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Abstract: Functional trait diversity represents ecological differences among species, and the structure
of waterbird communities is an important aspect of biodiversity. To understand the effect of meteo-
rological changes on the waterbird functional diversity and provide suggestions for management
and conservation, we selected a study area (726 km2) in Liaohe Estuary, located in northeast China.
We explored the trends of the waterbird functional diversity changes in response to meteorological
factors using fourth corner analysis. Our study demonstrated that temperature was a key factor that
impacted waterbird functional diversity in spring, while precipitation had a greater impact in autumn.
The population size of goose and duck was positively associated with temperature and negatively
with precipitation, while that of the waders (Charadriiformes) showed opposite association trends.
Herbivores and species nesting on the bare ground exhibited responses to meteorological factors
similar to those of geese and ducks, while benthivores and waterbirds nesting under grass/shrubs
exhibited trends similar to those of waterbirds. Waterbirds with smaller bodies, shorter feathers,
and lower reproductive rates preferred higher temperatures and less precipitation than other wa-
terbirds. In addition, we observed seasonal variations in waterbird functional diversity. In spring,
we should pay attention to waders, herbivores, and waterbirds nesting on the bare ground when
the temperature is low. In autumn, waders, benthivores, and omnivores need more attention under
extreme precipitation. As the global climate warms in this study area, waterbird functional diver-
sity is expected to decline, and community composition would become simpler, with overlapping
niches. Biodiversity management should involve protecting intertidal habitats, supporting benthic
macrofaunal communities, preparing bare breeding fields for waterbirds favoring high temperatures
to meet their requirements for population increase, and preventing the population decline of geese
and ducks, herbivores, and species nesting under grass/shrubs. The findings of our study can aid in
developing accurate guidelines for waterbird biodiversity management and conservation.

Keywords: waterbird functional diversity; temporal dynamics; climate changes; fourth corner analysis

1. Introduction

Waterbird community composition is closely related to environmental influences,
including climate and landscape changes, which are predominant factors in animal pop-
ulation dynamics [1]. Climate change has a larger impact on waterbird communities
than the landscape, as it can impede their ability to respond to landscape variability [2].
Since the mid-twentieth century, waterbirds have been considered excellent indicators of
environmental change because they are sensitive to environmental changes and easy to
monitor [3,4]. Various diversity indicators can be used to describe the dynamics of the
waterbird community composition, such as species abundance and richness. In recent
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years, another important indicator that is drawing attention and has become the focus of
research is functional structure, also known as functional diversity, which is the value and
the range of species and organismal traits that influence ecosystem functioning [5,6].

Functional diversity can reveal patterns that cannot be obtained by observing the
taxonomic diversity of the entire ecosystem [7] and can provide an accurate reflection of
ecological differences among species based on community traits. Waterbird functional
diversity reflects considerable temporal changes annually and seasonally [8], as periodic
climate variations alter wetland conditions. Temperature and rainfall can affect food
production and distribution, influencing waterbird distribution [9]. For example, increasing
temperatures and precipitation are associated with migration outflux, thereby decreasing
waterbird species diversity [10]. Thus, higher temperatures result in waders abandoning
southern habitats to move north [11]. These migratory habits pose a great challenge to
observational studies on waterbirds in a wetland habitat [8]. Although migration has been
well-studied from the perspective of species abundance and richness under climate change
conditions, the functional diversity of migratory and resident species has received little
attention. Therefore, studying temporal changes in waterbird community structure and
species responses to climate change contributes to a deeper understanding of community
dynamics [12] and the role of diversity on the ecosystem [13].

Long-term monitoring is one of the most appropriate ways to study the impact of
climate change on temporal trends of waterbird biodiversity [14]. One-third of waterbird
populations worldwide migrate and breed in coastal wetlands (UNEP 2006), which are
deeply affected by climate changes such as rising sea levels, aberrant freshwater flow,
and varying vegetation distribution [15,16]. Hence, studying the functional diversity of
waterbirds is highly representative in coastal wetlands.

The Liaohe Estuary coastal wetland is a northern estuary wetland in China with
four distinct seasons and dominant vegetation comprising reeds (Phragmites australis) and
seepweed (Suaeda salsa). It is the largest reed field in the world. The three estuaries,
Daliaohe, Liaohe, and Dalinghe, provide abundant water resources, vegetation cover, and
food sources, creating an excellent habitat for waterbirds [17,18]. Liaohe Estuary is one of
the seven most important wetlands across the Yellow and Bohai seas for waterbird stopover
and reproduction on the East Asian–Australasian Migratory Birds Flyway (EAAF), and
290 bird species have been recorded here. Approximately one million birds visit during
each migratory season, including nearly 500,000 waterbirds across 142 waterbird species,
of which 39 are threatened (Avian monitoring report in Liaohe Estuary, 2019). Waterbirds,
therefore, account for 63.8% of the total richness and 2% of the total EAAF abundance
(EAAFP, 2020). This wetland performs a key role in and is sufficiently representative for
the study of waterbird functional diversity. While most previous studies focus on the
effects of landscape patterns on waterbird diversity, studying the impact of climate changes
on waterbird functional diversity can supply an accurate scientific basis for biodiversity
management and conservation. There are abundant waterbirds and distinguished seasons
in Liaohe Estuary. In our previous study, we focused on the response of waterbird diversity
and abundance to climatic changes, based on abundance and richness, and found that
they positively associated with temperature relative variables and the precipitation relative
variables showed opposite influences [19]. In this study, we further study the trends of
functional diversity based on waterbird traits and its response to meteorological factors,
including quantitative dimensions (families, residence, breeding, diet, and nest sites) and
qualitative traits (body, flying ability, foraging ability, and reproduction), which has a vital
practical significance in Liaohe Estuary.

To explore the response of waterbirds of different types to meteorological factors and
reveal different protective measures among different classifications to combat the extreme
weather, we conducted waterbird monitoring to elucidate basic waterbird community
dynamics in Liaohe Estuary between 2010 and 2020 and collected data on waterbird
functional traits described in the literature. By analyzing the temporal variation of waterbird
functional diversity and the relationships between its temporal patterns and meteorological
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factors in Liaohe Estuary, we aimed to understand the ecological impact on northern estuary
wetland, the EAAF, and even the world. The primary objectives of this study were to
(1) analyze the annual and seasonal fluctuations in waterbird community composition and
functional diversity, (2) identify the meteorological factors associated with the functional
diversity of waterbirds, (3) predict the impact of future climate change on waterbird
functional diversity, and (4) provide suggestions for conservation and management.

2. Study Area

The study area is located in Liaohe Estuary National and Provincial Conservation
Reserve (LENPCR) (40◦38′56.85′ ′–41◦10′25.87′ ′ N, 121◦35′48.91′ ′–122◦15′48.50′ ′ E) in north-
ern China, which covers approximately 71,200 ha (Figure 1). Liaohe Estuary is located
in the northernmost part of Bohai Bay and comprises an alluvial plain of three estuaries:
Daliaohe, Liaohe (also known as Shuangtaihe), and Dalinghe [20]. It experiences a conti-
nental, sub-humid monsoon and four seasons that include a hot, rainy summer and cold,
dry winter. The annual average temperature in this region is 8.6 ◦C, annual precipitation is
631 mm, and annual evapotranspiration is 1548 mm [21,22]; this area experiences high and
low tides twice per day, representing a typical semi-diurnal tide [23]. Historically, this area
was formed by retreating sea levels, leaving flat terrain with abundant water. The region
has a single vegetation composition, dominated by two plant species—P. australis and S.
salsa [17,18]. Aquaculture has been rapidly developing since 1990, focusing mainly on crab,
shrimp, trepang, and shellfish [20,24]. The abundant water and food resources and the su-
perior reed and mudflat habitats attract many waterbirds to stopover and reproduce every
migratory season, making this estuary one of the seven most important habitats in the East
Asian–Australasian Migratory Birds Flyway (EAAF). Over the past 11 years, 130 waterbird
species, including 39 threatened species (IUCN Red List and List of key protected wild
animals in China), have been recorded in the LENPCR, and 22 species have been observed
in numbers exceeding 1% of their global population. In particular, the Saunders’s Gull
(Larus saundersi) population in the LENPCR is the largest globally, with 11,543 individuals
observed in spring 2014, accounting for 69.7% of the global population (IUCN, 2018). Hence,
this study area is representative and critical for waterbird conservation.
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3. Material and Methods
3.1. Data Collection
3.1.1. Waterbird Observation

Experienced LENPCR staff and volunteers conducted systematic censuses during the
waterbird migration season, i.e., in spring (late February to early June) and autumn (late
July to early November) every year from 2010 to 2020. The routes, sites, and participants
were relatively constant, and high altitude spots were chosen as the monitoring sites to
view the surrounding area and easily obtain precise counts. We conducted approximately
11–12 frequency surveys during each migration season, depending on the weather condi-
tions. Waterbird species were identified using a monocular and binoculars, then confirmed
by another observer by using A Field Guide to the Birds of China (John MacKinnon and
Karen Phillipps, 2000P). We conducted the surveys among sample sites simultaneously or
over a short time to avoid repeated counts among the sample sites. When the flocks were
larger than 500, an estimated counting approach of 10, 20, 50, 100, or 500 was applied [25].
The maximum sum of the number of each species at all sites in the region during each
survey season represented the count for that season. We observed 130 waterbird species,
and their respective abundance in every migrating season were recorded for the entire
study period.

3.1.2. Functional Traits

To estimate functional diversity, we assessed ten quantitative and five qualitative
variables (Table 1) related to waterbird physiological traits to represent key ecological
attributes, including family type, residence type, breeding or non-breeding, diet type, nest
type, body mass, body size, wingspan, wing length, tail length, bill length, tarsus length,
incubation time, clutch size, and nest size. We obtained these data from the website of
Birds of the World, Avifauna of China, A Checklist on the Classification and Distribution of
the Birds of China, and Avian Monitoring Report in the Liaohe Estuary Natural Reserve
(Table 1). These sources describe the quantity and quality of the resources consumed by
the waterbirds [26] and the fitness traits of different species, such as their reproduction
strategies [27]. For instance, body mass is related to the waterbird energy requirements,
diet is related to ecosystem functions, such as seed dispersal and food web structure, and
bill and tarsus length to competitive abilities for food capture, resource acquisition, and
allocation strategies [9,28,29].

3.1.3. Meteorological Variables

Weather drives environmental productivity changes, resulting in significant variations
in the waterbird functional diversity along the environmental gradient [30]. For example,
temperature variations impact waterbird traits differently, resulting in variations in the
waterbird community composition [31]. Ten indicators were selected to represent the
meteorological variables in this study. We collected these data at the coastal meteorological
station (22 km from the study area) and from the China Meteorological Data Service Centre
website (http://www.data.cma.cn, accessed on 15 May 2022).

We calculated the following variables using the data collected daily during spring
(16 February–15 June) and autumn (16 July–15 November) of each year (2010–2020): annual
mean temperature (AMT), mean diurnal range (MDR), seasonal mean temperature (SMT),
seasonal temperature range (STR), seasonal cumulative temperature days (SCTD), annual
precipitation (AP), seasonal precipitation (SP), maximum seasonal precipitation (SPMax),
seasonal mean wind speed (SMWS), and seasonal sunshine duration (SSD).

http://www.data.cma.cn
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Table 1. Detailed information on the waterbird variable traits and their descriptions. Categorical
variables (C) and quantitative variables (Q).

Categories Type Trait Description Source

Categories C Families
Divided into four groups

according to their families and
habits

b and c

C Residence
Four groups: summer visitor,
winter visitor, passage, and

resident
c and d

C Breeding Two groups: breeding and
non-breeding b, c, and d

C Diet
Six groups: herbivore,

insectivore, carnivore, piscivore,
benthivore, and omnivore

b

C Nest sites Five groups: bare ground, cliff,
float, grass or shrub, and tree a and b

Body Q Mass (g) a and b
Q Size (mm) a and b

Flying ability Q Wingspan (mm) a and b
Q Wing length (mm) a and b
Q Tail length (mm) b

Foraging ability Q Bill length (mm) b
Q Tarsus length (mm) b

Reproduction Q Incubation (day) a and b
Q Clutch (number) a and b
Q Nest size (mm) a and b

a: Birds of the World, www.birdsoftheworld.org/, accessed on 12 September 2019; b: Avifauna of China, Zhengjie
Zhao, 2001; c: A Checklist on the Classification and Distribution of the Birds of China, Guangmei Zheng, 2017;
and d: Avian Monitoring Report in Liaohe Estuary Natural Reserve, 2010–2020.

3.2. Statistical Analyses

We conducted multivariate statistical analyses of functional diversity using the PC-
ORD 7.0 software. We selected a total of 74 common species for the analyses and excluded
the species that occurred fewer than ten times and had a summed abundance of less than
1000 to eliminate the potential effect of rare species.

3.2.1. Functional Alpha and Beta Diversity

We examined the functional diversity and its variation over time using two matrices,
M × N and N × L, where M was the number of the sample units, N was the number
of species, and L was the number of traits. Qualitative trait variables were converted to
quantitative dummy variables to obtain a units-by-trait matrix derived from the product
of the units and traits matrix. Furthermore, Shannon’s and Simpson’s alpha diversity
indices were analyzed based on the community weighted mean (CWM) calculated by
abundance and traits matrixes rather than abundance alone. CWM represents the overall
community-level trait values by accounting for the abundance of each species in each
season [32]. Rao’s quadratic entropy (Rao’s Q) was calculated based on a cross-product
matrix similar to that used in principal coordinates analysis but filled with Gower or
Euclidean distances. Functional dispersion (FDis), calculated based on principal coordinates
analysis, is a functional diversity index sensitive to species abundance but not to species
richness. The Gower distance metric gives more weight to species with low total abundance
and ignores joint absences [33]. Shannon’s and Simpson’s indices are the most accepted
measures of taxonomic diversity [34], and Rao’s Q and FDis are used to calculate trait
distance matrices. Similarities in traits among species represent a low functional diversity,
and when no species among the samples share any trait, Rao’s Q value will be equivalent
to Simpson’s index [35].

Annual and seasonal beta diversity were analogously calculated for each season per
year based on CWM, using the Sorensen dissimilarity to represent the total variation

www.birdsoftheworld.org/


Int. J. Environ. Res. Public Health 2022, 19, 5392 6 of 19

among assemblages. We calculated the annual beta functional using dissimilarity for spring
and autumn separately over the years, seasonal beta functional diversity between spring
and autumn in the same year, and previous autumn and next spring among successive
years. Sorenson distance, which highlights responses that are present in the dataset and
retains sensitivity to outliers even in heterogeneous datasets [36], was computed using the
following formula:

βsor =
∑

p
j=1

∣∣∣ai,j − ah,j

∣∣∣
∑

p
j=1 ai,j + ∑

p
j=1 ah,j

,

where h and i are sample units h through i, j is the response of certain traits weighted
according to the corresponding species abundance, p is the total number of responses, and
a is the CWM value of certain traits. Here, we generalize the formula to p traits to examine
differences in the CWM value of trait j in sample units i through h as a proportion of the
total sum CWM value of all traits in all migratory seasons.

3.2.2. Changes in Meteorological Factors

We explored the changes in meteorological factors over time using monadic regression
analysis and examined the significant and linear fit to predict future climate change. The
monadic regression analysis has a better prediction effect than most advanced regression
models, especially for small datasets [37].

3.2.3. Relationship between Functional Diversity and Meteorological Variables

The relationships between waterbird functional diversity and meteorological variables
were analyzed using the fourth corner analysis [38]. Three matrices, species abundance
(M × N), meteorological variables (M × S), and species traits (N × L), were built separately
for spring and autumn data to estimate bivariate associations between species traits and
meteorological variables, using species abundance as a link. Again, 74 common species
were included in the species abundance matrix, and the species abundance and trait matri-
ces were transformed by log(x + 1) to normalize data and eliminate dimensions [38]. We
excluded the categorical breeding variable because these traits have only two classifications.
The meteorological matrix was maintained as raw data because the fourth corner analysis
simultaneously centers and standardizes the environmental variables in PC-ORD. The
randomization model of the lottery was adapted to eliminate the associated model among
the three matrices, and the p-value was adjusted for the false discovery rate according to
Benjamini and Hochberg [39].

4. Results
4.1. Waterbird Functional Diversity Dynamics

A total of 130 waterbird species were recorded in the study area from 2010 to 2020.
We analyzed 74 common species and divided them into different categories according to
families, residence, reproduction, diet, and nest sites. Figure 2 depicts the overall increasing
trend in the entire population observed in spring and autumn. We observed the highest
species abundance (328,080) for spring in 2020 and the lowest (51,178) in 2010. The highest
species abundance for autumn (476,737) was observed in 2018, and the lowest (36,775) in
2012. From 2010 to 2020, the relative abundance of Charadriiformes sharply increased in
both spring and autumn, while Lariformes abundance increased gradually. Ciconiiformes
and Gruiformes accounted for a small percentage (average 2.46%) of the total species
abundance, whereas Podicipediformes, Anseriformes, and Pelecaniformes accounted for
a large percentage (average 29.02%) with a decreasing trend over time. For the different
residence types, the most abundant species belonged to the summer visitor and passage
categories, whereas the species belonging to the winter visitor and resident categories were
less abundant. The relative abundance of the summer visitor and passage category species
was significantly less in spring than in autumn. The abundance of breeding waterbirds was
lower in spring than in autumn, whereas nonbreeding waterbirds showed the opposite
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trend. According to different diet types, the most abundant during spring were herbivores
and benthivores, while the relative abundances of insectivores, carnivores, piscivores, and
omnivores were the lowest. The relative abundances of benthivores and carnivores were
the highest in autumn, while those of herbivores, insectivores, piscivores, and omnivores
were low; meanwhile, the abundance of herbivores decreased sharply in autumn. The
relatively high abundance of bare ground and grasses/shrubs nester species made these
the more prevalent nesting sites, while the nesting sites on cliffs, floats, and trees were less
prevalent (see Appendix A).
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Figure 2. Total abundance of 74 common waterbird species in spring and autumn from 2010 to
2020, and relative species abundance of different categories; (A): abundance; (B): Podicipediformes,
Anseriformes, and Pelecaniformes (PA), Ciconiiformes and Gruiformes (CG), Charadriiformes (Cha),
and Lariformes (Lar); (C): summer visitor (S), winter visitor (W), passage (P), and residence (R);
(D): breeding (B) and nonbreeding (NB); (E): herbivores (HER), insectivores (INS), carnivores (CAR),
piscivores (PIS), benthivores (BEN), and omnivores (OMN); and (F): bare ground (BG), cliff (Cf), float
(Ft), grass and shrub (GS), and tree (Te).

The CWM values of each functional trait decreased annually in spring and autumn
(Figure 3), except for bill length, which increased in autumn. The fluctuations in body mass,
body size, wingspan, wing length, and tail length were very similar in spring but only
fairly similar in autumn. Clutch size was generally much smaller in autumn than in spring.
Nest size decreased in both spring and autumn and showed trends dissimilar to those of
body size and flying ability traits.
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For alpha functional diversity (Figure 4), the trends of Shannon’s, Simpson’s, and
Rao’s Q indices strongly fluctuated in spring and autumn over time, and the former two
indices showed similar trends, while Rao’s Q and FDis showed different trends from the
other indices in both spring and autumn. Shannon’s (2.12–2.23) and Simpson’s index values
(0.864–0.885) were far higher than Rao’s Q values (0.048–0.084), while FDis values were
between 0.214 and 0.284. The former two indices decreased in spring 2015 and 2020 and
autumn 2010, 2015, and 2020, while the latter two indices decreased sharply in spring 2019
and autumn 2011. Moreover, the first three indices were higher in spring than in autumn,
while FDis was similar between spring and autumn.
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For beta functional diversity, the results of the Sorensen dissimilarity calculated based
on CWM were compared in pairs among seasons and years. All values were very similar
(0.0–0.3), with the lowest value being 0.02 between autumn 2019 and 2020 and the highest
being 0.25 between spring 2010 and 2020. Comparing the data of 2020 to those of other
years, spring dissimilarity (range 0.04–0.25, average 0.09) was similar to that in autumn
(range 0.02–0.18, average 0.08). Between spring and autumn in the same year (range
0.03–0.19, average 0.10), the lowest value was 0.03 in 2019 and the highest was 0.19 in 2010.
The dissimilarity values of spring versus spring (range 0.02–0.21, average 0.07), autumn
versus autumn (range 0.03–0.11, average 0.07), and autumn versus spring (range 0.03–0.11,
average 0.09) were also observed in successive years. Overall, the beta functional diversity
was relatively consistent and exhibited the greatest range between autumn and spring in a
single year (see Appendix B).

4.2. Meteorological Changes

According to the data recorded at the Yingkou meteorological station from 2010 to
2020, we extracted ten variables representing six aspects of meteorological change (Figure 5).
The AMT (Figure 5A) was determined using the maximum value of 10.99 ◦C recorded in
2019 and the minimum of 9.13 ◦C recorded in 2010. The annual maximum mean diurnal
temperature was 8.69 ◦C in 2014, and the minimum mean diurnal temperature was 7.55 ◦C
in 2010. The mean spring temperature was 8.14 ◦C in 2010 and 11.49 ◦C in 2019, and the
mean autumn temperature was 17.66 ◦C in 2010 and 18.75 ◦C in 2020. The maximum
seasonal temperature range was 45.4 ◦C in spring 2019 and 40.5 ◦C in autumn 2019, while
the minimum seasonal range was 38.1 ◦C in spring 2015 and 35.1 ◦C in autumn 2011 and
2015. Across the years, the spring temperature range was generally higher than the autumn
range, except in 2016 (Figure 5B). The cumulative temperature days (Figure 5C) varied
from 52 to 78 in spring and 94 to 110 in autumn. Annual precipitation generally declined
during the study (Figure 5D), with the lowest value detected in 2014 (408 mm) and the
highest (1029 mm) in 2010. Spring precipitation fluctuated, whereas autumn precipitation
generally declined over the study period. The maximum daily precipitation in spring
was 93 mm in 2012, while the autumn maximum was 162 mm in 2011. The seasonal
sunshine duration (Figure 5E) was 791 h in 2010 and 1163 h in 2020 for spring and between
706 h in 2010 and 1172 h in 2020 for autumn. Overall, temperature and sunshine variables
showed an increasing trend, precipitation and wind speed relative variables showed a
decreasing trend, and cumulative temperature days showed an increasing trend in spring
and a decreasing trend in autumn. Some of the variables showed autocorrelations with the
years, where the strength of associations varied from very strong (AMT and spring mean
temperature) to generally strong (MDR, autumn mean temperature, AP, autumn MWS,
spring SD, and autumn SD). However, no other variables showed significant associations
(Figure 5).
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Figure 5. Changes in climatic variables from 2010 to 2020. Variables include (A) Annual mean
temperature (AT), annual mean diurnal temperature range (MDR); seasonal mean temperature (SprT
and AutT); (B) Seasonal temperature range (SprTR and AutTR); (C) Seasonal cumulative temperature
days (SprCTD and AutCTD); (D) Annual precipitation (AP), seasonal precipitation (SprP and AutP),
maximum seasonal precipitation (SprPMax and AutPMax); (E) Seasonal mean wind speed (SprMWS
and AutMWS); and (F) Seasonal sunshine duration (SprSD and AutSD). “Spr” for spring and “Aut”
for autumn.

4.3. Relationship between Functional Diversity and Meteorological Factors

The results of the fourth corner analysis demonstrated significant correlations between
waterbird traits and meteorological factors, with some seasonal differences (Table 2). In
spring, family, diet, and nest site type were strongly associated with AMT, MDR, SMT,
SCTD, AP, and SSD (Table 2). No relationship was seen with SCTD or SSD, but a strong
relationship existed with SP, and nest sites type did not correlate to any meteorological
factor in autumn (Table 2). Thus, most changes in the functional structure of the water-
bird community were associated with variables related to temperature and precipitation.
Furthermore, as the temperature rose and precipitation decreased over time, the species
abundance of different groups (Podicipediformes, Anseriformes, and Pelecaniformes, her-
bivores, cliff, and grass/shrub) declined in spring, while the abundance of Charadriiformes,
benthivores, and bare ground nesters increased. Residence traits were not correlated with
any meteorological factor except the resident group. In autumn, the abundance of Pelecani-
formes, herbivores, and omnivores declined, whereas the abundance of Charadriiformes,
Lariformes, piscivores, and benthivores increased. Moreover, abundance of benthivores
were negatively correlated with SPMax, and residence type was not significantly correlated
with any meteorological factor in autumn.
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Table 2. Fourth corner analysis of relationships between waterbird traits and meteorological variables
in spring (a) and autumn (b). The single symbol represents a significance level of p < 0.05, double
symbols for p < 0.01, triple symbols for p < 0.001. “*” is a significant correlation (“+” positive and
“−“ negative), “◦” is non-significant. PA, Podicipediformes, Anseriformes, and Pelecaniformes; CG,
Ciconiiformes and Gruiformes; Cha, Charadriiformes; Lar, Lariformes; S, summer visitor; W, winter
visitor; P, passage; and R, resident.

Traits
Meteorological Variables

AMT MDR SMT STR SCTD AP SP SPMax SMWS SSD

(a) Spring
Families *** ** *** ◦ ** *** ◦ ◦ ◦ *

PA −−− −− −−− ◦ −−− +++ ◦ ◦ ◦ −
CG ◦ ◦ − ◦ − − ◦ ◦ ◦ ◦

Cha +++ +++ +++ ◦ +++ −−− ◦ ◦ ◦ +++
Lar ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Residence ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

S ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

W ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

P ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

R − − ◦ − ◦ + ◦ ◦ ◦ ◦

Diet * ◦ ** ◦ ** ** ◦ ◦ ◦ *
Herbivores −−− − −−− ◦ −− +++ ◦ ◦ ◦ ◦

Insectivores ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Carnivores ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Piscivores ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Benthivores ++ +++ +++ ◦ +++ −−− ◦ ◦ ◦ −−−
Omnivores ◦ − ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Nest sites ** ** *** ◦ *** ** ◦ ◦ ◦ *
Bare ground +++ ++ +++ ◦ +++ — ◦ ◦ ◦ ++

Cliff − − −− ◦ −− ◦ ◦ + ◦ −−
Float ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Grass/shrub −− − −− ◦ −− ++ ◦ ◦ ◦ ◦

Tree ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Body Mass −−− −−− −−− ◦ −−− +++ ◦ ◦ + −−
Size −−− −− −−− ◦ −−− +++ ◦ ◦ ◦

Flying Wingspan − −− −− ◦ −− ++ ◦ ◦ ◦ −−
Wing length − −− −− ◦ −− ++ ◦ ◦ ◦ −−
Tail length −− −− −− ◦ −−− ++ ◦ ◦ ◦ −−

Foraging Bill length ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Tarsus length − − − ◦ − + ◦ ◦ ◦ ◦

Reproduction Incubation −−− −−− −−− ◦ −−− +++ ◦ ◦ ◦ −
Clutch − ◦ −− ◦ −− + ◦ ◦ ◦ ◦

Nest size −−− −−− −−− ◦ −− +++ ◦ ◦ ◦ −−
(b) Autumn

Families *** ** * ◦ ◦ *** *** ◦ ◦ ◦

PA −−− −−− −− − ◦ +++ +++ ++ ◦ −
CG ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Cha ++ + ◦ ◦ ◦ −− −− − ◦ ◦

Lar + ◦ + ◦ ◦ −− −− ◦ ◦ ◦

Residence ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

S ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

W ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

P ◦ ◦ ◦ ◦ ◦ ◦ ◦ - ◦ ◦

R ◦ ◦ ◦ ◦ ◦ ◦ ◦ + ◦ ◦

Diet *** *** ** ◦ ◦ *** *** ** ◦ ◦

Herbivores −−− −−− −−− ◦ − +++ ++ ◦ + ++
Insectivores ◦ ◦ ◦ ◦ + ◦ ◦ + ◦ ◦

Carnivores ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Piscivores ++ ++ + ◦ ◦ −− − ◦ ◦ ◦

Benthivores ++ + ◦ ◦ ◦ −− − −−− ◦ +
Omnivores − − ◦ − ◦ ++ ++ ++ ◦ ◦
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Table 2. Cont.

Traits
Meteorological Variables

AMT MDR SMT STR SCTD AP SP SPMax SMWS SSD

Nest sites ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Bare ground + ◦ ◦ ◦ ◦ − − ◦ ◦ ◦

Cliff ◦ ◦ ◦ ◦ + ◦ ◦ + ◦ ◦

Float ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Grass/shrub ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Tree ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Body Mass −−− − −− ◦ ◦ ++ +++ ++ ◦ −
Size −− − ◦ ◦ ◦ ++ ++ + ◦ ◦

Flying Wingspan ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Wing length ◦ ◦ ◦ ◦ ◦ + ◦ ◦ ◦ ◦

Tail length ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Foraging Bill length ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Tarsus length ◦ ◦ ◦ ◦ ◦ + + ◦ ◦ ◦

Reproduction Incubation − ◦ ◦ ◦ ◦ ++ ++ + ◦ ◦

Clutch −−− −− −− −− ◦ +++ +++ ◦ ◦ ◦

Nest size ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

All physiological traits except for bill length and foraging ability were negatively
correlated with temperature and positively correlated with precipitation in spring, but
only mass, size, and clutch size showed similar correlations in autumn. In general, species
smaller in mass and size, with shorter wing and tail feathers, shorter incubation durations,
smaller clutch sizes, and smaller nest sizes, comprised a greater portion of the waterbird
community when the temperature rose and precipitation decreased in spring, while weather
showed less influence in autumn.

5. Discussion
5.1. Trends in Functional Diversity

Spring and autumn waterbird abundance increased during the study period (Figure 2A),
especially in wader and gull families (Figure 2B); passage and summer visitors (Figure 2C);
insectivore, carnivore, piscivore, and benthivore group members (Figure 2E); and bare
ground and grass/shrub nesters (Figure 2F). These trends correspond to the characteristics
of the study area, which exhibits abundant reed and seepweed in a tidally flat coastal wet-
land with frequent seawater and freshwater interactions. Abundant water, food resources,
and a protected environment under the reserve management attract an increasing number
of waterbirds to roost and breed. However, the relative abundance of both breeding and
nonbreeding species in spring fluctuated. The abundance of breeding species in autumn
was significantly greater than that of nonbreeding species and notably greater than that
in spring of the same year (Figure 2D). Summer visitors and residents bred every spring
and migrated at the end of autumn; hence, the relative abundance of breeding waterbirds
in autumn was greater than that in spring. This demonstrated a higher incubation sur-
vival/reproduction rate for these species in this study area than in other breeding grounds
where passage and winter visitor species bred. Alternatively, some waterbirds that did not
breed here may have died while migrating to this study area [40].

The functional diversity represented by Shannon’s, Simpson’s, and Rao’s Q indices
showed declining trends over the study period, and the index values were higher in spring
than in autumn (Figure 4A–C). However, Rao’s Q values (0.048–0.084) decreased to far less
than Shannon’s values (2.12–2.23), reflecting a minority in the proportion of total abundance
represented by species with unique traits. This was likely caused by a low degree of niche
differentiation among individuals within communities, suggesting that the most abundant
species were similar, and the competition was more intense in the same ecological space [41].
This was reflected in the classification traits, as the increase in abundance of various aspects
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of the classification was not equal. Species abundance of Charadriiformes showed a sharp
increase, while that of Podicipediformes, Anseriformes, and Pelecaniformes showed a
decrease. The increase in abundance of species with a particular trait type was prominent
(Figure 2). This trend was also observed in the dissimilarity of beta diversity and decreasing
trends in the CWM of physical traits, flying ability, foraging ability, and reproduction.

By contrast, FDis showed a relatively stable trend in both spring and autumn over the
study period, except for autumn 2011 (Figure 4D). FDis is highly sensitive to abundance and
calculates the mean distance from the multidimensional trait space of individual species
to the centroid of all species, accounting for species abundance by shifting the position
of the centroid toward the more abundant species and weighting distances of individual
species by their relative abundances [33]. An increase in FDis reflects an increase in the
mean distance of species to the center of the functional space occupied by the community,
suggesting that certain functional species grow significantly faster than others, leading to
an increase in the average distance of individual species to the centroid [42]. The results
reflected that Lariformes species occupied a relatively large abundance in autumn 2011
than others, including Podicipediformes, Anseriformes, Pelecaniformes, Ciconiiformes,
Gruiformes, and Charadriiformes, which were less abundant (Figure 2A). This caused
disparities in several aspects (Figure 2B,C,E,F), reducing functional diversity in autumn
2011 (Figure 4D). Accordingly, the CWM value of clutch size decreased in autumn 2011
(Figure 3D).

5.2. Responses of Waterbird Functional Diversity to Meteorological Factors

Significant differences in various meteorological variables were found among func-
tional classifications and traits. Species from Lariformes, summer visitor and passage,
carnivore and benthivore groups, and bare ground and grass/shrub nesters showed large
increases in relative abundance over time (Figure 2, Table 2). Opposite responses to meteo-
rological variables were observed among the Podicipediformes, Anseriformes, and Pelecan-
iformes populations and the Charadriiformes and Lariformes populations. A temperature
increase and precipitation decrease led to a decline in Podicipediformes, Anseriformes, and
Pelecaniformes abundance, and an increase in Charadriiformes and Lariformes abundance,
while that of Ciconiiformes and Gruiformes remained stable. Similarly, high temperatures
and low precipitation caused the herbivore and omnivore populations to decrease and the
piscivore and benthivore populations to increase. Bare ground nester abundance increased,
while grass/shrub nester abundance decreased. Podicipediformes, Anseriformes, and
Pelecaniformes represent swimming birds with open water habitats, while Charadriiformes
and Lariformes include wading birds that prefer mudflats [43]. In this study, most species
belonging to Podicipediformes, Anseriformes, and Pelecaniformes were classified into
herbivore and omnivore groups, whereas Charadriiformes and Lariformes mainly included
carnivores, piscivores, and benthivores. Fifteen of the 24 species belonging to Podiciped-
iformes, Anseriformes, and Pelecaniformes preferred nesting on grass/shrub, and 18 of
the 39 Charadriiformes and Lariformes species preferred nesting on bare ground. There
were 13 breeding species among the 24 Podicipediformes, Anseriformes, and Pelecani-
formes species and only 16 among the 49 Charadriiformes and Lariformes species in the
study area (Appendix A). The nests on the bare ground occurred as small pits without any
grass or branches, while those on grass/shrubs were usually concealed and protected by
dead branches and leaves [44]. Higher temperatures can promote evaporation, usually
accompanied by reduced precipitation, increasing soil salinity [45] and hindering plant
growth in coastal areas [46]. This reduces the occurrence of the necessary habitat condi-
tions for the activity, foraging, and reproduction of Podicipediformes, Anseriformes, and
Pelecaniformes species. High temperatures and reduced rainfall result in mudflats and
intertidal zone exposure, the preferred habitats for Charadriiformes and Lariformes [47,48].
Decreased precipitation alters the flow patterns of rivers and streams, decreasing benthic
macroinvertebrate abundance [11]. Thus, when temperature rises and precipitation with a
warmer climate occurs in the future, the populations of Podicipediformes, Anseriformes,
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and Pelecaniformes are expected to decline, while Charadriiformes and Lariformes abun-
dance is expected to increase. Residence types did not correlate with meteorological factors
in spring and autumn, likely due to the small study area.

Furthermore, we found that waterbird functional diversity in physical traits, including
body mass, body size, tarsus length, incubation, clutch size, and nest size, were negatively
associated with temperature variables and positively associated with precipitation and
wind speed (Table 2). Bergmann’s rule also indicates that similar species tend to be smaller
in warmer regions [49]. Previous studies have suggested that increasing temperatures
associated with climate change may cause a decrease in body size, making temperature a
key determinant of animal physiology and ecology. This study did not focus on specific
waterbird species, but rather on the functional diversity of the entire waterbird community
in this region. As the climate warms, rainfall and wind speed decrease, and the abundance
of waterbirds with small physical characteristics and low reproductive capacity will in-
crease, suggesting that Charadriiformes species will better adapt to climate change than
Podicipediformes, Anseriformes, and Pelecaniformes species. Additionally, some studies
have shown that high temperatures result in the wader community moving north. The
Pelecaniformes species carry more viruses than waders and are, thus, more susceptible to
infection in warmer temperatures and subsequent death [10,50–52]. The Podicipediformes,
Anseriformes, and Pelecaniformes species are always larger and more fertile than Charadri-
iformes species, which are generally smaller than other waterbirds. Therefore, a decrease
in Podicipediformes, Anseriformes, and Pelecaniformes populations and an increase in
Charadriiformes and Lariformes populations may have led to the reduced body mass and
reproduction rates seen throughout the study.

5.3. Seasonal Differences in Response to Meteorological Factors

Along with annual changes as the temperature increased and precipitation decreased
during the study period, functional diversity and community structure composition of
waterbirds also showed large seasonal differences, which were likely caused by seasonal
meteorological differences. SCTD and SSD showed correlations with waterbird functional
traits in spring, while SP and SPMax were more closely correlated with traits in autumn
(Table 2). The main conditions for birds to reproduce and hatch are temperature, sunshine,
and food. In the study area, the weather conditions included a large diurnal range and less
rainfall in spring and stable temperature, increased rainfall, and even extreme precipitation
in autumn (Figure 5D). Relatively high temperatures on one day can affect the probability
that clutches are initiated the following days [53]. Prolonged daily sunshine causes a
cascade effect on food resources, increasing food availability and reproductive rates and
success [54]. This was supported by the correlation between benthivore group abundance
and temperature in this study.

The results showed that the nest site types were associated with meteorological factors
in spring but not in autumn, likely because waterbird reproduction activity usually occurs
during spring and large foraging in preparation for autumn migration occurs in autumn.
The abundance of waterbirds in the bare ground nester group was positively associated
with temperature and negatively associated with precipitation. The grass/shrub nester
group showed opposite trends in spring. This is probably because the ground temperature
increased in spring, providing favorable conditions for nesting on bare ground. Water-
birds breeding under grass/shrubs rely on increased rainfall and reduced temperatures
to benefit plant growth. These requirements are similar for waterbirds with herbivorous
diet type, which favor low temperature and high precipitation both in spring and autumn.
Similarly, nest size was negatively associated with temperature and positively associated
with precipitation in spring but not in autumn.

6. Conclusions

Our study examined temporal changes in waterbird functional diversity and their
relationships with meteorological variables from 2010 to 2020. The study findings indicate
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that, although the species abundance and richness increased over the 11-year period,
functional diversity did not show many changes, and considerable niche overlap was
noted. This suggests that the addition of new species did not create new functional niches,
such as fresh food requirements or nesting sites. Tidal input was finite due to the weak
hydrodynamic conditions in Bohai Bay, resulting in drastic reductions in the existing
food resources of the wetland, particularly regarding invertebrate abundance [55]. As
resource availability decreased and requirements increased, the functional structure of the
waterbird communities in the study area remained simple, forming a highly competitive
ecosystem with strong resilience but weak resistance. Moreover, different responses to
meteorological variations such as temperature and precipitation were key factors among
different functional traits, particularly low spring temperature and extreme precipitation
in autumn. As the climate warmed in the study area, Podicipediformes, Anseriformes,
and Pelecaniformes populations decreased and Charadriiformes population increased.
Similarly, herbivores abundance decreased, while benthivore abundance increased, bare
ground nester species abundance increased, and grass/shrub nester species abundance
decreased. This is thought to have led to an increased inter and intra-species competition.
In particular, the number of waders sharply increased in the past 11 years, presenting
a challenge for intertidal flat habitat environmental conditions. The management and
conservation departments should aim to protect intertidal habitats, encourage benthonic
animal propagation, and prepare bare ground breeding fields for waterbirds preferring high
temperatures. Conservation efforts should be focused on waterbird species preferring low
temperatures, such as geese and ducks, herbivores, and species nesting under grass/shrubs.
As the waterbird population increases, our results will supply an accurate guide to make
conservation measures for management, relieving the pressure on the environment.
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Appendix A

Table A1. List of waterbird species and their categorical traits.

Code Name Species Families Residence Breeding Diet Nest Site

1 Little Grebe Tachybaptus ruficollis PA R B PIS Float
2 Great Crested Grebe Podiceps cristatus PA S B PIS Float
3 Great Cormorant Phalacrocorax carbo PA S B PIS Cliff
4 Gray Heron Ardea cinerea CG R B PIS Tree
5 Purple Heron Ardea purpurea CG S B PIS Grass
6 Great White Egret Ardea alba CG S B PIS Grass
7 Little Egret Egretta garzetta CG S B PIS Grass
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Table A1. Cont.

Code Name Species Families Residence Breeding Diet Nest Site

8 Black-crowned Night
heron Nycticorax nycticorax CG S B PIS Tree

9 Eurasian Spoonbill Platalea leucorodia CG S B PIS Grass
10 Oriental Stork Ciconia boyciana CG S B PIS Grass
11 Common Crane Grus grus CG W NB OMN Grass
12 Siberian Crane Leucogeranus CG P NB HER Grass
13 Red-crowned Crane Grus japonensis CG R B OMN Grass
14 Eurasian/common Coot Fulica atra CG S B OMN Grass
15 Whooper Swan Cygnus cygnus PA S B HER Grass

16 Greater White-fronted
Goose Anser albifrons PA P NB HER Shrub

17 Swan Goose Anser cygnoid PA W NB HER Grass
18 Bean Goose Anser fabalis PA P NB HER Shrub
19 Common Shelduck Tadorna tadorna PA S B OMN Tree
20 Mallard Anas platyrhynchos PA R B OMN Grass
21 Chinese Spot-billed Duck Anas zonorhyncha PA W NB OMN Grass
22 Northern Shoveler Spatula clypeata PA P NB OMN Grass
23 Gadwall Mareca strepera PA S B HER Shrub
24 Ruddy Shelduck Tadorna ferruginea PA S B HER Tree
25 Eurasian Wigeon Mareca penelope PA S B HER Shrub
26 Common Goldeneye Bucephala clangula PA P NB PIS Tree
27 Falcated Duck Mareca falcata PA S B HER Shrub
28 Garganey Spatula querquedula PA S B HER Grass
29 Common Teal Anas crecca PA S B HER Grass
30 Baikal Teal Anas formosa PA P NB HER Shrub
31 Tufted Duck Aythya fuligula PA P NB OMN Shrub
32 Common Pochard Aythya ferina PA P NB OMN Float
33 Goosander Mergus merganser PA S B PIS Tree
34 Smew Mergellus albellus PA W NB PIS Tree
35 Northern Pintail Anas acuta PA P NB HER Grass
36 Northern Lapwing Vanellus vanellus Cha S B OMN Tree
37 Pacific Golden Plover Pluvialis fulva Cha P NB INS Bare
38 Grey Plover Pluvialis squatarola Cha P NB BEN Bare
39 Lesser Sand Plover Charadrius mongolus Cha P NB BEN Bare
40 Kentish Plover Charadrius alexandrinus Cha S B BEN Bare
41 Eurasian Oystercatcher Haematopus ostralegus Cha S B BEN Bare
42 Black-winged Stilt Himantopus himantopus Cha S B BEN Grass
43 Pied Avocet Recurvirostra avosetta Cha S B BEN Bare

44 Far Eastern Curlew Numenius
madagascariensis Cha P NB CAR Bare

45 Whimbrel Numenius phaeopus Cha P NB BEN Grass
46 Little Curlew Numenius minutus Cha P NB OMN Bare
47 Great Knot Calidris tenuirostris Cha P NB BEN Shrub
48 Sharp-tailed Sandpiper Calidris acuminata Cha P NB OMN Shrub
49 Marsh Sandpiper Tringa stagnatilis Cha P NB BEN Grass
50 Spotted Redshank Tringa erythropus Cha P NB BEN Grass
51 Wood Sandpiper Tringa glareola Cha P NB OMN Bare
52 Eurasian Curlew Numenius arquata Cha P NB BEN Bare
53 Bar-tailed Godwit Limosa lapponica Cha P NB BEN Bare
54 Black-tailed Godwit Limosa limosa Cha S B BEN Shrub
55 Common Redshank Tringa totanus Cha S B BEN Grass
56 Common Greenshank Tringa nebularia Cha P NB BEN Bare
57 Terek Sandpiper Xenus cinereus Cha P NB BEN Bare
58 Red-necked Stint Calidris ruficollis Cha P NB BEN Grass
59 Red Knot Calidris canutus Cha P NB BEN Grass
60 Dunlin Calidris alpina Cha P NB BEN Grass

61 Arctic/American Herring
Gull Larus smithsonianus Lar P NB CAR Cliff

62 Slaty-backed Gull Larus schistisagus Lar W NB CAR Cliff
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Table A1. Cont.

Code Name Species Families Residence Breeding Diet Nest Site

63 Black-tailed Gull Larus crassirostris Lar S B CAR Cliff
64 Pallas’s Gull Ichthyaetus ichthyaetus Lar P NB CAR Cliff
65 Mew Gull Larus canus Lar W NB PIS Grass
66 Relict Gull Larus relictus Lar P NB PIS Bare
67 Caspian Tern Hydroprogne caspia Lar S B CAR Bare
68 White-winged Tern Chlidonias leucopterus Lar S B PIS Float
69 Black-headed Gull Larus ridibundus Lar S B CAR Grass
70 Saunders’s Gull Larus saundersi Lar S B INS Bare
71 Whiskered Tern Chlidonias hybrida Lar S B PIS Float
72 Gull-billed Tern Gelochelidon nilotica Lar S B PIS Bare
73 Little Tern Sternula albifrons Lar S B PIS Bare
74 Common Tern Sterna hirundo Lar S B CAR Grass

Families: PA = Podicipediformes, Anseriformes, and Pelecaniformes; CG = Ciconiiformes and Gruiformes;
Cha = Charadriiformes; Lar = Lariformes. Residence: S = Spring visitor; W = winter visitor; P = passage;
R = residence. Breeding: B = breeding, NB = no breeding. Diet: HER = herbivores, INS = insectivores, CAR =
carnivores, PIS = piscivores, BEN = benthivores, OMN = omnivores. Nest sites: Bare = bare ground, Cliff = cliff,
Float = float on the water surface, GS = grass and shrub, Tree = tree.

Appendix B

Three aspects were compared with the dissimilarity of Sorenson’s distance measure
base on community weighted means (see 1, 2, and 3), “0.0–0.3” is very similar, “0.3–0.6” is
generally similar, and “0.6–1.0” is dissimilar. Spr, Spring; Aut, Autumn.

Table A2. Dissimilarity of spring and autumn between 2020 and other years.

Years 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Mean

Spring 0.25 0.07 0.1 0.08 0.04 0.04 0.10 0.10 0.07 0.06 0.09
Autumn 0.18 0.12 0.17 0.06 0.03 0.06 0.09 0.05 0.04 0.02 0.08

Table A3. Dissimilarity of spring and autumn in successive years.

Inter Years 10–11 11–12 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20 Mean

Spr.–Spr. 0.21 0.05 0.03 0.07 0.03 0.07 0.02 0.04 0.12 0.06 0.07
Aut.–Aut. 0.11 0.11 0.13 0.06 0.09 0.05 0.05 0.03 0.07 0.02 0.07
Aut.–Spr. 0.11 0.09 0.08 0.05 0.08 0.18 0.07 0.10 0.03 0.07 0.09

Table A4. Dissimilarity between spring and autumn per year.

Years 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Mean

βsor 0.19 0.09 0.08 0.08 0.07 0.08 0.18 0.07 0.11 0.03 0.07 0.10
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