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Abstract: There exists a need for a simple, deterministic, scalable, and accurate model that captures
the dominant physics of pandemic propagation. We propose such a model by adapting a physical
earthquake/aftershock model to COVID-19. The aftershock model revealed the physical basis for
the statistical Epidemic Type Aftershock Sequence (ETAS) model as a highly non-linear diffusion
process, thus permitting a grafting of the underlying physical equations into a formulation for
calculating infection pressure propagation in a pandemic-type model. Our model shows that the
COVID-19 pandemic propagates through an analogous porous media with hydraulic properties
approximating beach sand and water. Model results show good correlations with reported cumulative
infections for all cases studied. In alphabetical order, these include Austria, Belgium, Brazil, France,
Germany, Italy, New Zealand, Melbourne (AU), Spain, Sweden, Switzerland, the UK, and the
USA. Importantly, the model is predominantly controlled by one parameter (α), which modulates
the societal recovery from the spread of the virus. The obtained recovery times for the different
pandemic waves vary considerably from country to country and are reflected in the temporal
evolution of registered infections. These results provide an intuition-based approach to designing
and implementing mitigation measures, with predictive capabilities for various mitigation scenarios.

Keywords: COVID-19; modelling pandemic; earthquake aftershock model; non-linear diffusion

1. Introduction

The global COVID-19 pandemic demonstrates that modelling the infection propaga-
tion is essential for managing and mitigating its spread and containment [1–3]. Models
describing infections during pandemics can be roughly separated into three categories;
(1) the widely-used SEIR (Susceptible–Exposed–Infected–Removed) model [4–6], and many
of its variations [7,8]; (2) ABM models [9–13]; and (3) models based on reaction-diffusion
processes [14–16]. The SEIR model couples sets of ordinary differential equations con-
strained by numerous variables, including the important (but difficult to constrain [17])
infection rate (R), to produce predictive outcomes. ABM models track up to 6.5 billion
numerical people interacting with and infecting other numerical people based on (un-
certain) rules of human behavior. Other approaches include concepts of self-organized
criticality (SOC) [18], or Monte Carlo simulations [19]. Each of these modelling approaches
contain multiple and sometimes intractable variables [6,17], resulting in large uncertain-
ties in outcomes, thus restricting their utility in guiding local, national, and international
governmental decisions for managing and controlling pandemics.

We propose a different perspective for viewing pandemic propagation and present a
physical and numerical model that we consider simple because it contains fewer parameters.
We view this simplicity as a benefit because uncertainty rapidly grows with parameter
space. Therefore, we adapt a simple model [20] of non-linear fluid pressure diffusion
through a porous media to the COVID-19 problem, which was originally developed to
simulate aftershock sequences of earthquakes with superior fits to data than the well-
known empirical Omori–Utsu Law of aftershocks [21,22]. Since pandemics are large-scale
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epidemics, a physical aftershock model can be viewed as an epidemic/pandemic model.
The basic assumption of the Epidemic Type Aftershock Sequence (ETAS) model is that
aftershocks can generate their own aftershock sequences [23–25]. In this work, we do not
use the formulation for the ETAS model, which is a point-process based on established
empirical laws. Nevertheless, the ETAS reference is still relevant using the following
logic: (1) the point-process ETAS model has been used for decades to match the rate
of aftershocks following large earthquakes. It uses well-established empirical laws to
match data; (2) a physical model [20,26] reproduces aftershock rates at least as well as the
ETAS model; therefore, (3) the physical model is analogous to ETAS even though they
are founded on entirely different formulations. We do not assume ETAS in our model,
but ETAS-type behavior emerges from the underlying physics. We have, thus, adapted
our physical aftershock model to a Pandemic Type Aftershock Sequence (PTAS) model
because infected humans can infect other humans, just as aftershocks can generate their
own daughter aftershocks.

In addition, the physical earthquake/aftershock model showed that aftershock decay
rates are controlled by the tectonic ability to heal co-seismic and post-seismically generated
permeability networks. In the pandemic analog, the decay of infection rates are determined
by the societal ability to suppress infection networks through mitigation measures.

2. Physical Model

Diffusion of fluid pressure in a porous medium is governed by [20,26]:

dP
dt

=
1

φβ
5 ·
[

k
η
5 P

]
+

Q
φβ

(1)

where P is fluid pressure [Pa] above hydrostatic, t is time [s], φ is porosity [-], β is com-
pressibility [Pa−1], k is the permeability [m2], η is fluid viscosity [Pa s], and Q is a source
term [s−1].

In the pandemic analogy, we apply an infection source rate (Si), and calculate the time
evolution of infection pressure (Pi) as it diffuses through societies. Thus, infection pressure
is an abstract quantity that reflects the spread of the virus and can be written as:

dPi
dt

=
1

φβ
5 ·
[

ki
η
5 Pi

]
+

Si
φβ

(2)

where Pi is infection pressure [Pa], t is time [s], φ is a measure of the population distribution
[-], β is compressibility [Pa−1] interpreted as societal compliance, ki is the infection perme-
ability [m2] reflecting the resistance to infection pressure gradients, η [Pa s] is the viscous
term describing the ease of flow (e.g., internal friction), and Si [s−1] is the infection source
rate. We purposely preserve, for clarity, the physical units of the porous media analogy.

The diffusivity κ reflects the rate of infection pressure propagation throughout each country:

κ =
ki

ηφβ
(3)

while permeability is further defined as:

ki = k0e±αjtj (4)

where k0 [m2] is the initial resistance to infection diffusion. A reduction in k0 over a
timescale αj [s−1] reflects the increased resistance to flow in response to mitigation mea-
sures. Note that diffusivity, which is composed of the dynamics of permeability, viscosity,
compressibility, and porosity, accounts for the reduction in usage of public transport, en-
forced shutdowns, mask requirements, and social distancing controlled by αj over the
timescale of tj.



Int. J. Environ. Res. Public Health 2022, 19, 16527 3 of 11

The source term Si is defined in similar way:

Si = Q0e±ζ jtj (5)

where Q0 [s−1] is introduced throughout the domain. Initially, the source term is concen-
trated at airports and major transportation hubs because that is where the virus entered.
The source term takes a positive value when the virus enters the system and a negative sign
in response to mitigation measures. ζ j [s−1] as used in Equation (5) reflects the response of
infection pressure sources based on mitigation measures.

We distinguish between αj (Equation (4)) and ζ j (Equation (5)) to allow for their
exploration independently in future studies, but in this work we assume αj = ζ j to limit
the number of free parameters used to fit the data. Equation (2) is the mathematical
formulation for calculating infection pressure propagation, so P in Equation (2) reflects
the intensity of the virus in the area. When the pressure propagates through the model
and reaches an arbitrary (but constant) critical state, which is defined by a threshold,
numerical infections are triggered, accumulated, and counted. The threshold is derived
from the physical earthquake model. In physical mechanics, the changes in stresses in
each direction are considered to calculate the point of rupture at each time step, which
results in a numerical earthquake. In those studies, we found that the average value
for generating an earthquake is about 1 MPa. In a pandemic analogy, we do not have
tectonic stress fluctuations and assume 1 MPa as the initial threshold. Once the threshold
is reached, i.e., the viral load is higher at a certain point, that grid point is considered
infected. From a physical earthquake perspective, a numerical earthquake can generate
its own earthquakes, known as daughter aftershocks. The chain reaction of infections
is included in our model because the permeability of the nodal grid point where the
numerical infection was triggered is recalculated at each time step. As a result, infection
pressure continues to propagate and causes further infections. The growth and decay of
infections are subsequently controlled by diffusivity, with pressure gradients diffusing
along high diffusivity pathways (e.g., high-speed trains, high population density, etc.). We
compare normalized cumulative numerical infections with the number of reported cases in
each country. The cumulative number of infections in a country can be best modeled by
considering the heterogeneity of the entire system. For example, the transport infrastructure
and population density are included in the diffusivity, which controls the rate of infection
pressure propagation.

All parameters in all simulations were defined a priori and remained unchanged
throughout the simulation, with the exception of αj. We intentionally restricted our param-
eter choices to maintain our analogy with the porous media counterpart, which constrains
permeability, viscosity, and compressibility to limited ranges. The terms αj are included
in both the permeability and source term, and control the permeability changes at the
onset of infection, their recovery, and the amount of source (viral load) over the time
scale. They are our fitting parameters and are constrained by the data for each observed
infection wave. αj in Equations (4) and (5) modulates the system compliance φβ in both the
diffusion and source terms, and dominates the model behavior. The concavity observed
in the data constrains the sign of αj. Conceptually we might decompose β into political
compliance βp and economic compliance to βe because a country’s economic health might
also affect a country’s response. Such a decomposition is analogous to a separation between
fluid compressibility and pore space compressibility in the earthquake model. In this
work, β is unconstrained, so we assume a lumped compressibility with a constant value of
(β = 10−8 Pa−1) for all countries. We use the porosity in the model as a measure of popula-
tion density. We define porosity as φ = 0.5−

(
fs
fc

)
, where fs is the population of a state and

fc is the population of the entire country. The 0.5 term is constrained by demographics and
limits the range of φ to reasonable values of the model’s geological analog (0.2 < φ < 0.49).
For each simulation, we defined parameters φ, k, η, and S, for each state within that country.
Parameter space was extensively investigated, and we arrived at the parameters that best
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matched the data. The initial permeability k0 takes on values of either 10−12m2 or 10−13m2,
with the former applied to high population density and their corresponding transportation
networks, and the latter for sparsely populated regions. The viscous term (η) takes on
values of 10−3 or 10−2 Pa s with the lower value reflecting the degree of public transport
use. As an example, more than 20% of the population in New York and California used
public transport regularly prior to the pandemic and are, thus, assigned η = 10−3 Pa s.
Conversely, the populations of Utah and Oklahoma rarely used public transportation prior
to the pandemic and are, thus, assigned an order of magnitude higher viscosity using
η = 10−2 Pa s. In addition, New York and California also had a higher influx of visitors
prior to the pandemic, so we assume a higher initial permeability k0 = 10−12 m2 compared
to k0 = 10−13 m2 for Utah and Oklahoma. Finally, Q is 10−8 s−1 at points of entry and
10−9 s−1 throughout the remainder of the domain and is mostly the same on average for
all studied cases (Supplementary Figure S3). These values of all parameters were chosen
to mirror (to some degree) their geological analog, and interestingly, the initial values
best-suited for this model of infection pressure propagation have the hydraulic properties
of water and beach sand as their porous media counterpart. Supplementary Table S1 lists
the source of our input for population demographics and the viscous term η, which we
equate to the use of public transportation and the probability of human interaction.

Figure 1 shows the cumulative number of reported cases normalized by the maximum
reported cases for each dataset over 300 days (15 March 2020 to 4 January 2021) for Austria,
Belgium, Brazil, France, Germany, Italy, Melbourne (AU), New Zealand, Spain, Sweden,
Switzerland, UK, and the USA. The data are published by the European Centre for Disease
Prevention and Control (ECDC) [27], which monitors the COVID-19 pandemic. The
Melbourne data were obtained from the Australian government of health and human
services [28]. The data show a very broad range of behavior, which we show below to be
modeled only by varying αj.

Figure 1. Compilation of reported cumulative infections for all cases studied and identified in the
legend. The time range was 15 March 2020 to 4 January 2021 for all countries (Source: ECDC and
Australian Government).

The numerical model used in this study is the same as described in reference [20], with
the addition now of a source term. The source term was also recently incorporated into
the aftershock model and applied to the Central Apennines [26]. It is useful to describe in
detail the model setup for Switzerland as one particular case, which is then applied to all
other simulations. The Swiss Confederation consists of 26 member states, and each state
is implemented with its geographical boundaries. The often-used transportation network
primarily links the major cities of Geneva, Lausanne, Basel, Zurich, and Lugano, and is
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modeled as a highly permeable, low-viscosity channel within the model. Additionally,
significant airport hubs as points of entry, ranked by passengers per year, are included
as groups of nodal points with high infection source rates. These statistics (for 2020)
are provided by the Swiss federal office, which also provides population density and
percentage of public transport use per federal state. At time zero, infection sources at
points of entry develop infection pressure that then diffuses over time along infection
pressure gradients and through highly permeable channels, triggering model infections
along the way. The model setup of the 11 other countries and Melbourne are defined
using this same procedure. This initialization of model geometry establishes domains of
population density, transportation networks, etc., that controls the initial spread of the
virus, and we assign the corresponding parameters (φ, β, k, η, and S). The design of each
model is based on the infrastructure, considering all states as a subunit of each country.
Infections can propagate throughout the model, and the no flow boundary conditions are
applied along all boundaries (e.g., border closures). We numerically solve Equation (2)
using implicit finite differences on a regular grid of 300 × 300 nodal points, and calculate
infection pressure diffusion in the numerical domain associated with each country. In the
aftershock model [20], the triggering threshold is defined by the Mohr–Coulomb failure
condition, but no such similar constraint exists on infection triggering. Therefore, we
arbitrarily set the threshold to 1 MPa for all simulations. When the threshold is reached,
time (ti) in Equations (4) and (5) initiates at that numerical grid point, which influences
subsequent solution of Equation (2). To allow multiple infections at the same nodal point,
we double the threshold necessary to trigger each subsequent infection. Heterogeneity is
inherent in the model through the characteristics of each country.

3. Results

From this input, the initial conditions at the start of each simulation (Figure 2a) are
heterogeneous and approximate at a large scale the overall societal setup. We use a timestep
of one day, which results in a total simulation time of about 2 min on a typical laptop
running a MATLAB script (We also tested timesteps of 430 s, with no change in results).
Our comparisons with data extend to 300 days, which covers the onset of the pandemic
in each country until both virus mutations and the introduction of vaccines modify the
datasets in yet unknown ways.

Figures 2b,c show typical model results for four different countries (see Supplementary
Figures S1 and S2 for the remaining cases). The calculated infection pressure concentrates
in large urban areas (Figure 2b), reflecting high population density and ease of flow (e.g.,
viscosity) but also shows pervasive elevated pressures throughout each country. This figure
visualises the dramatic differences in infection pressure (and thus modeled infections) for
the different countries. Unsurprisingly, the calculated number of cumulative infections also
correlates with population concentration and ease of flow (Figure 2c).

Figure 3 shows the observed cumulative infections (i.e., Figure 1) superposed with
modeled cumulative infections for all countries studied. Good agreement between model
and observations is found for all countries, and model scaling is demonstrated by com-
paring results with observations at the local scale of Melbourne, Australia. We chose
Melbourne, Australia, because they underwent two severe lockdowns. The model success-
fully matches cumulative infection observations for large countries, small countries, and
states. This agreement is observed despite the vast differences in governmental and societal
response, and importantly, good agreement is achieved by modeling the parameter α, with
different values for α chosen to fit the dynamics of COVID-19 propagation (Figure 3a). The
parameter α dominates the model behavior because it modulates the system compliance
φβ that appears in both the diffusion and source terms in Equation (2).
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Figure 2. (a) Model setup for Germany, Italy, Switzerland, and the USA showing the source locations
(red boxes) signifying airports and intercity rail lines (red lines), and the various shades of blue
scale with population density reflecting the “porosity” distribution and delineate federal states.
(b) Calculated infection pressure at the end of the 300 day simulation. Note change in scale bar for
each country because of the very large variations in infection pressure. (c) The number of repeated
infections calculated in the model highlights the regions most affected and shows how elevated
infection pressures (b) continue to generate model infections. Similar plots for all other cases studied
are found in Supplementary Information.
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Figure 3. Comparison of all data (red) in Figure 1 superposed with the corresponding model results
(blue). The data constrains ±α = ±ζ and how this is achieved is demonstrated in (a). The colors in
(a) represent the duration of each phase. Excellent agreement in all cases is observed.

Figure 4 shows time histories of calculated infection pressure Pi and diffusivity κ, for all
cases studied. The diffusivity reflects the rate of infection pressure propagation throughout
each country (3). For intuitive reference the diffusivity of water and beach sand is roughly
15 [m2 s−1], so from a physics perspective, the virus propagates very quickly. The initial
rapid drops in diffusivity reflect pro-active societal response to government measures
in all presented countries. Reduced diffusivity consequently results in rising infection
pressure and pressure gradients, which remain in the system, to then subsequently diffuse
upon relaxation of mitigation measures. Looking at an exemplary EU state (e.g., Austria),
the diffusivity initially decreases to a value of approximately 2 [m2 s−1] in response to
mitigation efforts. Meanwhile, pressure increases over this timescale constrained by ζ
(where ζ = α in this study) in Equation (5), and which subsequently diffuses, resulting in
a mild pressure decrease. A sudden rise in κ correlates with imposition of α2, and, thus,
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the consequent pressure drop, followed by a mild apparent reduction in κ. Imposition of
α3 correlates with mitigation efforts that again reduce κ and increase Pi. This results in
the onset of the 2nd wave, which we model by imposing −α2 that dramatically increases
diffusivity and the consequent reduction in Pi. Finally, α3 reflects additional mitigation
measures, and subsequent waves can be modeled with additional values for α. Note
that infection pressure can continue to increase during the healing process because of the
exponential time-dependence of the source term.

Figure 4. Modeled diffusivity (blue) and pressure time histories (orange) for each individual country
(and Melbourne) showing the hydro-dynamical response to mitigation measures. For reference, the
hydrogeological properties of beach sand and water is roughly 15 m2 s−1.

Figure 5 quantifies the values for α, plotted for intuitive convenience as 1/α [days],
used in the simulations to fit the data (e.g., Figure 3). We note a few important points.
First, Brazil, Sweden, and USA reveal the longest recovery times 1/α1, indicating that
people are exposed to the virus longer. The modeling results show that Italy, Spain, and
the United Kingdom have longer recovery times (slightly more than one month) than
the other EU countries (and Switzerland), where recovery times are approximately less
than two weeks. The fastest recovery times were observed for Austria, New Zealand, and
Melbourne. The acceleration in infections at the onset of the 2nd wave is quantified by
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−1/α2, and shows rapid acceleration in Belgium, USA, Spain, Switzerland, and the UK.
This acceleration during the second wave is explained in the model as the onset of diffusion
(instigated by relaxation of mitigation measures) of latent infection pressure gradients
stored in the system. Finally, α3 reflects the ongoing situation, and may change depending
on governmental measures and societal response. Note that the concavity for New Zealand
at the onset of the second wave (Figure 3i) required +α2, and that Sweden and Brazil had
essentially no recovery from the first wave, so α2 and α3 are essentially zero.

Figure 5. Summary of α values used in the simulations, showing a wide range of recovery times for
different countries. α1 (blue) represents the recovery time of the first wave, α2 (orange) represents the
second wave, and α3 (yellow) represents the recovery of the on-going third wave.

4. Discussion and Conclusions

We presented a simple model for the propagation of infection pressure through soci-
eties and compared model results with global COVID-19 data. We find good agreement
for all cases studied, and importantly, fits to the data are achieved by varying parameter α,
where α is included in the diffusion and source terms in Equation (2) and quantifies the
response to mitigation efforts. The purpose of this work is to present a new formulation of
infection propagation using a deterministic model, and which matches a very wide range
of data using only a few (and intuitive) parameters. The result that only slight variations
in model parameters can reproduce all observations of infection rates across the globe
strongly indicates that this model captures the essence of the physics of pandemics. This
physical deterministic model reproduces the cumulative number of COVID-19 cases in
a dozen countries including an island (New Zealand), and a confined city (Melbourne,
AU) to demonstrate that this model scales. We have shown it to be successful in matching
data for large countries, small countries, and countries with wide ranging social–political–
economic conditions. The model itself is descriptive in that it explains the distribution of
the virus based on different population densities, different numbers of transport options,
and different patterns of public transport use.

Finally, the model suggests that future strategies should be explored for reducing
the latent infection pressure remaining in societies after successful mitigation measures.
Therefore, compressibility, which in physical terms can be divided into fluid and rock
compressibility, can be separated into political and economic compliance. The model
would be capable of predicting the perspective evolution depending on the evolution of
these two compliances. Based on this knowledge and incorporating parameters, such as
political restrictions (e.g., lockdowns, masks, etc.) and vaccination probabilities, into the
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physical notion of compressibility, we can predict the temporal and spatial evolution of
the virus in future studies. Furthermore, the influence of mutations can be addressed
in future modeling, which our findings suggest may be further advanced by invasion
percolation approaches. Once the model has been calibrated against observations (at any
time), parameters can be varied to predict alternative outcomes. This is the utility of
our model because we can simulate different mitigation scenarios to optimize mitigation
measures and bleed-off of infection pressure without overwhelming society.

For a general understanding of our findings, imagine the following: you are sitting
on the beach with a hollow steel pipe, sealed at the bottom but with holes along part of its
length. The part of the pipe with holes is driven into the sand. Water is then poured into the
hollow pipe. The fluid quickly diffuses into the sand (infection propagation), and at rates
that depend on the height of the water column in the steel pipe. At some distance from the
pipe, a metal barrier surrounding the pipe is inserted into the sand (e.g., masks, lockdown,
etc.), and the fluid flow (infection propagation) is curtailed. However, the pressure to
drive the system is still in the pipe, so when lockdowns or mask restrictions are eased,
fluid pressure (infection) quickly propagates (2nd wave), until mitigation measures are
re-applied. Now, imagine further, a number of pipes inserted in the sand (e.g., airports)
scattered across regions. Each system acts independently but interacts dynamically with
all other pipes inserted into the system. In our model, the initial pipes are the airports
and α controls the barriers. With this conceptual understanding, one goal would then
be to establish strategies that bleed off the pressure in the pipe (infection pressure in our
model) during the lockdown/mask phases so that when the restrictions are eased, there
is much less fluid (infection) pressure in the pipe to drive the subsequent wave or waves.
Expanding on this, we can envisage an unlimited number of fluid-filled pipes on an infinite
beach, each linked in a neural network, and use machine learning or artificial intelligence
to predict the optimal scenario for implementing mitigation measures in both space and
time across societies.
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