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Abstract: Accurate sleep staging results can be used to measure sleep quality, providing a reliable
basis for the prevention and diagnosis of sleep-related diseases. The key to sleep staging is the
feature representation of EEG signals. Existing approaches rarely consider local features in feature
extraction, and fail to distinguish the importance of critical and non-critical local features. We propose
an innovative model for automatic sleep staging with single-channel EEG, named CAttSleepNet.
We add an attention module to the convolutional neural network (CNN) that can learn the weights
of local sequences of EEG signals by exploiting intra-epoch contextual information. Then, a two-
layer bidirectional-Long Short-Term Memory (Bi-LSTM) is used to encode the global correlations
of successive epochs. Therefore, the feature representations of EEG signals are enhanced by both
local and global context correlation. Experimental results achieved on two real-world sleep datasets
indicate that the CAttSleepNet model outperforms existing models. Moreover, ablation experiments
demonstrate the validity of our proposed attention module.

Keywords: sleep staging; convolutional neural network; attention mechanism; bidirectional long
short-term memory; EEG

1. Introduction

As an important physiological activity, high-quality sleep can effectively restore peo-
ple’s physical and mental strength, while long-term sleep deprivation or disorder can
seriously affect physical and emotional health. It has been shown that certain diseases,
such as Parkinson’s disease and Alzheimer’s disease, are strongly associated with sleep
disorders or abnormalities [1,2]. Therefore, it is important to improve sleep quality and
prevent diseases caused by sleep disorders through a detailed scoring of sleep stages. In
the process of sleep staging, sleep experts divide the polysomnography (PSG) into 30 s
(30-s) epochs and mark the corresponding sleep stages of each epoch according to the
Rechtschaffen and Kales (R&K) [3] and American Academy of Sleep Medicine (AASM) [4]
guidelines. Sleep specialists usually label an epoch by analyzing contextual information
to find important sleep-related events, such as LAMF and k-complex. However, artificial
sleep staging is time-consuming and complex, and the sleep staging results produced by
different sleep experts sometimes vary.

Recently, a growing number of researchers have tried to apply artificial intelligence
techniques, such as machine learning and deep learning, to solve the issue of sleep staging.
Machine learning-based methods usually choose appropriate features from physiolog-
ical signals (i.e., EEG, EOG, and EMG) [5–8]. Then, the feature selection algorithm is
used to select more representative signal features. Finally, the classifier categorizes sleep
stages according to the selected features. Although these approaches have led to some
achievements, they still demonstrate some problems. For instance, selecting the most
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discriminative sleep features requires researchers to have professional experience in the
area of sleep medicine, which can be very challenging to obtain. For another, traditional
machine learning algorithms are poor at modeling temporal physiological signals.

Deep learning has achieved prominence in various fields (i.e., medical imaging [9,10],
emotion recognition [11,12], and bio-signal processing [13]) and provides a novel approach
to sleep staging. Some researchers have used convolutional neural networks (CNNs)
to construct sleep staging models [14–16]. These methods can improve sleep staging
performance to some extent. However, traditional CNNs only focus on information within
the current receptive field, ignoring context-related information. Therefore, they can easily
interfere with non-key features and cannot accurately obtain key local features. Some
researchers have gradually come to focus on recurrent neural networks (RNNs) [17–21].
Most of the literature on this subject only considers the contextual association between sleep
stages from the global sequence, and only a few works have focused on the local sequence
as well. Seo et al. [19] proposed a model called IITNet, which performs feature learning
by considering contextual information within and between epochs. Although IITNet has
achieved excellent performance, it fails to discriminate the weight of local features.

Feature extraction often plays a decisive role in the results of sleep staging. To obtain
more typical feature representations for high-accuracy automatic sleep staging, we propose
a novel model named CAttSleepNet. First, local sequences within a 30-s epoch are fed
into the conventional CNN module to learn the local sequence features. Second, we feed
longer local sequences within a 30-s epoch that are centered on the sequence input to the
CNN to the designed attention module. In this way, our proposed attention module can
calculate the weights of local sequence features obtained by the CNN network by mining
the contextual associations of local sequences. Finally, a two-layer Bi-LSTM is used to
encode the global representation of different epochs. Accordingly, our model can more
comprehensively capture temporal contextual information and learn the importance of
local sequence features. Our main contributions can be summarized as follows.

1. To obtain more discriminative feature representation, our model makes full use
of temporal contextual correlation at both local and global levels to achieve high-
precision automatic sleep staging on single-channel EEG.

2. To solve the problem whereby traditional CNNs cannot distinguish feature importance
due to their limited receptive fields, we add an attention module, which learns the
weights of local features by mining the contextual relations of local sequences.

3. Our proposed model is evaluated on the public data sets sleep-edfx-2013 and sleep-
edfx-2018. The experimental results show that CAttSleepNet outperforms the existing
state-of-the-art methods.

The remainder of the paper is organized as follows. In Section 2, related works on sleep
staging are introduced. Section 3 describes CAttSleepNet in detail. Section 4 experimentally
evaluates CAttSleepNet. Section 5 concludes the paper and points out directions for future work.

2. Related Work
2.1. Machine Learning-Based Sleep Staging Methods

Many methods have been proposed for sleep staging by machine learning. For exam-
ple, Li et al. [5] used 30 EEG signal features, including temporal, frequency, and nonlinear
features, to train a random forest model for this task. In [6], the Naive Bayes classifier was
applied to classify sleep stages on single-channel EEG. Zhu et al. [7] extracted the graph
domain features of EEG and then input these features into a support vector machine model.
Seifpour et al. [8] fed extracted EEG time-domain features into a support vector machine
for sleep staging. Lajnef et al. [22] proposed a multi-class support vector machine (SVM)
classification model based on decision trees. The model used hierarchical clustering tech-
niques and extensive time and frequency domain feature extraction to obtain a decision tree
or dendrogram. Hassan et al. [23] utilized bootstrap aggregation (Bagging) and complete
ensemble empirical pattern decomposition with adaptive noise (CEEMDAN) to perform a
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sleep staging task. These sleep staging methods usually require specialized sleep medicine
knowledge. In addition, machine learning models do not excel at processing temporal signals.

2.2. Deep Learning-Based Sleep Staging Methods

Many studies have applied deep learning to sleep staging. The authors of [14–16]
used convolutional neural networks for sleep staging. The model shown in reference [14]
combined the convolution, max-pooling, and dropout layers. This model used one fully
connected layer and the softmax classifier to divide the sleep process into five categories. For
this purpose, the classification method proposed in Reference [15] used seven convolution
layers, one dropout layer, and one fully connected layer. Traditional CNNs perform well
in feature extraction, but fail to exploit the temporal context of sleep stages due to their
limited receptive fields.

In recent years, an increasing number of specialists have started to use RNNs in their
classification models. Michielli et al. [17] designed a new model based on a cascaded
RNN structure with long short-term memory (LSTM) blocks to process single-channel EEG
signals. Sun et al. [18] proposed a two-stage sleep staging method—namely, feature learning
and sleep pattern recognition. The features in this method were fused manually and trained
using CNNs. The fused features were then fed to the RNN module. Supratak et al. [20]
combined CNNs with Bi-LSTM, using CNNs to extract representative features from each
30-s epoch and Bi-LSTM to consider contextual correlations for consecutive epochs. The
experimental results showed that considering the contextual correlation of signals is an
effective technique in automatic sleep staging. Similarly, the model proposed in [21]
utilized a three-scale CNN architecture to extract features for each 30-s epoch and fused
hand-crafted features with extracted features. Finally, the fusion results were fed into the
Bi-LSTM network to learn the transition rules between consecutive epochs. However, most
of these models do not consider the contextual correlations of local sequences within a 30-s
epoch and ignore the differences in the importance of local features.

3. CAttSleepNet

Figure 1 shows the overall architecture of the CAttSleepNet model. Firstly, EEG signals,
including Fpz-Cz and Pz-Oz channels, are obtained from PSGs. The extracted EEG signals
are divided into many 30-s epochs. Next, consecutive epochs are fed into CAttSleepNet to
extract their features. After that, we input feature representations of all epochs to a two-layer
Bi-LSTM to capture the time dependence of different epochs. The final sleep staging results
can be obtained by adding a softmax layer after the two-layer Bi-LSTM.
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3.1. The Attention-Based CNN for Local Sequence Feature Extraction

According to the AASM manual [4], sleep specialists focus on certain key features
when labeling sleep stages, such as low-amplitude mixed frequency (LAMF) and vertex
sharp waves in the N1 stage. The variability in the importance of temporal signal features
is difficult for standard CNNs to capture, leading models to incorrectly assess key features
or even directly ignore them due to their less frequent occurrence. If the CNN is given the
ability to pay more attention to high-importance features, the effective extraction of local
sequence features and the optimization of the input information of the Bi-LSTM layer can
be achieved more easily. Therefore, we designed an attention module to solve this problem.

Attention mechanisms can be categorized as hard attention and soft attention [24].
Hard attention mechanisms filter out the regions of interest as the input, which can help
the model to focus on the target object in image processing. However, this method, which
directly limits the input content, is not applicable in time series signal classification and pre-
diction. In addition, hard attention mechanisms are more difficult to train and less versatile.
In contrast, soft attention mechanisms achieve the purpose of focusing on specific spatial
regions or channels by obtaining weights through training learning and then weighting
input features on spaces or channels. At the same time, this approach is differentiable in
reverse computation, so an end-to-end method can be used to learn the attention network.
Based on the above principles, we introduced a soft attention mechanism into the CNN to
weight all local sequence features, focus on specific spaces and channels, and achieve the
extraction of significant fine-grained features of time series.

In this work, the local feature extraction consisted of two branches: the standard CNN
branch and the attention branch. The standard CNN branch was used for extracting local
features. The attention branch was used to compute the corresponding attention scores.
Then, the attention score was used to reweight the feature map by element-wise multiplica-
tion. This fusion method has been verified to be feasible and effective in various works in
the literature [25,26]. Specifically, to obtain richer short sequence features, different scales of
inputs were used for the CNN and attention branches. Furthermore, when performing the
convolution operation, we set the filter size of the attention branch to be larger than that of
the CNN branch. This approach was motivated by previous research [20,27]. Additionally,
since the frequency range of sleep stages differs for different time steps [28], we employed
different filter kernel sizes to capture the sleep-related frequency band features for different
time steps.

When given N 30-s EEG epoch {X1, X2, . . . , XN} input to our model, each epoch
was input to the CNN and attention module with lengths of 2 s and 4 s. The input
sequence of the attention module was centered on the input sequence of the CNN mod-
ule. In order to prevent the loss of information, two modules slide forward in steps of
1 s. The process is presented in Figure 2. In other words, the 30-s epoch Xi can be di-
vided into 29 subsequences of 2 s or 29 subsequences of 4 s, which can be expressed as
Xi =

{
xc

1, xc
2, . . . , xc

n
}
=

{
xa

1, xa
2, . . . , xa

n
}

. xc
i represents the i-th short sequence input to the

CNN module, and xa
i represents the i-th short sequence input to the attention module. This

division approach is inspired by the study [29]. We used two modules to extract features
from the i-th EEG epoch Xi, as shown below.

hc
i = CNN(xc

i ) (1)

ha
i = Attention(xa

i ) (2)

ai = hc
i � ha

i (3)

where CNN(x c
i
)

denotes the operation of the standard CNN module, which can convert
the input subsequence xc

i into the feature vector hc
i ; Attention(x a

i
)

denotes the operation of
the attention module, which can convert the input subsequence xa

i into the feature vector
ha

i , and � denotes element-wise multiplication. After the above operations, epoch Xi can
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be represented as a feature vector Ai = {a1, a2, . . . , an}. Thereby, the feature vector {A1, A2,
. . . , AN} for N epochs {X1, X2, . . . , XN} can be obtained.
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slide forward next.

3.2. The Two-Layer Bi-LSTM for Global Sequence Modeling

Due to the individual variability of recorded sleep signals, we needed to focus not only
on intra-epoch variations, but also on inter-epoch variations to minimize the impact of this
variability on the sleep staging task. The simple multiclassification task ignores temporal
context information obtained between consecutive sleep epochs. Therefore, we considered
the sleep staging problem as a sequential multiclassification task. Specifically, for N EEG
epochs {X1, X2, . . . , XN}, CAttSleepNet calculated the output sequence {Y1, Y2, . . . , YN} to
maximize the conditional probability p(X 1, X2, . . . , XN |Y 1, Y2, . . . , YN).

In this work, we used a two-layer Bi-LSTM to capture global context information
between consecutive sleep epochs. Bi-LSTM was composed of a forward LSTM and a
backward LSTM. Therefore, compared to LSTM, Bi-LSTM could utilize the information in
both the forward and backward directions. In addition, Bi-LSTM was used to extract coarse-
grained features from the significant fine-grained features extracted by the attention-based
CNN network. Meanwhile, it prevented the memory loss and gradient dispersion problems
caused by the use of excessively long steps. In conclusion, a two-layer Bi-LSTM could
capture the temporal dependence of consecutive epochs to achieve coarse and fine-grained
feature fusion and fully characterize time-series data.

For the feature representation {A1, A2, . . . , AN} of N 30-s EEG epoch {X1, X2, . . . , XN},
where Ai= {a1, a2, . . . , an}, we modeled the global sequence between 30-s epochs, as follows.

→
Ht = LSTM

(
At,

→
Ht−1,

→
Ct−1

)
(4)

←
Ht = LSTM

(
At,

←
Ht+1,

←
Ct+1

)
(5)

Ot =
→
Ht ‖

←
Ht (6)

where LSTM(·) denotes the operation of a two-layer LSTM, which can model the feature
vector At from the front and back directions; C and H are the vectors of cells and hidden
states; and ‖ is a concatenation operation. Finally, sleep staging results can be obtained by
adding a softmax layer after a two-layer Bi-LSTM.

3.3. Model Training and Parameter Optimization

Figure 3 shows the specific structure of CAttSleepNet. The top branch is the CNN
module, and the middle is the attention module. Table 1 displays the specific parameters of
CAttSleepNet. The CNN branch consisted of seven one-dimensional convolution layers,
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one max-pooling layer, and two dropout layers. The attention branch contained nine
one-dimensional convolutional layers, one max-pooling layers, and three dropout layers.
To solve the problem of overfitting during training, we used a dropout layer with the
parameter set to 0.5. In particular, the batch normalization and application of corrected
linear unit (ReLU) activation were performed for each convolutional layer in two branches.
The attention branch restricted feature values extracted through a series of convolution and
pooling operations between 0 and 1, through a sigmoid function. The output features of the
CNN branch were multiplied element-wise with the output weights of the corresponding
attention branch. Specifically, the more important the feature of the CNN branch was, the
closer the output weight of the corresponding attention branch was to 1. On the contrary,
the less important the feature of the CNN branch was, the closer the output weight of the
corresponding attention branch was to 0.
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Table 1. Detailed parameters of CAttSleepNet model.

Branch Layer Type Number of Filters Kernel Size Region Size Stride Output Shape

Input - - - - - (200, 1)

The CNN

Conv1 64 1 × 5 - 3 (67, 64)
Conv2 64 1 × 5 - 3 (23, 64)
Conv3 64 1 × 5 - 3 (8, 64)
Conv4 128 1 × 3 - 2 (4, 128)
Conv5 128 1 × 3 - 2 (2, 128)
Conv6 128 1 × 3 - 1 (2, 128)
Conv7 256 1 × 3 - 1 (2, 256)

Max-pooling - - 1 × 2 1 (1, 256)
Input - - - - - (400, 1)

The Attention

Conv1 64 1 × 7 - 3 (134, 64)
Conv2 64 1 × 7 - 3 (45, 64)
Conv3 64 1 × 7 - 3 (15, 64)

Max-pooling - - 1 × 2 2 (8, 64)
Conv4 128 1 × 5 - 2 (4, 128)
Conv5 128 1 × 5 - 2 (2, 128)
Conv6 128 1 × 5 - 2 (1, 128)
Conv7 256 1 × 3 - 1 (1, 256)
Conv8 256 1 × 3 - 1 (1, 256)
Conv9 256 1 × 3 - 1 (1, 256)
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We input five minutes EEG segments—i.e., ten 30-s EEG epochs—into the model with-
out preprocessing for end-to-end automatic sleep staging. The CNN and the corresponding
attention branches were slid forward simultaneously in one-second steps. The sliding
window size of the CNN block was 2 s, and the sliding window size of the attention block
was 4 s. Since the sampling rate of EEG was 100 Hz, per second EEG signal contained
100 data points. After the attention-based CNN module, the vector of shape (1, 256) was
obtained. Fused results were flattened and fed to a two-layer Bi-LSTM. The number of
hidden units in the Bi-LSTM layer was 64. Eventually, the softmax classifier outputs the
most likely sleep stage.

We utilized the Adam optimizer with a learning rate of 0.001 to optimize the model pa-
rameters. CAttSleepNet could be trained end-to-end using the back-propagation algorithm.
The cross-entropy loss function was employed. The loss function was defined as follows.

loss =− 1
S ∑K−1

k=0 ∑S−1
i=0 yi,k log

(
pi,k

)
(7)

where K denotes the number of classes; S denotes the total number of samples; and yi,k
and pi,k denote the actual label and predicted probability of the i-th sample for class k,
respectively. The maximum training epoch was set to 300. Moreover, we performed our
experiments on a device with two GPUs (NVIDIA GeForce GTX 1080 Ti) using Python 3.6
and Tensorflow 1.10. For the sleep-edfx-2013 dataset, each training epoch took about 1 min,
while the sleep-edfx-2018 dataset needed roughly 4 min.

4. Experimental Evaluation
4.1. Experiment Datasets and Evaluation Metrics
4.1.1. Experiment Datasets

In this experiment, we used the public Physionet sleep-edf expanded (sleep-edfx)
dataset [30,31], including version 1 from 2013 and version 2 from 2018, to evaluate the
performance of CAttSleepNet. The sleep-edf dataset was first released in 2002 (version 0),
and only contained a small amount of data; thus, it was not used in our study. It was
expanded in 2013 and 2018, with sleep-edfx-2013 containing 61 whole-night PSGs, while
sleep-edfx-2018 reached 197 whole-night PSGs. Additionally, these sleep signals were
derived from two different studies—namely, studies on the impact of age on healthy
adults (SC) and the effect of temazepam medication on sleep (ST). We only utilized data
from * SC files for this task. Subjects’ EEG (Fpz-Cz and Pz-Oz channels), EOG, EMG,
and event markers were recorded in each PSG. The sampling rates of EEG, EOG, and
EMG were 100 Hz, 100 Hz, and 1 Hz, respectively. Some PSGs also recorded respiration
and body temperature. These PSGs were manually labeled by professionals following
the R&K manual [3]. Specifically, each 30-s epoch was labeled with one of the following
classes: wakefulness (W), rapid eye movement (REM), MOVEMENT, UNKNOWN, and
non-rapid eye movement (NREM, which was further divided into N1, N2, N3, and N4
stages). We combined N3 and N4 into N3 according to the AASM manual [4] and removed
the MOVEMENT and UNKNOWN stages. Therefore, sleep stages were classified into
five categories: W, REM, N1, N2, and N3. Furthermore, we eliminated some W stages
and retained only the 30-min waking periods before and after sleep. This approach was
consistent with the study [20]. As shown in Table 2, we performed sleep staging using EEG
signals from Fpz-Cz and Pz-Oz channels.
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Table 2. Detailed distribution of sleep stages in sleep-edfx-2013 and sleep-edfx-2018 datasets.

Stage Sleep-Edfx-2013 Sleep-Edfx-2018
Training Set Test Set Total Training Set Test Set Total

W 7734 292 8026 55,697 10,023 65,720
N1 2666 138 2804 19,207 2315 21,522
N2 16,805 994 17,799 89,789 6343 96,132
N3 5449 254 5703 11,879 1160 13,039

REM 7295 422 7717 23,452 2383 25,835
Total 39,949 2100 42,049 200,024 22,224 222,248

4.1.2. Evaluation Metrics

K-fold cross-validation can improve the learning ability of deep learning models and
make them more robust. In this experiment, we applied the k-fold cross-validation method
to evaluate the performance of the CAttSleepNet model. To ensure a fairer comparison
of the experimental results, the k values in this paper were set to be the same as those
studies [20,27,29,32–37]—i.e., the k values were taken as 20 and 10 on the sleep-edfx-2013
and sleep-edfx-2018 datasets, respectively. The detailed process was as follows:

1. The sleep-edfx-2013 and sleep-edfx-2018 datasets are shuffled into k equal parts. K
was set to 20 and 10, correspondingly.

2. One of the k equal parts was taken as a test set and the rest as a training set.
3. We trained the model and calculated the accuracy on the test set.

Steps 2 and 3 were repeated k times, and then the average of k test results was
calculated as the final result.

To more comprehensively assess the behavior of our model in the sleep staging task,
we considered the model evaluation both overall and per-category separately. On the one
hand, due to the different number of samples for each sleep stage, we used the overall
accuracy (ACC), Macro-F1 score (MF1), and Cohen’s Kappa coefficient (K) [38,39] to obtain
a more intuitive and realistic portrayal of the overall classification. On the other hand, we
calculated precision, recall, and F1-score for each class separately. The calculation formula
used for the above indicators was as follows.

precisioni =
TPi

TPi+FPi
(8)

recalli =
TPi

TPi+FNi
(9)

F1i =
2 × precisioni × recalli

precisioni+recalli
(10)

ACC =
∑C

i=1 TPi

S
(11)

MF1 =
1
C ∑C

i=1 F1i (12)

K =
po − pe
1 − pe

(13)

where FPi, FNi, and TPi are false positive, false negative, and true positive for the i-th
class, respectively; S is the total amount of samples; and C is the number of categories. In
this experiment, C is set to 5. po is the actual agreement rate, while pe is the theoretical
agreement rate.

4.2. Experimental Results of CAttSleepNet

On the sleep-edfx-2013 and sleep-edfx-2018 datasets, we obtained four k-fold cross-
validation confusion matrices and corresponding receiver operating characteristic (ROC)
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curves, as shown in Figures 4–7. In the confusion matrices, diagonal positions represent the
proportions of correct classification, and other positions indicate proportions misclassified
as other classes. The darker the color is, the higher the percentage is. For the sleep-edfx-2013
dataset, except for the N1 stage, the other four classes achieved a high accuracy. The highest
classification accuracy was obtained for the W and N2 stages. The classification accuracy
of the N1 stage on two channels was 41% and 42%, respectively. N1 stages were mainly
misclassified as N2 and REM stages. Due to the small number of samples and few features
learned during training, the N1 stage was the most indistinguishable among the five classes.
The confusion matrix distribution of the sleep-edfx-2018 dataset was similar to that of
the sleep-edfx-2013 dataset. On the other hand, the same ROC curve was obtained, since
our model obtained similar classification results for both channels on the sleep-edfx-2013
dataset. The ROC curves on the two channels of sleep-edfx-2018 were vastly different.
The CAttSleepNet model had the highest area under curve (AUC) on the sleep-edfx-2013
dataset and the lowest AUC on the Pz-Oz channel of sleep-edfx-2018. This may be due to
the poor performance of the CAttSleepNet model on the Pz-Oz channel of sleep-edfx-2018
classification for each sleep stage, especially for the N1 stage.
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Table 3. Evaluation indicators for the overall and each category are obtained from two datasets.

Sleep-Edfx-2013 Sleep-Edfx-2018
EEG Fpz-Cz (%) EEG Pz-Oz (%) EEG Fpz-Cz (%) EEG Pz-Oz (%)

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1
W 88.86 90.28 89.56 89.56 89.44 89.50 92.56 91.67 92.12 89.24 90.67 89.95
N1 55.59 40.87 47.11 51.98 41.93 46.42 46.10 41.61 43.74 45.79 34.33 39.24
N2 86.24 88.21 87.22 84.63 87.10 85.84 81.71 84.90 83.28 78.52 83.79 81.07
N3 86.57 83.47 84.50 82.55 79.38 80.94 77.25 76.66 76.96 71.18 65.20 68.06

REM 80.05 84.30 82.12 79.45 82.09 80.75 76.51 76.89 76.70 71.01 73.16 72.07

Overall Indicators
ACC K MF1 ACC K MF1 ACC K MF1 ACC K MF1

84.14 78.09 78.20 82.58 75.97 76.69 80.81 73.51 74.56 78.01 69.45 70.08

Note: Pre = precision, Rec = recall, F1 = F1-score.

Moreover, Table 3 also displays the ACC, MF1, and K of the overall classification, pre-
cision, recall, and F1-score for each category. It is obvious that our model outperformed the
Pz-Oz channel on the Fpz-Cz channel, both overall and per-class. On the sleep-edfx-2013
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dataset, the ACC, MF1, and K of the Fpz-Cz channel were 1.56%, 2.12%, and 1.51% higher
than those of the Pz-Oz channel, respectively. On the sleep-edfx-2018 dataset, they were 2.8%,
4.06%, and 4.48%, correspondingly. On the other hand, the above indicator values for the
sleep-edfx-2013 dataset were significantly higher than those for the sleep-edfx-2018 dataset.

4.3. Comparison with State-of-the-Art Methods

In this section, we compare the performance of our model with that of existing
models [20,27,29,32–37]. Reference [32] used convolutional neural networks to automatically
score sleep stages on the Fpz-Cz channel of EEG without using prior knowledge. Reference [33]
designed a sleep staging model with stacked sparse autoencoders. Supratak et al. [20]
proposed the DeepsleepNet model for sleep staging. The literature [29] used an approach
combining attention mechanisms and bidirectional recurrent neural networks. Meanwhile,
the literature [34] utilized a 1-max pooling CNN and time-frequency image features for au-
tomatic sleep staging. Additionally, a CNN framework for joint classification and prediction
was proposed in the study [35]. Zhu et al. [36] proposed an automatic sleep staging method
based on the attention mechanism and convolutional neural networks. Yang et al. [27]
designed the 1D-CNN-HMM model, which combines the hidden Markov model (HMM)
and one-dimensional convolutional neural network (1D-CNN). A new model for automatic
sleep staging called SleepEEGNet, was proposed in the work of [37].

The results of our method compared with those of other methods are shown in Table 4.
The validation of our experiments was consistent with these methods—i.e., using 20-fold
cross-validation and 10-fold cross-validation on the sleep-edfx-2013 and sleep-edfx-2018
datasets, separately. On the sleep-edfx-2013 dataset, our model achieved the best results in
terms of the overall metrics (ACC, MF1, and K) for both channels. That is, the ACC, MF1,
and K on the Fpz-Cz channel were 84.1%, 78.2%, and 78%, respectively, while the ACC,
MF1, and K on the Pz-Oz channel were 82.58%, 76.69%, and 76%, respectively. Second, the
CAttSleepNet model achieved the highest F1-score for each class on the Pz-Oz channel, and
the highest F1-score for the N1 and N2 stages on the Fpz-Cz channel. It is more difficult to
achieve satisfactory classification results in N1 stages because of the smaller sample and
more similar modality to the N2 stages, as is verified by experimental results recorded
in the literature [20,27,29,32–37]. Without dealing with class imbalance, our model still
outperformed these methods in the N1 stage. There have been few studies on the sleep-
edfx-2018 dataset so far, and we only compared our results with those in the literature [37].
Our model outperformed that in the study of [37] in terms of overall classification metrics,
performing satisfactorily in each class. In addition, we can see that the models of [36,37]
achieved better or similar classification results compared to our model in the W, N1, and
REM stages; this may be due to the different contributions of different classifiers to the
different categories. Moreover, in the literature [36,37], there was a greater number of
samples in the W stages, which may also have affected the actual classification results. In
summary, CAttSleepNet achieved a highly competitive performance compared to that of
other well-established sleep staging models.

Table 4. Comparison among CAttSleepNet and other models.

Approach Overall Performance (%) Per-Class F1-Score (%)

ACC MF1 K W N1 N2 N3 REM

Dataset: Sleep-Edfx-2013 EEG Channel: Fpz-Cz

Tsinalis et al. [32] 74.8 69.8 - 65.4 43.7 80.6 84.9 74.5
Tsinalis et al. [33] 78.9 73.7 - 71.6 47.0 84.6 84.0 81.4

Supratak et al. [20] 82.0 76.9 0.76 84.7 46.6 85.9 84.8 82.4
Phan et al. [29] 79.1 69.8 0.70 75.5 27.3 86.0 85.6 74.8
Phan et al. [34] 79.8 72.0 0.72 77.0 33.3 86.8 86.3 76.4
Phan et al. [35] 81.9 73.8 0.74 - - - - -
Zhu et al. [36] 82.8 77.8 - 90.3 47.1 86.0 82.1 83.2
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Table 4. Cont.

Approach Overall Performance (%) Per-Class F1-Score (%)

ACC MF1 K W N1 N2 N3 REM

Yang et al. [27] 82.13 73.5 0.75 87.8 23.0 86.2 90.9 81.8
CAttSleepNet 84.1 78.2 0.78 89.6 47.1 87.2 85.0 82.1

Dataset: Sleep-Edfx-2013 EEG Channel: Pz-Oz

Supratak et al. [20] 79.8 73.1 0.72 88.1 37 82.7 77.3 80.3
Yang et al. [27] 80.54 68.7 0.72 85.3 17.5 85.0 78.2 75.8
CAttSleepNet 82.58 76.69 0.76 89.5 46.4 85.8 80.9 80.8

Dataset: Sleep-Edfx-2018 EEG Channel: Fpz-Cz

Mousavi et al. [37] 80.03 73.55 0.73 91.72 44.05 82.49 73.45 76.06
CAttSleepNet 80.81 74.56 0.74 92.12 43.74 83.28 76.96 76.70

Dataset: Sleep-Edfx-2018 EEG Channel: Pz-Oz

Mousavi et al. [37] 77.56 70.00 0.69 - - - - -
CAttSleepNet 78.01 70.08 0.69 89.95 39.24 81.07 68.06 72.07

Note: The highest performance metrics are highlighted in bold. Except for the K indicator, values of other
indicators are all percentiles.

4.4. Ablation Experiment

To verify the validity of the attention approach proposed in this paper, we conducted
ablation experiments. Without changing the model parameters, we compare the perfor-
mance of CAttSleepNet with and without attention in the Fpz-Cz channel of the sleep-
edfx-2013 dataset. Additionally, both models used the same optimizer, loss function, and
experimental environment. We calculated the ACC, MF1, and K, and per-class F1-score
for the two models separately. Table 5 shows the experimental results obtained. The
model with the attention branch outperformed the model without the attention branch.
Specifically, ACC improved by 2.19%, K increased by 3.59%, and MF1 was enhanced by
2.94%. The visualization comparison results are shown in Figure 8. It can be seen from the
figure that with the attention branch, CattSleepNet achieved better or similar classification
results for each sleep stage. With the attention branch, the performance of CAttSleepNet
was more consistent with the actual classification results. Therefore, the values of K and
MF1 also increased significantly.
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Table 5. Ablation experiments on Fpz-CZ channel of the sleep-edfx-2013 dataset.

CAttSleepNet (%) CAttSleepNet without Attention (%)

Pre Rec F1 Pre Rec F1
W 88.86 90.28 89.56 83.13 83.13 83.14
N1 55.59 40.87 47.11 48.63 40.09 43.95
N2 86.24 88.21 87.22 90.05 88.20 89.57
N3 86.57 83.47 84.50 78.07 78.92 78.49

REM 80.05 84.30 82.12 75.58 87.64 81.87
Overall

Indicators
ACC K MF1 ACC K MF1
84.14 78.09 78.20 81.95 74.50 75.26

Note: Pre = precision, Rec = recall, F1 = F1-score.

5. Conclusions

In this paper, we proposed a deep learning model named CAttSleepNet for automatic
end-to-end sleep staging based on raw single-channel EEG. First, the attention-based CNN
architecture could calculate the weights of local features by mining contextual associations;
thus, it could differentiate the importance of key and non-key local features. Second,
a two-layer Bi-LSTM was applied to globally model consecutive epochs, enabling end-
to-end automatic sleep staging by exploiting the transition rules between sleep stages.
The experimental results obtained on the sleep-edfx-2013 and sleep-edfx-2018 datasets
demonstrate that our model achieved a better performance than the existing models.
Furthermore, ablation experiments proved the effectiveness of our proposed attention
module for use in sleep staging. Although our model achieved a promising performance,
it still had some shortcomings. In the future, we hope to fuse information from multiple
modalities, such as EOG and EMG, to enhance the performance of CAttSleepNet.
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