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Abstract: Genetic and exposomal factors contribute to the development of human aging. For example,
genetic polymorphisms and exposure to environmental factors (air pollution, tobacco smoke, etc.)
influence lung and skin aging traits. For prevention purposes it is highly desirable to know the
extent to which each category of the exposome and genetic factors contribute to their development.
Estimating such extents, however, is methodologically challenging, mainly because the predictors
are often highly correlated. Tackling this challenge, this article proposes to use weighted risk scores
to assess combined effects of categories of such predictors, and a measure of relative importance to
quantify their relative contribution. The risk score weights are determined via regularized regres-
sion and the relative contributions are estimated by the proportion of explained variance in linear
regression. This approach is applied to data from a cohort of elderly Caucasian women investigated
in 2007-2010 by estimating the relative contribution of genetic and exposomal factors to skin and
lung aging. Overall, the models explain 17% (95% CI: [9%, 28%]) of the outcome’s variance for skin
aging and 23% ([11%, 34%]) for lung function parameters. For both aging traits, genetic factors make
up the largest contribution. The proposed approach enables us to quantify and rank contributions
of categories of exposomal and genetic factors to human aging traits and facilitates risk assessment
related to common human diseases in general. Obtained rankings can aid political decision making,
for example, by prioritizing protective measures such as limit values for certain exposures.

Keywords: aging; environmental exposure; exposome; relative contribution; relative importance;

risk score

1. Introduction

Human phenotypes in general and health outcomes such as aging traits in particular
result from genetic and non-genetic influences. For the latter the term exposome has been
coined, which according to Christopher Wild is the totality of all non-genetic factors a
human individual is exposed to from conception to death [1]. The exposome not only
encompasses environmental factors but also lifestyle and behaviors, social environment
and social status as well as the biological response [2].

The exposome concept is a step towards an all-embracing assessment of environment and
health. It is potentially very interesting with regards to risk assessment, because knowledge
about the relative contribution of distinct exposomal and genetic factors to a specific health
outcome or aging trait would allow for more a precise and efficient prevention.

However, to date it is still challenging to measure all exposures of the exposome
continuously over the entire lifetime for each individual [3]. Apart from the difficulty in
measuring the exposome, the statistical analysis is also not straightforward [3]. Even a

Int. ]. Environ. Res. Public Health 2022, 19, 16746. https:/ /doi.org/10.3390/ijerph192416746

https:/ /www.mdpi.com/journal/ijerph


https://doi.org/10.3390/ijerph192416746
https://doi.org/10.3390/ijerph192416746
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-0612-2637
https://orcid.org/0000-0002-6005-417X
https://doi.org/10.3390/ijerph192416746
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph192416746?type=check_update&version=2

Int. |. Environ. Res. Public Health 2022, 19, 16746 20f 13

cross-sectional analysis of the complex associations between different exposures, genetics
and health outcomes is a statistical challenge, as many exposures are highly correlated.
Epidemiological studies typically report exposure-health associations on an individual
exposure-by-exposure basis while adjusting for confounding [3]. Correlated exposures are
usually not included in traditional regression models due to concerns about multicollinear-
ity. A recent review of statistical approaches used in the context of exposome studies is
given in Guillien et al. (2021) [4]. Most of these approaches focus on the detection of causal
exposures, i.e., variable selection, and on prediction of individual health status.

This article provides means for studying the contribution of a risk factor category
such as air pollution as a whole, that is, the combined contribution of different exposures
(e.g., nitrogen dioxide and particulate matter) belonging to the same category. The goal
of the here-proposed methodology is to determine the extent to which each of several
categories within the exposome as well as genetic factors contribute to a certain health
outcome. Knowing these relative contributions would also enable comparisons between
different populations and between different outcomes.

Since the concept of the exposome was introduced as a complement to the genome,
methodology developed for genome-wide analyses might also be useful for analyses of the
exposome. Consequently, exposome-wide association studies (in analogy to genome-wide
association studies) have been proposed to assess the exposome [5]. These association
studies use univariate single-exposure regression that does not take co-exposures into
account and hence cannot provide a measure of relative contribution of a whole category
of risk factors.

Approaches for multi-exposure regression like penalized regression models (LASSO [6]
or elastic net [7]), the deletion/substitution/addition (DSA) algorithm [8], weighted quan-
tile sum regression [9] (and its extension “quantile-based g-computation” [10]) or Bayesian
kernel machine regression [11] take co-exposures into account, but are not useful for
estimating the relative contributions of several risk factor categories either. Penalized
regression and the DSA algorithm are variable selection methods and cannot directly infer
the combined effects of categorized exposures. Weighted quantile sum regression and
quantile-based g-computation combine several correlated exposures into one index and
enable the estimation of the joint effect of an exposure mixture, but cannot handle categori-
cal exposures. In addition, an extension for several risk factor categories of the exposome
with more than one index remains unclear. Bayesian kernel machine regression can take
hierarchical structures of the exposome into account by partitioning correlated exposures
into several categories (“groups”) through a-priori information, but only a single exposure
per category and not a mixture is allowed to contribute to the final estimates. In addition,
this method is also not able to handle categorical exposures.

A multivariate approach for genome-wide analyses is polygenic risk scores [12], which
was developed for determining the genetic basis underlying a trait or disease, where the
genetic predictors are in part highly correlated. Here, we will borrow the polygenic risk
score methodology and adopt it to the exposome concept. Weighted risk scores, defined as
weighted sums of all exposures belonging to the same risk factor category, will be constructed
to analyze the combined impact of different (correlated) environmental exposures on health.
More precisely, the proposed methodology consists of two steps: (1) combining correlated
predictors into one weighted risk score (RS) per risk factor category and (2) estimating the
relative contribution of each RS to a certain outcome using shares of explained variance in
a linear regression model. The weights of the predictors will be determined internally in a
training sample using regularized regression (explicitly, ridge regression) and a bootstrapping
approach to account for the randomness in splitting the data set into training and test set.
Estimating the weights by regularized regression in a training sample has been widely used
for the construction of polygenic risk scores in general [13,14] and in the context of gene—
environment-interaction studies [15-17]. In the second step, the Lindeman-Merenda—-Gold
measure of relative importance [18] is applied to assess the contribution of the composed risk
scores to the health outcome in the test sample.
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Here, data from the German SALIA cohort (Study on air pollution, lung function,
inflammation and aging) is analyzed to prove the concept of applying risk scores to estimate
relative contributions of environmental and genetic risk factors. The concept is applied
to two aging traits, namely skin aging and aging-associated decreased lung function, to
evaluate the relative contributions. The focus is on these two aging traits because for both
it is well established that genetic and a number of specific exposomal factors contribute to
their development [19,20]. Accordingly, important exposomal factors for lung aging are
tobacco smoke and air pollution [20-22]; for skin aging these include exposure to ultraviolet
(UV) radiation, air pollution and tobacco smoke, as well as nutritional factors [19].

2. Materials and Methods

The proposed methodology was applied to data from the SALIA cohort study of el-
derly German women by analyzing three aging traits: a z-score of facial pigment spots and
z-scores of the lung function parameters Forced Expiratory Volume in 1 s (FEV1) and Forced
Vital Capacity (FVC). Details on the study population [23-25] as well as outcome [26-29],
genetic [30-36], exposure [37-40] and confounder variables can be found in the Supplemen-
tary Methods and Supplementary Tables S1-S3 (Supplementary File S1). An overview of
the variables is given in Figure 1 and descriptive statistics can be found in Table 1. The
de-correlating effect of building the risk scores is demonstrated with correlation plots in
Supplementary Figures S1-S5 (Supplementary File S1).

Table 1. Descriptive statistics of all outcome and predictor variables in both analysis samples.

Variable Categories Mean (SD) or n (%)
Skin aging Lung function analysis
analysis (n = 547) (n =510)
Outcomes
Pigment spot z-score 0.00 (1.00)
FEV; z-score 0.17 (1.02)
FVC z-score 0.24 (0.90)
FEV,/FVC z-score —0.22 (0.85)
Single Predictors
Age [years] 73.58 (2.97) 73.52 (2.99)
Height [cm] 162.83 (5.76)
SES: 1 ="“<10 years” 94 (17.2%) 89 (17.5%)
2 ="10 years” 275 (50.3%) 249 (48.8%)
3 =">10 years” 178 (32.5%) 172 (33.7%)
Skin type: dark (0; Fitzpatrick type 3 and 4) 243 (44.4%)
light (1; Fitzpatrick type 1 and 2) 304 (55.6%)
Sunbed use: never (0) 459 (83.9%)
ever (1) 88 (16.1%)
SPF: no (0) 214 (39.1%)
yes (1) 333 (60.9%)
HRT: no (0) 319 (58.3%)
yes (1) 228 (41.7%)
MeDi score 28.50 (2.79)
Obesity Risk Score
mean BMI up to FU 1 [kg/m?] 26.70 (3.67) 26.66 (3.66)
BMI FU 2 [kg/m?] 27.32 (4.34) 27.29 (4.34)
Lack of physical activity: no (0) 216 (39.5%) 203 (39.8%)
yes (1) 331 (60.5%) 307 (60.2%)
Smoking Risk Score
Current smoking: no (0) 535 (97.8%) 498 (97.6%)
yes (1) 12 (2.2%) 12 (2.4%)
Former smoking: no (0) 458 (83.7%) 425 (83.3%)
yes (1) 89 (16.3%) 85 (16.7%)
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Table 1. Cont.

Variable Categories Mean (SD) or n (%)
Skin aging Lung function analysis
analysis (n = 547) (n =510)
ETS at work: never (0) 314 (57.4%) 294 (57.6%)
ever (1) 233 (42.6%) 216 (42.4%)
ETS at home: never (0) 365 (66.7%) 337 (66.1%)
ever (1) 182 (33.3%) 173 (33.9%)
Packyears [packs/day X years] 3.68 (12.46) 3.83 (12.74)
Air pollution Risk Score
Residence: rural (0) 260 (47.5%) 249 (48.8%)
urban (1) 287 (52.5%) 261 (51.2%)
NO; [ug/m?] 37.73 (11.46) 37.21 (11.16)
NOy [pug/m?] 70.52 (32.66) 69.17 (31.93)
PMy [ng/m?] 49.27 (7.17) 48.98 (7.38)
PMy 5 [ng/m?3] 32.75 (4.65) 32.56 (4.78)
PMcoarse [1g/m3] 17.57 (3.85) 17.42 (3.91)
PM, 5,15 [107°/m] 2.74 (0.92) 2.71(0.92)
Trafloadmajor
[1000 vehicles x m /day] 900.63 (2313.15) 839.51 (2200.63)
Invdistmajor [1/m] 0.01 (0.02) 0.01 (0.02)
Radiation Risk Score
UV-B [J/m?] 3140.38 (33.03)
UV index [40 W/m?] 7.18 (0.09)

BMI: body mass index; ETS: environmental tobacco smoke; FEV;: forced expiratory volume in 1 s; FVC: forced vi-
tal capacity; FU: follow-up; HRT: hormone replacement therapy; Invdistmajor: inverse distance to next major road
(>5000 vehicles/day); MeDi: Mediterranean diet (definition: see Supplementary Materials); n: number of samples;
NO;: nitrogen dioxide; NOy: nitrogen oxides; PMjo: particulate matter with aerodynamic diameter < 10 um,
PMj,5: particulate matter with aerodynamic diameter <2.5 um; PMcoarse: coarse fraction of PMjg calculated
as PMjp minus PM;5; PMj5,,s: absorbance of particulate matter with aerodynamic diameter of <2.5 um;
SD: standard deviation; SES: socio-economic status; SPF: sun protection factor; Trafloadmajor: total traffic
load (number of vehicles/day x length of road segments) from major roads (>5000 vehicles/day) within 100 m
buffer; UV: ultraviolet.

2.1. Choice of Predictors

The risk scores combinepredefined predictors. In addition to the risk scores, further
predictors are included as single predictors in the linear regression models. Figure 1 gives
an overview for both the skin aging and the lung function analyses.

All predictors except the SNP variables have been standardized to mean zero and
standard deviation one to achieve a fair penalization of all regressors in the following.

2.2. Bootstrap Data Sets and Division into Training and Test Sample

The following analysis steps are repeated B times using the bootstrap principle. That
means that the analysis is not only conducted on the original data set, but also on B-1 data
sets created from the original data set by randomly sampling participants with replacement.
Each bootstrap data set is then divided randomly into training and test samples in the
relation 60% to 40%, as recommended in [12]. The number of bootstrap data sets is set to
B =500 for the skin aging outcome and B = 200 for the lung function outcomes, since in the
latter case 278 SNP variables are included in the genetic RS resulting in considerably longer
computation times.

2.3. Learning Risk Score Weights on Training Sample

The weights for the risk scores were learned on 60% of the participants in the training
sample using ridge regression (implemented by elastic net regression with parameter « = 0),
where the regularization parameter lambda was chosen via tenfold cross-validation with
the R function cv.glmnet from R package glmnet [41]. Ridge regression was chosen, since
variable selection was not the ultimate goal and shrinking all coefficients towards zero
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should retain the relations between the variables and lead to meaningful RS weights. The
model formula, exemplary for the lung function analyses, is given by

278 3

4 5 9
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Figure 1. Overview of the risk scores and the combined predictors for both aging outcomes. The nota-
tion used in the description of the statistical approach is given in brackets, exemplary for lung function.
BMI: body mass index; ETS: environmental tobacco smoke; HRT: hormone replacement therapy; MeDi:
Mediterranean diet (definition: see Supplementary Materials); NO,: nitrogen dioxide; NOx: nitrogen oxides;
PMj: particulate matter with aerodynamic diameter < 10 um; PMj, 5: particulate matter with aerodynamic
diameter < 2.5 um; PMcoarse: coarse fraction of PMyq calculated as PM1y minus PM; 5; PMy 5,1s: @absorbance
of particulate matter with aerodynamic diameter of <2.5 um; RS: risk score; SES: socio-economic status;
SNP: single nucleotide polymorphism; SPF: sun protection factor; UV: ultraviolet. ? Details on the selected
SNPs are given in Supplementary Tables S2 and S3 (Supplementary File S1).

The single predictors are included in this regression model to account for their effects
on the outcome, but only the predictors belonging to the risk scores are regularized, since
they are highly correlated and their coefficients will be used as weights in the risk scores.
Since the folds for the cross-validation in cv.glmnet are selected at random, the results
are random as well. To reduce this randomness, the estimation of the coefficients -y ; is
repeated twenty times and the resulting estimates are averaged. For each RS the respective
subset of coefficients are normalized so that the resulting weights lie in [—1, 1] and sum
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to one for each RS. Explicitly, the weights of the risk scores are (exemplary for the lung
function analyses) calculated as

_ Ykj Jiqs
e 37 T £ 0
wk,j: 1 Z[:kl Vi ] 4 P k:2//5
mikf ryk,]:()v]:l!rmk

where 1} ; are the estimates averaged over the twenty repetitions and 1 is the number of
predictors included in RS k (compare Figure 1).

2.4. Risk Scores, Linear Model and Relative Importance in the Test Sample

The RS weights derived from the training sample are used to calculate the values
of each RS k in the test sample as the weighted average of the respective predictors:
Zp = Z;":"l Wy Xk, js k=2,---,5. The risk score values are then scaled by their interquartile
ranges: zx = I@z{%,k =2,.--,5.

Afterwards, the risk scores and the fixed single predictors are used as independent

variables in a multiple linear regression model for each outcome (here: a lung function index):

Single predictors Genetic RS~ Obesity RS~ Smoking RS Air pollution RS

Finally, the relative importance of all independent variables in this linear model is
calculated with the R function calc.relimp [42], where the relative importance of socio-
economic status (SES) is assessed using the two binary dummy variables as one group.
The relative importance metric Lindeman-Merenda—Gold is used, which decomposes the
coefficient of determination of the model, R?, by averaging sequential R%s over orderings
of regressors [18, chapter 4.7]). The relative contributions given by this metric sum to the
overall R? [42].

All analysis steps are carried out for each bootstrap sample. The results presented in the
following section are thus based on medians and percentiles across the bootstrap samples.
The regression coefficients of the risk scores reflect the change in the outcome for an increase
of one interquartile range of the respective RS and are used to determine significance of
the association. Since the relative contributions of the risk scores are given as percentages,
the corresponding bootstrap confidence intervals lie by definition above zero and cannot
determine significance. All calculations and figures were done using R version 4.0.3 [43],
except for Figure 1, which was produced using Microsoft Office Professional Plus 2019.

3. Results
3.1. Descriptive Analyses of the Outcomes and the Predictors

Descriptive statistics for all outcome and predictor variables are given in Table 1 and
have been calculated for all 547 participants with available genetic and skin aging data and
for 510 participants with available genetic and lung function data.

The two analysis samples differ only slightly in their characteristics. The women
were on average 73 years old at the time of the second follow-up, were on average mildly
overweight (mean BMI: 27 kg/m?) and according to the mean MeDi score of 28.5 their
nutritional habits moderately followed the Mediterranean diet. Only a few women were
current or former smokers (2% and 16%, respectively), but about 33% were exposed to ETS
at home and 42% at work.

3.2. Skin Aging Outcome

For the outcome of facial pigment spots all predictors combined explain 16.90% of
the variance (median total R?, Table 2). As can be seen from the regression coefficients in
Figure 2, the genetic RS and sunbed use are associated with the formation of facial pigment
spots (bootstrap medians, 95% percentile CIs and p-values: 0.29 [0.07, 0.50], p = 0.016;
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0.15 [0.03, 0.29], p = 0.016) with the two highest median relative contributions of 4.15%
and 2.11%.

The contributions of MeDi (1.20%) and air pollution RS (1.14%) seem interesting
for future research according to their regression coefficients (0.11 [—0.01, 0.24], p = 0.064
and 0.16 [—0.04, 0.57], p = 0.132) whereby it is noticeable that stronger adherence to the
Mediterranean diet seems to increase the formation of pigment spots.

Table 2. Relative Contributions (bootstrap median and 95% percentile confidence interval) of the
predictors for pigment spots, as percentages, sorted according to the median.

Predictor Median 95% Confidence Interval
Quwerall 16.90% 8.75%, 28.04%
Genetic RS 4.15% 0.25%, 11.88%
Sunbed use 2.11% 0.09%, 6.97%
Air pollution RS 1.20% 0.04%, 5.76%
MeDi 1.14% 0.04%, 5.11%
SES 0.70% 0.09%, 3.44%
Obesity RS 0.66% 0.04%, 4.59%
SPF 0.59% 0.04%, 3.33%
Skin type 0.58% 0.03%, 3.51%
Age 0.52% 0.04%, 3.37%
Solar radiation RS 0.45% 0.04%, 3.35%
HRT 0.29% 0.03%, 2.41%
Smoking RS 0.29% 0.02%, 2.74%

MeDi: Mediterranean diet; HRT: hormone replacement therapy; RS: risk score; SES: socio-economic status;
SPF: sun protection factor.

Pigment spots

0.6

04

Regression coefficient
0.2
A
—
——

0.0
_
e
b e
e

-0.2

Figure 2. Regression coefficients (bootstrap medians and 95% percentile confidence intervals) of the
predictors for pigment spots. The coefficients reflect the change in the z-score for one unit increase in
the single predictors and one interquartile range increase in the risk scores. MeDi: Mediterranean
diet; HRT: hormone replacement therapy; RS: risk score; SESmed: medium socio-economic status
(reference: low socio-economic status); SEShigh: high socio-economic status (reference: low socio-
economic status); SPF: sun protection factor; * p < 0.05.

3.3. Lung Function Outcomes

All single predictors and risk scores combined explain in median 22.32% of the vari-
ance in FEV; and 23.36% of the variance in FVC (see Tables 3 and 4). The genetic RS
is associated with both lung function parameters according to its regression coefficients
(see Figures 3 and 4; 0.43 [0.20, 0.63], p = 0.01 for FEV; and 0.39 [0.21, 0.59], p = 0.01 for
FVC) with relative contributions of about 11%. The risk scores for genetics, smoking and
obesity are among the top three relative contributors to both outcomes. For FEV the obesity
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(median relative contribution 2.55%) and smoking risk scores (median relative contribution
4.98%) are additionally associated (0.25 [0.04, 0.53], p = 0.01 and 0.14 [0.03, 0.33], p = 0.00),
while for FVC it is only the obesity RS (median relative contribution 5.56%; coefficient 0.29
[0.11, 0.46], p = 0.00). The smoking risk score’s bootstrap median coefficient for FVC is 0.09
with 95% percentile confidence interval [—0.01, 0.24], p = 0.06. It might seem as if the effects
of obesity and smoking are beneficial due to the positive regression coefficients, but the
risk scores” weights are mostly negative so that a larger RS refers to less obesity and less
tobacco smoke exposure.

Table 3. Relative Contributions (bootstrap median and 95% percentile confidence interval) of the
predictors for FEV1, as percentages, sorted according to the median.

Predictor Median 95% Confidence Interval
Quwerall 22.32% 10.87%, 33.57%

Genetic RS 10.99% 2.92%, 23.29%

Smoking RS 5.10% 1.15%, 11.87%

Obesity RS 2.41% 0.17%, 7.62%

SES 0.80% 0.13%, 3.48%

Height 0.45% 0.02%, 2.92%

Air pollution RS 0.36% 0.02%, 2.69%

Age 0.26% 0.04%, 1.85%

FEV;: forced expiratory volume in 1 s; RS: risk score; SES: socio-economic status.

Table 4. Relative Contributions (bootstrap median and 95% percentile confidence interval) of the
predictors for FVC, as percentages, sorted according to the median.

Predictor Median 95% Confidence Interval
Quwerall 23.36% 10.86%, 33.67%
Genetic RS 11.69% 2.80%, 25.11%
Obesity RS 5.62% 1.21%, 12.50%
Smoking RS 1.83% 0.06%, 6.42%
SES 0.90% 0.13%, 3.71%
Air pollution RS 0.42% 0.03%, 3.40%
Age 0.26% 0.03%, 2.58%
Height 0.24% 0.02%, 1.96%
FVC: forced vital capacity; RS: risk score; SES: socio-economic status.
FEV,
53 .
&c; o
@ & > S ) % ) )
© ~<\é'\(§ &@e @\\q 6\\3’ é\Q\Q— \;\@Q‘ _\\OQQ-
S ) 00«\ 00% 6@0 Qo\\\\'
&

Figure 3. Regression coefficients (bootstrap median and 95% confidence interval) of the predictors for
FEV. The coefficients reflect the change in the z-score for one unit increase in the single predictors
and one interquartile range increase in the risk scores. FEV;: forced expiratory volume in 1 s; RS: risk
score; SESmed: medium socio-economic status (reference: low socio-economic status); SEShigh: high
socio-economic status (reference: low socio-economic status); * p < 0.05.
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Figure 4. Regression coefficients (bootstrap median and 95% confidence interval) of the predictors
for FVC. The coefficients reflect the change in the z-score for one unit increase in the single Predic-
tors and one Interquartile Range Increase in the Risk Scores. FVC: forced vital capacity; RS: risk
score; SESmed: medium socio-economic status (reference: low socio-economic status); SEShigh: high
socio-economic status (reference: low socio-economic status); * p < 0.05.

4. Discussion

The proposed approach enables us to quantify the contributions of genetic factors
and various categories of the exposome to a certain outcome in terms of percentages of
explained variance, where each category has been assessed by several (correlated) variables
and combined into one weighted RS.

In these examples, the highest contribution to all aging traits was achieved by the
genetic risk scores comprising the considered SNPs. Apart from the genetic and the obesity
RS and in parts the smoking RS, the environmental risk scores were not associated with the
outcomes. That the lower limit of the confidence interval of the air pollution risk score’s
coefficient is very close to zero in the skin aging example is in line with previous analyses
in the SALIA study, which found associations of air pollution with skin aging [44] when
using single-pollutant models with no need to split off a training sample. One might have
expected to see associations of the aging traits with age (at least for the skin aging outcome,
where the z-score does not account for age). This is probably not only due to the small
sample size, but also due to a small age range of the study participants.

The magnitudes and rankings of the estimated relative importance are quite similar
compared between the two lung function parameters, while there are distinct differences
when comparing the same predictors and risk scores between skin aging and lung function.
The percentage of variance explained by the genetic RS in the skin aging outcome is only
less than half of that in the lung function outcomes. In addition, the smoking risk score’s
relative contribution, for example, ranks very low for skin aging, while it has a top three
ranking for lung function. Thus, awareness campaigns and other measures to reduce the
number of smokers seem more important for reducing lung aging than for delaying skin
aging in the population. Against skin aging it would be more effective to inform about the
negative effects of sunbed use.

Overall, the models were able to explain between 17% and 23% of the different
outcomes’ variances, which is noticeable considering the complexity of the aging processes,
the limited sample size and the fact that further components of the exposome such as stress
or lack of sleep which were not collected in the SALIA study could not be incorporated.
Though the presented example is far from a complete exposome analysis, this investigation
shows that (i) in principle the proposed approach can quantify the extent to which each of
the various categories of the exposome contribute, and that (ii) these relative contributions
vary for different health traits and thus can be ranked.



Int. |. Environ. Res. Public Health 2022, 19, 16746 10 of 13

The approach has some limitations. First, it relies on the calculation of relative contri-
butions via shares of explained variance in a linear regression model and is as a consequence
limited to linear regression. Generalized linear models such as logistic regression for binary
traits are not applicable, since the concept of relative contribution is not (easily) generaliz-
able. This direction is interesting for future research since binary health outcomes are very
common. Second, splitting the available data set into training and test samples does not
only reduce statistical power in the linear regression analysis, but also requires repeated
execution of the fitting process (here: several bootstrap samples) to reduce the randomness
of the partition and the results. This, however, complicates reporting of the results which
have to be averaged. In particular, residual diagnostics are not easily applicable since they
would have to be examined for each bootstrap sample. Yet, there is usually no alternative
to internal weights for the risk scores, since external weights from published studies with
several covariates belonging to the same risk factor category are typically not available
precisely because they are often highly correlated. Third, combining several covariates
in one (weighted) RS certainly leads to loss of information. An alternative would be to
directly report the results of a regularized regression without the formation of risk scores.
However, the aim of this study was to show to which extent each risk factor category con-
tributes to the outcome. To the best of our knowledge, the concept of relative contribution
is not (yet) applicable to regularized regression models. Such an extension is interesting
for future research. In addition, this study is limited to a certain configuration of model
parameters. For example, there might be choices other than o = 0 (ridge regression) in the
elastic net or other regularized regression or machine learning methods, which yield more
appropriate RS weights for our purposes, but a comparison is beyond the scope of this
work. Nevertheless, the presented application and results provide a proof of concept for
the proposed methodology.

5. Conclusions

The combination of risk scores with a measure of relative contribution is suitable to
assess the extent to which various categories of the exposome and genetic factors contribute
to a certain health outcome, and the contributions can not only be compared between
different outcomes, but also between, for example, different ethnic or age groups. In
addition, the exposome’s categories can be ranked according to their relative contribution.
The proposed approach might thus have the potential to improve risk assessment relevant
for human aging traits and beyond, i.e., common human diseases. In this regard it could be
of interest not only to health scientists, but also to governmental institutions, because it
might help to prioritize regulatory decisions limiting exposure to selected environmental
factors and put them on a more solid scientific basis.
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