2.18 0.030 **

(1.189896)

LP −0.0060619 −1.94 0.062 *
(0.0031232) −0.002814 −0.25 0.801

(0.0111733)

IIE 3.35 × 10−8 0.38 0.710
(8.94 × 10−8) 1.26 × 10−7 0.17 0.864

(7.36 × 10−7)

STS −0.0237336 0.37 0.711
(0.0930034) −0.192964 −0.48 0.631

(0.4019901)

NP −0.0000679 −0.63 0.535
(0.0001082) 0.0009458 2.38 0.018 **

(0.000398)

UR −0.0039099 −0.57 0.571
(0.0068157) −0.0091967 −0.40 0.687

(0.0227949)

GR 0.0002312 0.22 0.830
(0.0010686) 0.0030897 0.99 0.322

(0.0031161)

_cons 2.172607 3.18 0.003
(0.6823051) −2.478423 −0.92 0.357

(2.68902)

sigma_u = 0.47210629 sigma_e = 0.24561245
rho = 0.78699371

sigma_u = 2.7075269 sigma_e = 1.7438877
rho = 0.70678853

Note: *, ** represent significance at the level of 10%, 5% respectively; both represented with a coefficient of 0 reject
the hypothesis.

4. Discussion
4.1. Further Discussion

Unlike previous studies, this paper has the following innovations. First, in this study,
the analysis and discussion are conducted from a whole industry sectoral perspective, and
the differences among sectors are fully considered. Second, this study combines velocity
and quantity decoupling models to comprehensively analyze the decoupling status of
carbon emissions in the industrial economy. Finally, this paper constructs comprehensive
and innovative driving indicators to measure the drivers of the decoupling state of carbon
emissions in the industrial economy and further explores the driving mechanisms.

In 2020, the World Resource Institute [53] assessed the decoupling of carbon emissions
in the United States. Results show that 41 U.S. states and Washington, D.C., representing
over four-fifths of U.S. states, have decoupled their emissions from economic growth.
This means that the effectiveness of the carbon decoupling mechanism is significant. A
combination of technological, market, and policy initiatives have allowed states to reduce
their CO2 emissions and increase their effectiveness in decoupling driving factors. Drivers
of the mechanism are effective for various reasons, including the transition from coal to
natural gas in the power sector, the rapid development of wind and solar energy, and
the dominance of the economic structure in the service sector. In 2021 and 2022, the
U.K. Secretary of State for Business and Energy and the French Environment and Energy
Authority announced new industrial decarbonization strategies that seek to improve
the effectiveness of carbon decoupling drivers. The U.K. starts with energy-intensive
industries, supporting technology development to develop clean energy and reduce the
carbon footprint of those energy-intensive industries. France plans to invest in carbon
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capture and storage technologies, from coal transition to hydrogen energy conversion,
seeking to increase industrial carbon decoupling. From this paper, we can find that the
effectiveness of the current carbon decoupling drivers in China is not significant. China
has a long way to go to achieve complete and strong decoupling.

4.2. Limitations and Future Research Direction

The research time interval of this paper is from 1998 to 2019, which is a long dura-
tion. However, due to the difficulty of obtaining indicator data and many public data
that have not yet been released, this paper does not consider the data for 2020 and 2021.
There is a certain degree of lag in the paper’s research comparatively. On the other
hand, due to the statistical caliber, this paper takes Chinese provinces as the research
object, the scale is relatively macro, and the discussion on city and sub-city levels is rela-
tively insufficient. Based on the availability of data, future studies can include COVID-19
(2019-novel coronavirus) as a control variable or as an explanatory variable to explore the
driving mechanism of industrial carbon decoupling in the context of the pandemic, which
can also further explore how to maintain the stability of the decoupling status of industrial
carbon emissions under unexpected circumstances. In addition, future studies can quantify
the industrial carbon decoupling index and analyze its industrial carbon decoupling status
from the perspective of regional perspectives, urban clusters, and some typical counties
and cities to provide suggestions for sub-provincial regions to achieve industrial carbon
decoupling and reach the carbon peak and carbon neutrality targets as early as possible.

5. Conclusions
5.1. Main Conclusions

This paper uses the Tapio decoupling model based on incremental data and the decou-
pling model based on the IPAT equation to measure the velocity and quantity decoupling
relationship between industrial economic growth and industrial carbon dioxide emissions
in 30 Chinese provinces for 22 consecutive years from 1998 to 2019 and uses a fixed-effects
model to analyze the velocity decoupling and quantity decoupling status in 30 Chinese
provinces for 17 consecutive years from 2003 to 2019. The study’s results indicate the
driving factors of the decoupling.

(1) Since 1997, the average industrial added value and industrial carbon emissions
have generally shown an upward trend year by year. However, there are obvious temporal
and spatial differences in China’s industrial carbon decoupling. The decoupling of China’s
industrial economy from the velocity and quantity of industrial carbon emissions has
generally experienced a state of strong decoupling to weak decoupling. Then a slow
recovery of strong decoupling. From a spatial perspective, most Chinese provinces’ velocity
decoupling and quantity decoupling are in a state of weak decoupling of industrial carbon
emissions. And the eight major economic zones’ industrial economic growth and industrial
carbon emissions have differences in the decoupling state and process between industrial
economic growth and industrial carbon emissions in the eight major economic regions.

(2) The velocity decoupling index and quantity decoupling index for each province
in China have some differences from the decoupling state to the decoupling development
process, and, in general, the quantity decoupling index is better than the velocity decoupling
index.

(3) Reforming the structure of industrial energy and promoting labor productivity can
effectively improve industrial carbon decoupling velocity. Energy consumption structure,
including cleanliness and balance, significantly affects velocity decoupling. Especially,
the balance of energy has a higher degree of influence on the velocity decoupling index
than cleanliness. Policies for increasing the variety of energy and amount of natural
gas can decrease carbon emissions when energy consumption increases. Additionally,
labor productivity is also an effective influencing factor in promoting industrial carbon
decoupling velocity. Companies can decrease carbon emissions by upgrading machine
efficiency and training employees.
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(4) Reforming industry structure and promoting energy cleanliness can effectively
improve industrial carbon decoupling quantity. The cleanliness of energy and the structure
of industry significantly affect quantity decoupling. The structure of the industry especially
has a higher degree of influence on the quantity decoupling index than cleanliness. Besides,
the number of the population also influences the quantity decoupling index through
human activities. Policies supporting resource-intensive industries and promoting energy
cleanliness can decrease industrial carbon emissions.

Many scholars have studied the influencing factors of carbon decoupling and demon-
strated the significance of the impact of the intensity of technology investment, envi-
ronmental investment, and energy consumption on carbon decoupling. For example,
Wang [54] demonstrates that environmental investment and technological progress are the
biggest drivers of carbon decoupling in developing countries. Zhao [55] and Jia [56] also
affirm that energy intensity influences carbon decoupling in Beijing and Yunnan provinces.
Liu [57] also analyzes the factors influencing carbon decoupling in different regions of
China and illustrates that energy intensity significantly affects carbon decoupling. Few
scholars have focused on the influence of industrial structure and labor productivity on
carbon decoupling. However, the conclusions drawn in this paper differ from previous
findings. Although the structural balance of energy consumption affects the velocity decou-
pling index, it does not affect the quantity decoupling index. Environmental investment
does not affect both decoupling model indices. Instead, labor productivity and industrial
structure significantly affect the speed decoupling index and the quantity decoupling
index, respectively.

The conclusions of this paper differ from previous studies for three reasons. First, the
shorter time dimension of the previous literature does not accurately portray the impact
of changes in explanatory variables. For example, the balance of energy started to rise
after China’s “dual-carbon goal” was proposed. However, provincial governments need
to control the reduction of coal before reaching the carbon peak. Therefore, the energy
balance changed little in recent years and cannot influentially affect the quantity decoupling
index. Second, the environmental investment considered in the previous literature mainly
included investments in technology and ex-post investment. The environmental invest-
ment considered in this paper is “ex-post investment,” which distinguishes governance
investment from technology investment. The effect of “ex-post investment” on carbon
decoupling is weak. Thirdly, in the previous literature, the industrial structure is mainly
divided according to the traditional division, ignoring the possibility that there are also
energy-intensive industries in light industry. In this paper, resource dependence is used as
the basis for dividing industries, which can better portray the impact of industrial structure
on carbon decoupling.

5.2. Policy Implications

Drawing on international strategies, this paper puts forward policy recommendations.
For a better and faster carbon decoupling of the industrial economy, the government should:

(1) Increase procurement efforts to promote the diversification of energy products.
Currently, industrial production mostly relies on fossil energy and consumes less clean
energy, falling into a lack of diversification or balance of energy consumption. Now that
the price level of clean energy has no obvious disadvantage over traditional fossil energy,
the government can promote clean energy products through procurement. Increasing
government procurement can set a good leading role for various industrial enterprises and
be a way to implement subsidies. The government should increase the amount of clean
energy procurement as much as possible based on its actual needs and adopt a top-down
policy to stipulate the annual percentage of clean energy procurement. In addition, the
government should provide relevant education and training to procurement department
personnel so that they can fully realize the importance of clean energy product procurement
to the economy and carbon neutrality.
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(2) Establish policies to reduce the cost of clean energy and support clean energy
consumption by industrial enterprises. The government can support the development of
clean energy in industrial enterprises from two perspectives: fiscal policy and financial
policy. From a financial point of view, the government can implement the policy of tax
credits for clean energy consumption to reduce the cost of clean energy consumption.
From the financial policy perspective, the government can promote financial institutions to
exploit clean energy consumption loans for industrial enterprises. Financial institutions
can issue consumption loans to industrial enterprises that need to purchase clean energy,
support enterprises that consume high-carbon energy and promote the development of
low-carbon transformation of industrial enterprises that consume high-carbon energy.

(3) Guide enterprises to reasonably use various driving factors to promote carbon
decoupling in the industrial economy. In particular, we should properly use the “double-
edged sword” of the cleanliness of the energy consumption structure. The government can
initiate relevant projects and establish departments to promote effective driver factors ac-
cording to different enterprises and regions with different dimensions of carbon decoupling
needs to achieve the ultimate goal of carbon decoupling.

In order to promote the decoupling between its industrial economic development and
industrial carbon emissions, industrial enterprises should be focused on the following aspects:

(1) Reform the energy consumption structure to meet the development needs of
emission reduction. Industrial enterprises should re-examine their energy consumption
structure and establish a new, low-carbon energy consumption structure system. Take
energy balance, diversification, and cleanliness as guidelines for managing the energy
consumption system. Furthermore, enterprises should make clean energy, mainly natural
gas, wind energy, and tidal energy, as the majority of their energy consumption struc-
ture to meet their own economic development needs, while meeting the need to reduce
CO2 emissions.

(2) Invest in human and material resources to improve the labor-output ratio. Indus-
trial enterprises should increase investment in human resources and introduce professional,
cutting-edge talents. Enterprises should also increase business training and improve the
learning curve according to the “learning by doing, learning by doing” model to improve
the labor productivity of enterprises. Industrial enterprises should check and overhaul
existing equipment and eliminate aging and inefficient equipment. Enterprises also should
renovate and upgrade traditional equipment and other multifaceted initiatives to improve
the technical level and meet the requirements for high efficiency of production.
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