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Abstract: Active incentives or compensation measures plus conservation, sustainable management of
forests, and enhancement of forest carbon stocks (denoted together as “REDD+”) should be adopted
in developing countries to reduce the greenhouse gas emissions caused by deforestation and forest
degradation. Identification and analysis of the driving forces behind carbon stocks are crucial for the
implementation of REDD+. In this study, the principal component model and the stepwise linear
regression model were used to analyze the social and economic driving forces of stocks in three
important types of forest change: deforestation, forestland transformation, and forest degradation in
China’s tropical rainforests of Xishuangbanna, based on the combination of satellite imagery and
the normalized difference vegetation index. The findings show that there are different key driving
forces that lead to carbon stock changes in the forest land conversion of Xishuangbanna. In particular,
the agricultural development level is the main cause of emissions from deforestation, whereas poor
performance of protection policies is the main cause of emissions from forest degradation. In contrast,
the rural economic development interventions are significantly positive for emissions from forestland
transformation. It is crucial to pay attention to distinguishing the driving forces behind carbon
stock changes from forest degradation, deforestation, and transformation for optimizing REDD+
implementation and ensuring the effectiveness of REDD+.

Keywords: carbon stocks; forest changes; REDD+; socio-economic drivers; effectiveness

1. Introduction

Currently, climate change is one of the most important topics of global concern. In
addition to the natural causes, climate change is also caused by the effects of increased green-
house gas emissions, such as carbon dioxide, due to anthropogenic activities [1–6]. Tropical
rain forests play a key role in coping with the increase in global carbon dioxide levels [7]
because tropical rainforest vegetation contains more carbon than the mid-temperate zone
and frigid zone forests. At present, the carbon released by tropical rain forests due to defor-
estation accounts for 6–15% of the annual global greenhouse gas emissions [8–11]. However,
the Kyoto Protocol, which aims to stabilize greenhouse gas concentrations and achieve
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global carbon emissions reductions, does not cover deforestation [12–14] due to verification
and monitoring issues as well as factors related to additionality and permanence.

The United Nations Climate Change Conference (UNFCCC) in Copenhagen in 2009
agreed upon a program focused on reducing emissions from deforestation and forest degra-
dation plus conservation, sustainable management of forests, and enhancement of forest
carbon stocks (denoted together as “REDD+”) in developing countries through positive
incentives, which could help countries to effectively respond to global climate change by
enhancing forests’ ability for carbon storage [15–18]. Most recently, developing country
parties implementing REDD+ activities are encouraged to complete the Warsaw Framework
for REDD+, which establishes the requirements for obtaining recognition of mitigation
results and for receiving the associated results-based payments, with online safeguard
information systems and submissions of summaries of information to the UNFCCC. The
goal of REDD+ is to raise funds from developed countries to help developing countries
reduce greenhouse gas emissions caused by deforestation. Its core principle involves using
market mechanisms to encourage reduction of the greenhouse gas emissions caused by
deforestation by reducing forest damage and preventing forest degradation while allowing
these countries to obtain corresponding income through the carbon market. Thus, the
key to the implementation of REDD+ lies in the close cooperation and active participation
among international organizations, countries, local governments, local residents, investors,
and carbon traders [19–24]. Although the details of the REDD+ mechanism have not been
finalized, some basic issues have been agreed upon, including deforestation and forest
degradation monitoring report and verification, determination of the carbon emission
reference levels (baselines), compensation standards for opportunity costs, compensation
and financial incentives, and ecological and social benefits brought about by REDD+.

Nowadays, the forests in China are in the fourth place in terms of forest resources
all over the world, which covers 20.6 percent of China’s landmass. Largely due to the
government’s approach of administrative fiat and compulsory land-use zoning, the Chinese
government sharply curtailed commercial timber harvesting in western and northern
provinces. China’s forest cover had increased by approximately 40 million hectares since
the late 1970s by 1998 (with the so-called “logging ban”) [25]. In 2003, the State Forest
Administration began to encourage provinces to experiment with tenure reform and thus
provide an explicit national-level policy framework. More recently, China’s newly revised
Forest Law introduced greater change when it came into force in July 2020. Shifting away
from a focus on timber production, the revised law seeks to balance forest management
to more fully realize the role of forests in providing economic, social, ecological, and
cultural services.

Forest change is a special natural and social phenomenon brought about by changes
to natural attributes and human utilization [26–30]. The natural driving forces generally
relate to the background conditions of forest changes; as no significant changes in this
category occur in a short time, the impact on forest changes is small. Social and economic
driving forces are the most fundamental driving forces for forest utilization change and the
evolution of related carbon stocks. Forest conversion for cattle ranching in the Amazon has
led to around 17% forest loss in populated areas, roads, and rivers for 50 years [31,32]. In
recent years, mahogany, gold, and oil are additional drivers for deforestation and forest
degradation in remote areas of this region [33]. About half of the illegal removal of timber
from forests in East Africa is largely due to fuel wood harvesting [34,35]. In addition, most
of Indonesia’s deforestation is driven by expanding agriculture such as rice, rubber, and
palm oil [36–39]. The identification and analysis of the socio-economic forces driving forest
change form the basis for the implementation of REDD+ projects [40–43].

Xishangbanna has China’s most complete, most typical, and largest tropical rain forest
ecosystem, which comprises 16 percent of China’s total plant diversity [44]. Deforestation
in Xishuangbanna emitted almost 90 million tons of carbon stocks for the period 1976–2003
and will lead to a further 4 million tons of carbon emissions under current deforestation rate
in the next 20 years [45–47]. Such forestland conversion will also cause significant loss of
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biodiversity, substantial soil erosion, and large declines in other ecosystem services, includ-
ing the production of clean water, water conservation, and the supply of non-timber forest
products [48]. As a result, it is important to balance economic growth and conservation
goals for local policy makers in this rapidly developing region.

Due to geographical conditions and economic demands, rubber plantations have
greatly been developed since the 1990s. The large area of tropical rain forest and tropical
monsoon rain forest in Xishuangbanna play a strong role in the formation and retention of
fog and thus alleviates the lack of rainfall during dry season. Such geographical conditions
are conducive to the growth of rubber plantations and various other plantations [49]. On
the other hand, the local government believes that rubber plantations could not only meet
the needs of China’s rapidly industrialized demand but also increase the household income
of farmers. As a result, farmers were encouraged to plant rubber on steep slopes in the
1980s. In the 1990s, the state subsidized the rubber price for farmers as a very stable
income. In the early years of the 21st century, farmers further expanded rubber plantations
under the stimulus of the state [50]. Due to the soaring market price in 2006, the rubber
plantation area in Xishuangbanna reached the limit of 3 million mu [51]. Similar policies
also happened with other plantations in Xishuangbanna, especially tea plantations. Since
the 11th Five-Year Plan, governments at all levels have invested a lot of financial, material,
and human resources in tea plantations [52,53].

Prior studies have generally been conducted in tropical forests in Sub-Saharan Africa,
Pacific Asia, or Latin America and the Caribbean. However, there are only a few studies
where the Xishuangbanna tropical rainforest region in Southwest China forms the focus.
With the increasing regional population pressure, the economically important plantations
expansion (especially rubber plantations and tea plantations) and the economic growth,
the carbon stocks of Xishuangbanna reduced significantly, and to provide practical REDD+
suggestions for the local policy makers through distinguishing the driving forces behind
carbon stock changes from forest degradation, deforestation, and transformation is the
main contribution in this paper. This will benefit optimizing REDD+ implementation and
ensuring the effectiveness of REDD+ in China’s tropical rainforests.

Thus, taking the Xishuangbanna region in China as the research subject, this paper
presents a comprehensive analysis of the driving forces of carbon stocks.

The objectives of the study are as follows:

• Extract land use change information for the period 1992 to 2007 as a baseline for
REDD+ program in Xishuangbanna.

• Describe the social and economic driving forces for emissions from land use changes, with
a particular focus on deforestation, forestland transformation, and forest degradation.

• Identify the roles of socio-economic development, agricultural development level, and
policies in causing carbon stock changes from deforestation, forestland transformation,
and forest degradation.

• Provide a description of the pathway to conservation of existing forests carbon stocks
in the context of REDD+.

2. Materials and Methods
2.1. Study Area

The Xishuangbanna region is home to the majority of tropical forest ecosystems in
China. The topography, climate, and soil of Xishuangbanna are suitable for the growth
and reproduction of various organisms. Moreover, 4500 species of higher plants have
been recorded in Xishuangbanna, accounting for about one-seventh of the total number of
higher plants in China. The native vegetation types include those found in tropical rain
forests, montane rain forests, tropical monsoon forests, subtropical evergreen broad-leaved
forests, deciduous broad-leaved forests, warm coniferous forests, and bamboo forests as
well as shrubs and grasses [54–57]. The species of tropical rain forests are Parashorea chi-
nensis, Canarium Bengalese et al., and the dominant tree species of montane rain forests
are Alstonia scholaris, Paramichelia baillonii et al. [58,59]. Frequent tree species of tropical
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monsoon forests are Bombax ceiba, Ficus altissima et al. [60–62]. The subtropical evergreen
broad-leaved forests have two conspicuous tree layers: the top layer, 15–25 m tall, and
the lower layer, 3–15 m tall. The top layer is dominated by species in the Fagaceae and
Lauraceae and the frequent species in the lower layer are Syzygium tetragonum, Tricalysia fru-
ticose et al. [63]. In recent years, due to the increase in the population, intensification of
anthropogenic activities, the enabling climate, and suitable terrain conditions in the area,
the cultivation of rubber, oil palm, and tea has risen rapidly. Thus, the changes in forestland
have been very dramatic.

2.2. Data Sources
2.2.1. The Procedure Scheme and Interpretation of Land Use Change

This study divides the land use cover in Xishuangbanna region into nine types: forest-
land, shrub, dry land, rubber plantations, paddy fields, wild grassland, construction land,
tea plantations, and other land. We mainly analyze three types of forest change, namely
deforestation, forestland transformation, and forest degradation. Deforestation refers to
the conversion of forestland to dry land, paddy fields, wild grass, construction land, and
other land (facility agricultural land, ridges, saline land, sandy land, bare land, etc.). Forest-
land transformation refers to the conversion of forestland to rubber plantations and tea
plantations, and forest degradation refers to the conversion of forestland to shrubs.

Under the REDD+ financial compensation framework, the baseline could be used to
assess how much emissions reduction would be achieved for compensation via REDD+
implementation compared with the non-implementation scenario. Historical deforestation
periods are often used as REDD+ baselines to define the emissions intensity and scale.
The period of 1992–2007 was the most serious deforestation period in Xishuangbanna.
Therefore, the land use changes for the period were set as the REDD+ baseline to evaluate
the potential carbon emissions reduction in this area.

Due to availability, accessibility, and quality of Landsat data, satellite images of the
study region from 1992, 1999, 2003, and 2007 were used to obtain information on land
use changes (Figure 1). The remote sensing images were sourced from the Landsat7 ETM,
Landsat5 TM, and Terra MODIS NDVI (MOD13Q1) data provided by the Geospatial Data
Cloud (http://www.gscloud.cn, (accessed on 1 October 2022)) of the Computer Network
Information Center of the Chinese Academy of Sciences. The spatial resolution of all
the Enhanced Thematic Mapper/Thematic Mapper (ETM/TM) images was 30 m, and
the product type was L1T (Level 1T standard terrain correction). System radiation and
ground control point geometric corrections were performed, and the terrain correction was
conducted using the digital elevation model. The UTM-WGS 84 Antarctica Polar Projection
was used as the map projection. The ETM+ data in 2007 were repaired using the strip
repair model provided by the Geospatial Data Cloud (http://www.gscloud.cn, (accessed
on 1 October 2022)). Multi-image adaptive local regression was used as the repair method.

The downloaded remote sensing images were transformed into projections and con-
verted to the Albers equal area cut cone standard projections for more accurate calculations
of the areas. The grid analysis tool was used to mosaic the image data of the same year,
following which the administrative boundary of Xishuangbanna was applied as a mask to
crop the image of the Xishuangbanna area.

The terrain of the study area is more complex, and the land cover types are diverse.
Since NDVI quantifies vegetation by measuring the difference between near-infrared
and red light, it is useful in understanding vegetation density for forests, plantations,
and grass to assess changes in land use. As such, the forest areas were separated in the
study using combinations of the ETM + 541 band and the NDVI data. Combining the
ETM + 453 band with the NDVI data helps extract the cultivated land information, while
using the ETM + 743 band can extract the information on the construction land. Preliminary
classification results were obtained based on the selection of the training samples (i.e., area
data that are considered representative of each land use type to be classified) for supervised
classification, and accuracy testing was performed. If the results did not match, the training

http://www.gscloud.cn
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samples were selected once more, and supervised classification and precision testing were
performed in a loop until the minimum error was obtained. Finally, the classification results
were recoded, clumped, and eliminated to remove broken patches with an area of less than
1 ha (10,000 m2) and to unite the smallest unit.
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2.2.2. Socio-Economic Driving Indicators

Among socio-economic driving forces, population, economic development, living
standards, agricultural development level, and agricultural technological progress are the
main forces affecting land use changes. Population, which was about 1.065 million in
Xishuangbanna in 2007, is the most important force and one of the most dynamic forces.
Economic development is the fundamental force since the development of the second
and third industries and the market-oriented allocation of resources increases the demand
for land. Through the diffusion of lifestyles and consuming values, the growth in the
living standard affects land resources redistribution. It is likely that agricultural devel-
opment level and agricultural technological progress will directly lead to a significant
change of the land uses as small subsistence farms are transformed into larger units. There-
fore, 26 driving factors fall into five categories through combining the information on the
socio-economic development of Xishuangbanna from Yunnan Statistical Yearbook [64]
and the forest changes analyzed above (Table 1). Data sources of Yunnan Statistical Year-
book are obtained from annual statistical reports of government, containing the following
18 parts: (1) Survey; (2) National Account; (3) Investment in Fixed Assets; (4) Urban and
Rural Consumption; (5) Public Finance; (6) Foreign Trade; (7) Agriculture and Country;
(8) Industry and Energy; (9) Construction and Real Estate; (10) Transport, Communications
and Service Industry; (11) Banking and Insurance; (12) Tourism; (13) Education, Science,
Technology and Culture; (14) Public Health, Sports and Social Services; (15) Population and
Employment; (16) Resources and Environment; (17) Survey of National Autonomous Area;
(18) Survey of Intra-county Economies.
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Table 1. Selection of socio-economic factors driving forest change in Xishuangbanna.

Number Type Driving Factors (Units)

I Population

V1: Total population at the end of the year (ten-thousand persons)
V2: Non-agricultural population (ten-thousand persons)
V3: Rural labor force (persons)
V4: Number of employees in agriculture, forestry, animal husbandry, and fisheries (persons)

II Economic
development

V5: GDP * (ten-thousand Yuan)
V6: GDP of the primary industries (ten-thousand Yuan)
V7: Revenue (ten-thousand Yuan)
V8: Fiscal expenditure (ten-thousand Yuan)
V9: Total retail sales of social goods (ten-thousand Yuan)
V10: Investment in fixed assets (ten-thousand Yuan)
V11: Highway mileage (km)

III Living standards V12: Year-end balance of savings deposits of urban and rural residents (ten-thousand Yuan)
V13: Per capita net income of farmers (Yuan/person)

IV Agricultural
development level

V14: Total agricultural net output value (ten-thousand Yuan)
V15: Net output value of planting industry (ten-thousand Yuan)
V16: Forestry net output value (ten-thousand Yuan)
V17: Animal husbandry net output value (ten-thousand Yuan)
V18: Net fishery output value (ten-thousand Yuan)
V19: Gross agricultural output (ten-thousand Yuan)
V20: Sown area of main crops ** (ha)
V21: Returning farmland to forests (ten-thousand mu)
V22: Rubber production (t)
V23: Tea production (100 kg)
V24: Food production (t)

V Agricultural
technological progress

V25: Rural electricity consumption (ten thousand kWh)
V26: Fertilizer application (scalar t)

* GDP: Gross domestic product. ** main crops: cereal, beans, and tubers. Source: Yunnan Statistical Yearbook [64].

2.3. Research Method

The first normalization model was used for the standardization. Then principal
component analysis was utilized to retain the main information. Finally, the stepwise linear
regression model was adopted to establish the functions for analyzing drivers of carbon
stock changes from deforestation, forestland transformation, and forest degradation in
Xishuangbanna. Figure 2 is the overall methodological framework for the study.

2.3.1. IPCC Greenhouse Gas Inventory Method

According to IPCC Guidelines on Good Practices in Land Use, Land Use Change and
Forestry [65], the carbon pool includes three sub-pools: live biomass (LB), dead organic mat-
ter (DOM), and soil organic matter (SOM). Among them, LB includes aboveground biomass
(AB) and underground biomass (BB) and DOM includes dead wood (DW) and litter (LT).

The total carbon pool can be expressed as:

CTotal = CLB + CDOM + CSOM (1)

where CTotal is the total carbon pool of land ecosystem; CLB is live biomass carbon pool;
CDOM is dead organic matter carbon pool; CSOM is soil organic carbon pool.

Among them:
CDOM = CDW + CLT (2)

where CDW is dead wood carbon pool; CLT is litter carbon pool.
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Carbon stocks assessment of land use change refers to calculating the changes of LB,
DOM, and SOM:

∆CTotal = ∆CLB + ∆CDOM + ∆CSOM (3)

here, ∆CTotal is the change of total carbon pool (t/a), ∆CLB is the change of carbon pool in
LB (t/a), ∆CDOM is the change of carbon pool in DOM (t/a), and ∆CSOM is the change of
carbon pool in SOM (t/a).

The change of carbon pool in DOM is the sum of the change of DW and LT:

∆CDOM = ∆CDW + ∆CLT (4)

The IPCC inventory method needs to balance the cost and the accuracy of the mea-
surement. For this reason, IPCC has proposed three tiers in terms of measurement methods,
parameters, and data sources. For the REDD+ mechanism, it is necessary to allow certain
uncertainty in the measurement results so as to reduce costs. Researchers have conducted a
lot of work on the carbon cycle of terrestrial ecosystems (such as vegetation carbon density,
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soil carbon storage, and so on) in Xishuangbanna. For example, Zhang Xiuyu et al. studied
the carbon storage of terrestrial vegetation and Li Hongmei et al. studied the carbon storage
and density of soil. In addition, Xiao Ziwei et al. and Pang Jiaping studied the carbon
density of vegetation and soil in tea plantation and rubber. Their research provides an
important reference for the local carbon parameters (Table 2).

Table 2. Parameters in carbon stocks evaluation (ton C/ha).

Land Use Type Soil Carbon
Density

Vegetation
Carbon Density

Total Carbon
Density Source of Data

Forestland 99.57 45.30211 144.8721 ZhangXiuyu, Li Hongmei et al. [66,67]
Shrub 109.2 9.534 118.734 ZhangXiuyu, Li Hongmei et al. [66,67]

Tea plantations 20.662 12.1768 32.8388 Xiao Ziwei [68]
Rubber plantations 104.7 66.79645 171.4965 Pang Jiaping, ShaLiqinget al. [69,70]

wild grassland 60.6 4.935 65.535 Zhang Xiuyu, XieXianli et al. [66,71]
paddy fields 103 0 103 ShaLiqinget al. [70]

dry land 61.9 0 61.9 XieXianli et al. [71]

2.3.2. Normalization Model

Due to the differences in the dimensions of the indexes, obvious differences arise in the
orders of the magnitudes of the indexes. Thus, it is necessary to standardize the indicators
in the index system. This study adopted the normalized method for the standardization,
the formula being:

Y(x) =


0, x ≤ minxi

x−minxi
maxxi−minxi

, minxi < x < maxxi

1, x ≥ maxxi

(5)

where Y(x) is the standardized index data, xi denotes the original data, and max xi and
min xi, respectively, represent the maximum and minimum values of index i in the original
sample data.

2.3.3. Principal Component Model

The following principal component analysis steps were used [72,73]. Suppose A
research areas and B original samples. Matrix X selects the indicators as follows:

X =
(
Xij
)

A ∗ B (6)

where (i = 1, 2, . . . , A; j = 1, 2, . . . , B).
Calculate the correlation coefficient matrix Rb*b between each index, its eigenvalues

(∧1 ≥ ∧b ≥ 0) and normalized eigenvector ej, thus obtaining the principal component Ti.

Ti = Xej (7)

Jolliffe et al. [74] indicated that the cut-off of cumulative 70% variation is common to
retain the principal components (PCs) for analysis. The higher value, which provides a
good approximation of the variation present in the original dataset, was used in this study.
If the variance contribution rate of the j-th principal component is 85–95%, consider the
first q principal components T1, T2, . . . , Tq. Then, this principal component q can be used
to reflect the original index information of B. The contribution rate formula is:

a =
q

∑
i=1

aj (8)
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2.3.4. Stepwise Linear Regression Model

The standardized data of each principal component and various types of land use
areas were used to perform linear regression analysis and determine the main driving
forces affecting the various types of forest changes [75,76]. The linear regression model is
as follows:

Y = β0 + β1T1 + β2T2 + . . . + βnTi (9)

where β0, β1, . . . , βn refer to the standardized data of various types of land use, and
T1, T2, . . . , Ti denote the values of each principal component.

3. Results
3.1. Forests Carbon Stocks

The carbon stocks in Xishuangbanna are shown in Figures 3 and 4. A continuous
decrease in the forest carbon stocks can be observed for the period. The proportion of
carbon stocks decreased from 69.42% to 50.89% at an average annual growth rate of 2.42%,
especially during 2003 to 2007, at an average annual growth rate of 3.26%. In addition, the
carbon stocks in wild grass also showed a downward trend at an average annual growth
rate of 1.21%.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 3. Changes in carbon stocks in Xishuangbanna. 

 

Figure 3. Changes in carbon stocks in Xishuangbanna.



Int. J. Environ. Res. Public Health 2022, 19, 14891 10 of 20

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 3. Changes in carbon stocks in Xishuangbanna. 

 
Figure 4. Change rate of carbon stocks in Xishuangbanna.

The carbon stocks in rubber plantations increased by more than double, from 7.34% in
1992 to 15.45% in 2007, resulting in an average annual growth rate of 4.49%. However, the
annual growth rate of rubber plantations showed a slowing trend. The carbon stocks in
tea plantations showed an overall upward trend as its proportion increased from 0.41% in
1992 to 0.88% in 2007. Thus, it increased at an average annual rate of 7.43%, faster than the
case for rubber. Notably, from 2003 to 2007, the annual change rate of the carbon stocks in
tea plantations was as high as 14.98%, indicating the continued growth trend. From 1992
to 2003, the proportion of forestland stocks converted to rubber plantations fell sharply,
followed by a rapid rise, almost reaching the original level. Simultaneously, the proportion
of forestland stocks converted to tea gardens increased. On the whole, the forests stocks
were mainly converted into rubber plantations, whereas the proportion converted to tea
gardens was small, albeit showing a rapidly increasing trend. This analysis indicates that
the growth rate of rubber plantations has slowed down and that while the area diverted for
tea gardens is small, its growth has been quite rapid. Thus, it is likely that more carbon
stocks in forestland will be diverted to tea plantations in the future.

The carbon stocks in shrub land continued to increase; its proportion equaled 13.36%
in 1992 and increased to 23.21% by 2007, translating to an average annual growth rate of
3.93%. This growth trend continues to increase. The increase of carbon stocks in 2003–2007
was 1.56 times those in 1999–2003 and 1.32 times those in 1992–1999. On the whole, the
forest degradation in the study area is becoming increasingly severe.

Combining the abovementioned information on deforestation, forestland transforma-
tion, and forest degradation from 1992 to 2007, the carbon stocks in forestland continued
to reduce at an accelerated pace, and the deforestation phenomenon was the most severe
during the period 2003 to 2007. Most of the existing forestland was cut down and developed
into cultivated land, transformed into rubber plantations, or replaced by secondary shrub
forests and woodland pastures due to the degradation of the forest ecosystem.

3.2. Results of the Principal Component Analysis

As explained previously, although the socio-economic driving forces of forest change
were divided into five categories, different degrees of correlation exist between indicators
belonging to the same category and those belonging to other categories. In other words,
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direct analysis of the data of the 26 indicators of the five major socio-economic driving
factors is too complicated, and it may not be possible to obtain correct results due to
the problems posed by multi-collinearity. Thus, in this study, the 26 indicators of the
five major social and economic driving factors were first analyzed to extract independent
comprehensive indicators. Then, the standardized socio-economic data from 1992 to
2007 were analyzed to obtain the characteristic values, contribution rates, and cumulative
contribution rates of each principal component (Table 3) and the principal component
loading matrix (Table 4).

Table 3. Eigenvalues and principal component contribution rates.

Composition Eigenvalue Contribution Rate (%) Cumulative
Contribution Rate (%)

1 18.940 72.845 72.845

2 2.881 11.081 83.925

3 1.828 7.030 90.955

4 1.087 4.181 95.136
Note: To extract the number of principal components, the first n principal components whose feature values
corresponding to the principal component is greater than 1 was considered.

Table 4. Principal component loading matrix.

Socio-Economic
Driving Factors

Composition Socio-Economic
Driving Factors

Composition

1 2 3 4 1 2 3 4

V1 0.881 0.055 −0.437 −0.114 V14 0.976 −0.026 0.018 0.125
V2 0.851 −0.192 0.264 −0.24 V15 0.719 0.075 −0.66 −0.144
V3 0.939 −0.288 0.16 0.004 V16 0.938 −0.24 −0.046 0.159
V4 0.931 −0.318 0.131 −0.01 V17 0.595 0.72 0.227 −0.137
V5 0.987 −0.059 0.075 −0.004 V18 0.83 0.345 0.142 −0.262
V6 0.975 0.107 −0.061 0.115 V19 0.907 0.031 −0.406 −0.046
V7 0.742 0.245 0.377 0.103 V20 0.005 0.929 0.262 0.105
V8 0.966 −0.197 0.079 −0.06 V21 0.663 0.124 −0.202 0.689
V9 0.991 −0.051 0.056 −0.002 V22 0.727 0.288 0.119 0.466
V10 0.819 0.125 −0.519 −0.061 V23 0.948 0.17 −0.184 0.026
V11 0.803 −0.415 0.377 −0.088 V24 0.449 0.748 −0.075 −0.309
V12 0.985 −0.135 0.035 0.01 V25 0.957 −0.187 0.163 −0.027
V13 0.939 0.093 0.295 −0.037 V26 0.964 −0.197 −0.013 −0.158

As per Table 3, the eigenvalues of the first, second, third, and fourth principal com-
ponents are greater than 1, and their cumulative contribution rate reaches 95.14%. These
values met the analysis requirements. Therefore, only the first, second, third, and fourth
principal components were selected for the study as they comprehensively reflected the
status of Xishuangbanna’s social and economic drivers.

The following important points can be drawn from Table 4:
V1 to V16, V18, V19, V22, V23, V25, and V26 are significantly positively correlated to

the first principal component. These indicators reflect the importance of economic develop-
ment, living standards, agricultural technology, population, and agricultural development
and structure. Thus, the first principal component is associated with the majority of the
socio-economic development indicators.

V17, V20, and V24 are significantly positively correlated to the second principal
component, reflecting the importance of the agricultural development level. Thus, the
second principal component is associated with the agricultural development level.

V10 and V15 are highly negatively correlated with the third principal component,
reflecting the adverse effects of living standards and economic development on forests.
Thus, the third principal component is associated with the agricultural development level
and economic development.
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The fourth principal component is highly correlated with V21, reflecting the importance
of afforestation. Thus, the fourth principal component is associated with policy interventions.

3.3. Results of the Stepwise Linear Regression Model

Each principal component was expressed as a linear combination of each driving
index variable using the principal component loading matrix. The value of each principal
component was thus obtained. Then, the value of each principal component and vari-
ous types of land use areas (standardized data) were used to perform a stepwise linear
regression analysis to obtain the main driving forces affecting forest change. Table 5 shows
the results of the stepwise linear regression analysis and Figure 5 shows residuals versus
predicted values.

Table 5. Results of the stepwise linear regression analysis of factors driving land use change in
Xishuangbanna and their residuals versus predicted values.

Land Use Types Regression Equation R2 VIF p-Value RMSE

forestland Y = 1.007− 0.57X1 + 0.002X2 + 0.223X4 0.902 1.000 0.015 0.002
shrub Y = 0.02 + 0.06X1 − 0.096X2 − 0.302X4 0.811 1.000 0.024 0.001

dry land Y = 0.26− 0.042X1 + 0.557X2 − 0.028X4 0.914 1.000 0.019 0.003
paddy fields Y = 0.169 + 0.061X1 − 0.372X2 + 0.636X4 0.801 1.000 0.035 0.002

rubber plantations Y = −0.078 + 0.053X1 + 0.103X2 + 0.307X4 0.852 1.000 0.009 0.002
tea plantations Y = 0.213 + 0.061X1 − 0.291X2 − 0.876X4 0.831 1.000 0.041 0.001
wild grassland Y = 1.123− 0.03X1 − 0.482X2 + 0.052X4 0.752 1.000 0.009 0.002

construction land Y = 0.016 + 0.054X1 + 0.051X2 − 0.603X4 0.803 1.000 0.017 0.003
other land Y = 0.112 + 0.042X1 + 0.243X2 − 1.276X4 0.821 1.000 0.035 0.002

Note: X1, X2, and X4 are the first principal component (related to socio-economic development indicators), the
second principal component (related to the agricultural development level), and the fourth principal component
(related to policy interventions). Y is the land use change area. VIF: variance inflation factor. RMSE: root
mean-square error.

3.3.1. Forces Driving Deforestation

The regression analysis shows that the area categorized as dry land is not significantly
negatively correlated to socio-economic development, policy interventions, and other
factors. However, it is significantly positively correlated to agricultural development and
structure. Moreover, 20 to 30% of the reduction in the forestland area was converted to
cultivated land.

The regression equation for paddy fields shows that this area is not significantly
positively correlated with socio-economic development, is negatively correlated with agri-
cultural development and structure, and is significantly positively correlated with policy
interventions. This shows that socio-economic development has little impact on paddy
fields areas, whereas the opposite is true of policies, which can have important impacts on
the protection of farmland and paddy field areas. Furthermore, suitable policies can effec-
tively limit erosion by encouraging the growth of paddy fields and inhibiting deforestation.

The regression equation for wild grass shows that the area covered by wild grass is
not significantly negatively correlated with socio-economic development and not signifi-
cantly positively correlated with policies, but it is significantly positively correlated with
agricultural development and structure. The net output value of animal husbandry is the
main driving factor in the agricultural development level, indicating that animal husbandry
development is conducive to the growth of barren grasslands. Thus, attention should be
paid to adjusting the agricultural structure by fostering forestry development, increasing
forestry output value, and inhibiting deforestation.
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Figure 5. The results of regression standardized residual versus regression standardized predicted
values are shown in the figure above. It can be seen that the residuals of each regression equation are
randomly distributed around the interval of (−2, 2), and thus the residuals meet normality and inde-
pendence. As a result, these stepwise linear regression equation models pass significance inspection.

The regression equations for construction land and other land show that these areas are
not significantly positively correlated with socio-economic development and agricultural
development and structure, but they are significantly negatively correlated with policy
interventions. Thus, suitable policies can effectively limit the diversion of forestland to the
expansion of construction land and other land.

Based on the above information, the most effective measures to suppress deforesta-
tion involve adjusting the agricultural structure, promoting forestry development, and
formulating strict forest protection policies.

3.3.2. Forces Driving Forestland Transformation

It is worth noting that the regression equation for rubber plantations shows that
this land area is positively correlated to socio-economic development and agricultural
development and structure, but the correlations are not significant. However, the correlation
to policy interventions is significantly positive. Rubber is an important strategic material in
China, and it was introduced to Xishuangbanna in 1948. After the creation of the People’s
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Republic of China, the government vigorously supported rubber cultivation and opened
several state-owned farms. In 1982, the state government followed the recommendations
of the national rural economic policy and allowed the private development of rubber. The
local and central governments provided strong policy support. For example, from 1982
to 1983, 1.786 million yuan were devoted to convert farmlands into rubber plantations.
The Agricultural Bank of China and the Xishuangbanna Central Branch provided loans
worth 2.3 million yuan to support private rubber production in the whole state. Since then,
rubber cultivation has developed very rapidly and in catastrophic yearly proportions in
Xishuangbanna. Large areas of natural forest were felled and replaced by rubber plantations.
In 1998, the Chinese government began to promote natural forest protection projects by
restricting the expansion of rubber plantations to some extent. In 2002, Xishuangbanna
began to implement projects converting cropland to forestland. As an economic forest
species, however, rubber plantations enjoy subsidies. Since 2006, Xishuangbanna Prefecture
has provided subsidies for improving rubber varieties, and since 2007, it has completed
technical training for 10,000 rubber plantation farmers every year. This shows that rubber
cultivation is closely supported by local policies.

The regression equation for tea plantations shows that this land area is not signifi-
cantly positively correlated with socio-economic development, but a significant negative
correlation exists with policy interventions. In other words, restricting the conversion of
forestland into tea gardens is only possible by an effective strengthening of policies.

3.3.3. Forces Driving Forest Degradation

The regression equation for shrubs shows that this area is not significantly positively
correlated with socio-economic development and not significantly negatively correlated
with agricultural development and structure. However, it is significantly negatively cor-
related with policy interventions. Forest degradation is not only an important evaluating
aspect of sustainable forest management but also a comprehensive reflection of a series
of environmental, economic, and ecological issues. The shrub area increased at the cost
of decreasing forest land coverage in the study area. From 1992 to 2007, the shrub area
increased by more than twofold, which is the embodiment of the decline of forest quality
in the forest structure [77]. Farmers in Xishuangbanna tended to replace natural forests
with shrub to increase economic income. Approximately half the reduction in forested
land is attributable to conversion to shrubs, leading to serious degradation of the forest
ecosystem. Thus, strengthening protection via policy interventions can effectively suppress
forest degradation.

4. Discussion

The following was discussed based on the abovementioned analyses:

(1) Previous studies [78–80] indicated that rubber plantations and tea plantations re-
placed Xishangbanna’s most biodiverse native forests due to local priority policies.
National policies to protect native forests from clearance and overexploitation, or to
encourage reforestation, are interpreted at a local level by county and village officials.
Local governments, whose major objectives are improving the local economy and
eradicating poverty, are promoting rubber plantations and tea plantations as a means
to diversify smallholder incomes. Results from our study support such remarks.
The regression equation for rubber plantations shows that the correlation to policy
interventions is significantly positive. Furthermore, the model also shows that re-
stricting the conversion of forestland into tea gardens is only possible by an effective
strengthening of policies.

(2) REDD+ provides a useful mechanism for forest-related carbon sequestration and,
thus, can contribute to controlling rising CO2 levels and help mitigate global warming.
As all of REDD’s current programs have been implemented in countries in or near
the tropics, the Xishangbanna region plays an important role for China involving
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REDD+. In this region, China can make contributions to REDD+ through stopping
deforestation and forest degradation to reduce emissions.

(3) Direct drivers of deforestation and forest degradation refer human activities or imme-
diate actions that directly impact forest cover and loss of carbon. The most important
direct driver is agriculture expansion, which has been identified as the key driver of
deforestation in the tropics in the 1980s and 1990s [81–83]. In Xishangbanna, our study
shows that 20 to 30% of the reduction in forestland was attributable to conversion to
cultivated land. Moreover, due to the huge economic benefits of rubber plantations
and the national policy support provided to them, the area under these plantations
continues to grow at an annual rate of 6.88% [84–86].

(4) The direct drivers are considered separately for deforestation and forest degradation [87].
As mentioned above, agriculture expansion is considered as the direct driver of
deforestation in Xishuangbanna, while activities such as logging, uncontrolled fires,
livestock grazing in forests, and fuel wood collection and charcoal production are
considered to be drivers of forest degradation. Our study reveals that in each set
of analyzed years, 40% to 50% of the reduction in forested land was attributed to
conversion to shrub and grassland due to the degradation of the forest ecosystem.

(5) Rademaekers et al. [88] indicate that poor governance, corruption, low capacity of
public forestry agencies, land tenure uncertainties, and inadequate natural resource
planning and monitoring can be important underlying factors for deforestation and
forest degradation. This is especially true in Xishuangbanna. Imperfect forestland
protection policies have led to problems in the forestry management system, and thus,
the forestland cannot be fully protected [89]. For example, rubber is an economic
forest species, and the activities concerning these plantations are classified as returning
farmland to forestland. However, the conversion of forestland into rubber plantations
has degraded the forest ecosystem to a certain extent. In addition, the lack of clear
property rights associated with forestry resources serve as major barriers in forestry
management in Xishuangbanna [90]. For instance, rampant smuggling of timber due
to collusion between the staff of the forestry department and illegal elements has been
reported [91]. These aspects point to the failure to fully protect forested land.

(6) Gregersen et al. [92] indicate that opportunity costs can be a starting point to deter-
mine appropriate levels of funding to stem driver activity. Ecofys also indicates that
opportunity costs approach should complement efforts to address underlying drivers
and enabling factors, including strengthening governance or bundling incentives [93].
In Xishangbanna, in an effort to protect forest resources, a large number of people
have been forced to return farmland for reconversion to forestland. This has affected
farmers’ incomes negatively, and thus, their enthusiasm for protecting forestry has
decreased [94–96]. In view of this, the government should establish an effective con-
nection mechanism between farmers returning farmland to forests and the market
to resolve the ironic contradictions that farmers typically face in this regard. The
government should also adopt a public expenditure policy to economically promote
such conversions while expanding employment and raising farmers’ incomes.

(7) Recently, restoration efforts in Xishuangbanna are increasingly being used to combat
tropical rainforests loss. The Xishuangbanna government has implemented different
ecological protection policies and measures at different stages of development. In
2007, the Forestry Development Plan of Xishuangbanna during the 11th Five-Year
Plan was specially prepared according to national forestry laws and regulations. On
29 June 2018, the People’s Government of Yunnan Province enacted the Ecological Pro-
tection Red Line of Yunnan Province, which included three types of red lines, namely,
biodiversity maintenance, water conservation, and water and soil conservation in
11 sub-regions. Among them, the ecological protection red line of tropical forest
biodiversity maintenance at the southern border covered five prefectures and cities,
including Xishuangbanna. In 2021, the People’s Government of Yunnan Province is-
sued the Opinions on the Comprehensive Implementation of the Forest Chief System,
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which required strengthening the protection of ecological resources, accelerating the
ecological restoration of forest and grassland resources, and deepening the reform in
forest and grassland planning [97]. With the implementation of ecological protection
policies in Xishuangbanna in recent years, the forest coverage of the whole region has
increased to 81.34% in 2020, while the ecological environment has also been greatly
improved [98].

(8) Landsat-5 and Landsat-7 were operated from 1984 to 2013 and from 1999 to now,
respectively. Due to the availability, accessibility and quality of Landsat data, satel-
lite images of Landsat-5/7 TM and ETM+ from 1992, 1999, 2003, and 2007 were
used to obtain information on land use changes. At present, the gradual aging
of the sensor characteristics and the satellite’s orbit positioning accuracy may lead
to a certain degree of decline in the radiation accuracy and geometric positioning
accuracy for the current imageries of Landsat-5 and Landsat-7 [99]. The latest in-
orbit Landsat-9 is equipped with the second-generation Land Imager (OLI-2) and
the second-generation Thermal Infrared Imager (TIRS-2), which have improved the
radiation resolution and SNR (signal-to-noise ratio) significantly [100–102]. Further-
more, Landsat-9 and Landsat-8 can be used for collaborative and complementary
observation. Such temporal resolution of 8d can effectively promote the ecologically
monitoring capability [103]. Therefore, in future studies Landsat data with higher tem-
poral resolution and higher spatial resolution can contribute to improve the accuracy
of the model in Xishuangbanna.

5. Conclusions

In summary, the identification and analysis of the forces driving forest change in
Xishuangbanna show that it is crucial to apply the REDD+ framework to stop deforestation
in the area and to restore the degraded forests. As tropical forests continue to be cut down
and the area converted to other land use types, the carbon storage of vegetation in the
Xishuangbanna region has also shown a downward trend, with its distribution pattern
changing from a random discrete distribution to an aggregated one. The core forest area
has decreased over time; the number of patches has decreased, as has the distance between
them. Significant changes have taken place in the forest landscape structure, and the
tendency for landscape fragmentation is evident [104]. Increased soil erosion causes further
degradation of the land, resulting in the sedimentation of rivers and lakes, in turn reducing
the ability of forests and soil to control floods [105]. These aspects have seriously affected
the service functions of forest ecosystems, including that in the study area. Application
of the REDD+ framework will not only help increase the carbon storage level but will
also bring many ecological benefits, ultimately enhancing China’s ability to respond to
climate change.

Author Contributions: Conceptualization, H.L.; methodology, G.L. and C.Z. (Chuanrong Zhang);
formal analysis and investigation, J.L. and Y.Z.; resources, G.L.; data curation, G.L., L.R., C.Z.
(Cheng Zhang), C.Z. (Chuanrong Zhang) and J.W.; writing–original draft preparation, H.L. and G.L.;
writing– review and editing, H.L.; project administration, H.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This study is under the auspices of the National Natural Science Foundation of China
(42071267, 41371525), the Program for Innovative Research Team (in Science and Technology) with the
University of Henan, Henan Province (21IRTSTHN008) and the Scientific and Technological Research
Projects in Henan Province (222102320472).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Environ. Res. Public Health 2022, 19, 14891 17 of 20

References
1. Noble, I.R.; Apps, M.J.; Houghton, R.A.; Lashof, D.A.; Makundi, W.; Muraiyarso, W.; Murray, B.; Sombroek, W. Land Use,

Land-Use Change, and Forestry. In Special Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007.
2. Solomon, S.D.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Climate Change 2007: The

Physical Science Basis Contribution of Working Group Contribution to the Fourth Assessment Report of the IPCC; Cambridge University
Press: Cambridge, UK, 2007; ISBN 978-0521-88009-1.

3. Bahir, M. Climate Change Effect on Groundwater Characteristics within Semi-Arid Zones from Western Morocco. Groundw.
Sustain. Dev. 2020, 11, 100380. [CrossRef]

4. Gawith, D.; Hodge, I.; Morgan, F.; Daigneault, A. Climate change costs more than we think because people adapt less than we
assume. Ecol. Econ. 2020, 173, 106636. [CrossRef]

5. Liang, J.Y.; Xia, J.Y. Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental
warming. J. Plant Ecol. 2013, 6, 437–447. [CrossRef]

6. Lin, D.; Xia, J.; Wan, S. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytol. 2010, 188,
187–198. [CrossRef] [PubMed]

7. Achard, F.; Eva, H.D. Determination of Deforestation Rates of the World’s Humid Tropical Forests. Science 2002, 297, 999–1002.
[CrossRef]

8. Wu, H.; Ding, J.Q. Global Change Sharpens the Double-Edged Sword Effect of Aquatic Alien Plants in China and Beyond. Front.
Plant Sci. 2019, 787. [CrossRef]

9. Wang, X.L.; Fu, S.L. Forest Soil Profile Inversion and Mixing Change the Vertical Stratification of Soil CO2 Concentration without
Altering Soil Surface CO2 Flux. Forests 2019, 10, 192. [CrossRef]

10. Ramankutty, N.; Gibbs, H.K.; Achard, F.; DeFries, R.S.; Foley, J.A.; Houghton, R.A. Challenges to estimating carbon emissions
fromtropical deforestation. Glob. Change Biol. 2007, 13, 51–66. [CrossRef]

11. Sagar, R.; Li, G.Y. Carbon fluxes and species diversity in grazed and fenced typical steppe grassland of Inner Mongolia, China.
J. Plant Ecol. 2019, 12, 10–22. [CrossRef]

12. Beymer-Farris, B.A.; Bassett, T.J. The REDD menace: Resurgent protectionism in Tanzania’s mangrove forests. Glob. Environ.
Change 2012, 22, 332–341. [CrossRef]

13. Korhonen-Kurki, K.; Sehring, J.; Brockhaus, M.; Gregorio, M.D. Enabling factors for establishing REDD+ plus in a context of
weak governance. Clim. Policy 2014, 14, 167–186. [CrossRef]

14. Danielsen, F.; Adrian, T.; Brofeldt, S.; van Noordwijk, M.; Poulsen, M.K.; Rahayu, S. Community monitoring for REDD+ plus:
International promises and field realities. Ecol. Soc. 2013, 18, 41. [CrossRef]

15. Roopsind, A.; Sohngen, B.; Brandt, J. Evidence that a national REDD+ program reduces tree cover loss and carbon emissions in a
high forest cover, low deforestation country. Proc. Natl. Acad. Sci. USA 2019, 116, 24492–24499. [CrossRef]

16. Xia, X.; Ruan, J.; Juan, Z.; Shi, Y.; Wang, X.; Chan, F.T.S. Upstream-Downstream Joint Carbon Reduction Strategies Based on
Low-Carbon Promotion. Int. J. Environ. Res. Public Health 2018, 15, 1351. [CrossRef]

17. Angelsen, A.; Brockhaus, M.; Kanninen, M.; Sills, E.; Sunderlin, W.D.; Wertz-Kanounnikoff, S. Realising REDD+: National Strategy
and Policy Options (CIFOR); Center for International Forestry Research: Bogor, Indonesia, 2009; ISBN 978-6-02-869303-5.

18. Angelsen, A.; Brockhaus, M.; Sunderlin, W.D.; Verchot, L.V. Analysing REDD+: Challenges and Choices; Center for International
Forestry Research: Bogor, Indonesia, 2012; pp. 69–90. [CrossRef]

19. Lu, H.L.; Liu, G.F.; Zhang, C.R.; Okuda, T. Approaches to Quantifying Carbon Emissions from Degradation in Pan-tropic
Forests-Implications for Effective REDD Monitoring. Land Degrad. Dev. 2020, 31, 1890–1905. [CrossRef]

20. Bayrak, M.M.; Marafa, L.M. Ten Years of REDD+: A Critical Review of the Impact of REDD+ on Forest-Dependent Communities.
Sustainability 2016, 8, 620. [CrossRef]

21. Kaimowitz, D.; Angelsen, A. Economic Models of Tropical Deforestation: A Review; Center for International Forestry Research: Bogor,
Indonesia, 1998; p. 139. ISBN 979-8764-17-X.

22. Luttrell, C.; Loft, L.; Gebara, M.F.; Kweka, D.; Brockhaus, M.; Angelsen, A.; Sunderlin, W.D. Who should benefit from REDD+?
Rationales and realities. Ecol. Soc. 2013, 18, 52. [CrossRef]

23. Rey, D.; Roberts, J.; Korwin, S.; Rivera, L.; Ribet, U. A Guide to Understanding and Implementing the UNFCCC REDD+ Safeguards: A
Review of Relevant International Law; Client Earth: London, UK, 2013.

24. Fletcher, R.; Dressler, W.; Büscher, B.; Anderson, Z.R. Debating REDD+ and its implications: Reply to Angelsen et al. Conserv. Biol.
2017, 31, 721–723. [CrossRef]

25. Xu, J.; White, A.; Lele, U. China’s Forest Tenure Reforms: Impacts and Implications for Choice, Conservation, and Climate Change.
2010. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwigspDd2
KX7AhXazzgGHc3yB4gQFnoECA8QAQ&url=https%3A%2F%2Frightsandresources.org%2Fwp-content%2Fexported-pdf%
2Fxu44whitelelechina39sforesttenurereformsreport.pdf&usg=AOvVaw3EauvorcoYxizfIMOi7wdR (accessed on 1 October 2022).

26. Chelli, S.; Ottaviani, G.; Simonetti, E.; Wellstein, C.; Canullo, R.; Carnicelli, S.; Andreetta, A.; Puletti, N.; Bartha, S.; Cervellini, M.;
et al. Climate is the main driver of clonal and bud bank traits in Italian forest understories. Perspect. Plant Ecol. Evol. Syst. 2019,
40, 125478. [CrossRef]

27. Mitra, A. Salinity: A primary growth driver of mangrove forest. J. Sustain. Forest. 2018, 1. [CrossRef]

http://doi.org/10.1016/j.gsd.2020.100380
http://doi.org/10.1016/j.ecolecon.2020.106636
http://doi.org/10.1093/jpe/rtt003
http://doi.org/10.1111/j.1469-8137.2010.03347.x
http://www.ncbi.nlm.nih.gov/pubmed/20609113
http://doi.org/10.1126/science.1070656
http://doi.org/10.3389/fpls.2019.00787
http://doi.org/10.3390/f10020192
http://doi.org/10.1111/j.1365-2486.2006.01272.x
http://doi.org/10.1093/jpe/rtx052
http://doi.org/10.1016/j.gloenvcha.2011.11.006
http://doi.org/10.1080/14693062.2014.852022
http://doi.org/10.5751/ES-05464-180341
http://doi.org/10.1073/pnas.1904027116
http://doi.org/10.3390/ijerph15071351
http://doi.org/10.17528/cifor/003805
http://doi.org/10.1002/ldr.3333
http://doi.org/10.3390/su8070620
http://doi.org/10.5751/ES-05834-180452
http://doi.org/10.1111/cobi.12934
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwigspDd2KX7AhXazzgGHc3yB4gQFnoECA8QAQ&url=https%3A%2F%2Frightsandresources.org%2Fwp-content%2Fexported-pdf%2Fxu44whitelelechina39sforesttenurereformsreport.pdf&usg=AOvVaw3EauvorcoYxizfIMOi7wdR
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwigspDd2KX7AhXazzgGHc3yB4gQFnoECA8QAQ&url=https%3A%2F%2Frightsandresources.org%2Fwp-content%2Fexported-pdf%2Fxu44whitelelechina39sforesttenurereformsreport.pdf&usg=AOvVaw3EauvorcoYxizfIMOi7wdR
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwigspDd2KX7AhXazzgGHc3yB4gQFnoECA8QAQ&url=https%3A%2F%2Frightsandresources.org%2Fwp-content%2Fexported-pdf%2Fxu44whitelelechina39sforesttenurereformsreport.pdf&usg=AOvVaw3EauvorcoYxizfIMOi7wdR
http://doi.org/10.1016/j.ppees.2019.125478
http://doi.org/10.24294/sf.v1i2.191


Int. J. Environ. Res. Public Health 2022, 19, 14891 18 of 20

28. Rezende, C.L.; Fraga, J.S.; Sessa, J.C.; Souza, G.V.P.; Assad, E.D.; Scarano, F.R. Land use policy as a driver for climate change
adaptation: A case in the domain of the Brazilian Atlantic forest. Land Use Policy 2018, 72, 563–569. [CrossRef]

29. Cao, L.; Li, J.; Ye, M.; Pu, R.; Liu, Y.; Guo, Q.; Feng, B.; Song, X. Changes of Ecosystem Service Value in a Coastal Zone of Zhejiang
Province, China, during Rapid Urbanization. Int. J. Environ. Res. Public Health 2018, 15, 1301. [CrossRef] [PubMed]

30. FAO. Global Forest Resources Assessment 2010: Country Report; Food and Agriculture Organization of the United Nations: Rome,
Italy, 2010.

31. Staal, A.; Flores, B.M.; Aguiar, A.P.D.; Bosmans, J.H.C.; Fetzer, I.; Tuinenburg, O.A. Feedback between drought and deforestation
in the Amazon. Environ. Res. Lett. 2020, 15, 044024. [CrossRef]

32. Ferrante, L.; Fearnside, P.M. The Amazon’s road to deforestation. Science 2020, 369, 634. [CrossRef]
33. Reydon, B.P.; Fernandes, V.B.; Telles, T.S. Land governance as a precondition for decreasing deforestation in the Brazilian Amazon.

Land Use Policy 2020, 94, 104313. [CrossRef]
34. Bamwesigye, D.; Doli, A.; Hlaváková, P. REDD+: An Analysis of Initiatives in East Africa Amidst Increasing Deforestation. Eur. J.

Sustain. Dev. 2020, 9, 224–237. [CrossRef]
35. Pelletier, J.; Ngoma, H.; Mason, N.M. Does smallholder maize intensification reduce deforestation? Evidence from Zambia. Glob.

Environ. Chang. 2020, 63, 102127. [CrossRef]
36. Nurrochmat, D.R.; Boer, R.; Ardiansyah, M.; Immanuel, G.; Purwawangsa, H. Policy forum: Reconciling palm oil targets and

reduced deforestation: Landswap and agrarian reform in Indonesia. For. Policy Econ. 2020, 119, 102291. [CrossRef]
37. Sheng, J.; Zhou, W.; De Sherbinin, A. Uncertainty in Estimates, Incentives, and Emission Reductions in REDD+ Projects. Int. J.

Environ. Res. Public Health 2018, 15, 1544. [CrossRef]
38. Lu, H.; Liu, G. Opportunity Costs of Carbon Emissions Stemming from Changes in Land Use. Sustainability 2015, 7, 3665–3682.

[CrossRef]
39. Liu, G.F.; Liu, Q.; Song, M.X.; Chen, J.S.; Zhang, C.R.; Meng, X.; Zhao, J.C.; Lu, H.L. Costs and Carbon Sequestration Assessment

for REDD+ in Indonesia. Forests 2020, 11, 770. [CrossRef]
40. Sommerfeld, A.; Senf, C.; Buma, B.; D’Amato, A.W.; Després, T.; Díaz-Hormazábal, I. Patterns and Drivers of Recent Disturbances

across the Temperate Forest Biome. Nat. Commun. 2018, 9, 1–9. [CrossRef] [PubMed]
41. Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361,

1108–1111. [CrossRef] [PubMed]
42. Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of

deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [CrossRef]
43. Larson, A.M.; Soto, F. Decentralization of natural resource governance regimes. Annu. Rev. Environ. Resour. 2008, 33, 213–239.

[CrossRef]
44. Myers, N.R.A.; Mittermeier, C.G.; Mittermeier, G.A.B.; Dafonseca, J.K. Biodiversity hotspots and conservation priorities. Nature

2000, 403, 853–858. [CrossRef]
45. Yi, Z.-F.; Wong, G.; Cannon, C.H.; Xu, J.; Beckschäfer, P.; Swetnam, R.D. Can carbon-trading schemes help to protect China’s most

diverse forest ecosystems? A case study from Xishuangbanna, Yunnan. Land Use Policy 2014, 38, 646–656. [CrossRef]
46. Li, H.M.; Ma, Y.X.; Aide, T.M.; Liu, W.J. Past, present and future land-use in Xishuangbanna, China and the implications for

carbon dynamics. For. Ecol. Manag. 2008, 255, 16–24. [CrossRef]
47. Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J. Complexity of

coupled human and natural systems. Science 2007, 317, 1513–1516. [CrossRef]
48. Liu, G.F.; Feng, Y.F.; Xia, M.L.; Lu, H.L.; Guan, R.M.; Kazuhiro, H.; Zhang, C.R. Framework for Accounting Reference Levels for

REDD+ in Tropical Forests: Case Study from Xishuangbanna, China. Remote Sens. 2021, 13, 416. [CrossRef]
49. Du, X.Y. Xishuangbanna Practice of Rubber Planting Ecological Restoration under the Concept of Ecological Civilization. Acad.

Explor. 2021, 7, 72–78.
50. Liu, X. Preliminary Study on Regional Development. Friends Sci. 2012, 12, 133–134.
51. Wu, Z.N. Xishuangbanna Rubber Economy from the Perspective of Ecological Anthropology. Guangxi Ethn. Stud. 2012, 1,

140–148.
52. Wang, P.S.; Zeng, L. Building Xishuangbanna Ecological Tea Garden Based on Resource Advantages. Yunnan Hot Crop Sci. Technol.

2002, 2, 23–25+22–35.
53. Chen, H.W. Current Situation and Countermeasures of Tea Industry Development in Xishuangbanna Prefecture. Mod. Agric. Sci.

Technol. 2012, 13, 338–346.
54. Ye, L.; Karunarathna, S.C.; Li, H.; Xu, J.; Hyde, K.D.; Mortimer, P.E. A Survey of Termitomyces (L-yophyllaceae, Agaricales),

Including a New Species, from a Subtropical Forest in Xishuangbanna, China. Mycobiology 2019, 47, 391–400. [CrossRef]
55. Mani, S.; Cao, M. Nitrogen and Phosphorus Concentration in Leaf Litter and Soil in Xishaungbanna Tropical Forests: Does

Precipitation Limitation Matter? Forests 2019, 10, 242. [CrossRef]
56. Li, S.H.; Wang, S.J. Effects of ant nesting on the spatiotemporal dynamics of soil easily oxidized organic carbon in Xishuangbanna

tropical forests, China. J. Appl. Ecol. 2019, 30, 413–419.
57. Goldberg, S.D.; Zhao, Y.; Harrison, R.D.; Monkai, J.; Li, Y.; Chau, K.; Xu, J. Soil respiration in sloping rubber plantations and

tropical natural forests in Xishuangbanna, China. Agric. Ecosyst. Environ. 2017, 249, 237–246. [CrossRef]
58. Zhu, H. The tropical rainforest vegetation in Xishuangbanna. Chin. Geogr. Sci. 2019, 2, 64–73. [CrossRef]

http://doi.org/10.1016/j.landusepol.2018.01.027
http://doi.org/10.3390/ijerph15071301
http://www.ncbi.nlm.nih.gov/pubmed/29933612
http://doi.org/10.1088/1748-9326/ab738e
http://doi.org/10.1126/science.abd6977
http://doi.org/10.1016/j.landusepol.2019.104313
http://doi.org/10.14207/ejsd.2020.v9n2p224
http://doi.org/10.1016/j.gloenvcha.2020.102127
http://doi.org/10.1016/j.forpol.2020.102291
http://doi.org/10.3390/ijerph15071544
http://doi.org/10.3390/su7043665
http://doi.org/10.3390/f11070770
http://doi.org/10.1038/s41467-018-06788-9
http://www.ncbi.nlm.nih.gov/pubmed/30341309
http://doi.org/10.1126/science.aau3445
http://www.ncbi.nlm.nih.gov/pubmed/30213911
http://doi.org/10.1088/1748-9326/7/4/044009
http://doi.org/10.1146/annurev.environ.33.020607.095522
http://doi.org/10.1038/35002501
http://doi.org/10.1016/j.landusepol.2013.12.013
http://doi.org/10.1016/j.foreco.2007.06.051
http://doi.org/10.1126/science.1144004
http://doi.org/10.3390/rs13030416
http://doi.org/10.1080/12298093.2019.1682449
http://doi.org/10.3390/f10030242
http://doi.org/10.1016/j.agee.2017.08.001
http://doi.org/10.1007/BF02664547


Int. J. Environ. Res. Public Health 2022, 19, 14891 19 of 20

59. Wang, H.; Zhu, H.; Li, B.G. A study on the tropical montane rainforest in Mengsong, Xishuangbanna’S.Yunnan. Search Life-Sci.
Lit. 2001, 21, 303–314.

60. Wang, H.; Zhu, H. A study on Anogeissus acuminate Community. Acta Bot. Yunnan 1990, 12, 67–74.
61. Li, B.G.; Zhu, H.; Wang, H. The Bombax ceiba forest in Menghan, Xishuangbanna. Acta Bot. Yunnan 1993, 15, 191–195.
62. Zhu, H. Reclassification of monsoon tropical forests in southern Yunnan, Flora and Vegetation of Xishuangbanna SW China. Acta

Phytoecol. Sin. 2005, 29, 170–174.
63. Zhu, H.; Cao, M.; Hu, H. Geological History, Flora, and Vegetation of Xishuangbanna, Southern Yunnan, China. Biotropica 2006,

38, 310–317. [CrossRef]
64. Statistics Bureau of Yunnan Province. Yunnan Statistical Yearbook; China Statistics Press Co., Ltd.: Beijing, China, 2007.
65. IPCC. GoodPractice Guidance for Land Use, Land Use Change and Forestry. Available online: https://www.ipcc.ch/publication/

good-practice-guidance-for-land-use-land-use-change-and-forestry/ (accessed on 10 July 2022).
66. Zhang, X.Y.; Xu, Z.C.; Wang, X.N.; Song, W.W.; Qin, J.Q.; Hu, X.B.; Zhang, W.L.; Zou, J. Research on forest vegetation carbon stock

dynamics and capacity of raising carbon sink in Xishuangbanna. Energy Environ. Sci. 2011, 20, 397–402.
67. Li, H.M.; Ma, Y.X.; Guo, Z.F.; Liu, W.J. Soil Organic Carbon Storage and Spatial Distribution Characteristics in Xishuangbanna.

2004 Annual Meeting of China Meteorological Society, Beijing, China. Ying Yong Sheng Tai Xue Bao 2006, 17, 1014–1018.
68. Xiao, Z.W.; Wang, L.J.; Miao, J.M.; Zhu, Z.X.; Wang, X.L.; Zheng, L.; Tang, J.W. Carbon storage of different tree-tea agroforestry

systems in Xishuangbanna, Yunnan Province of Southwest China. Chin. J. Ecol. 2012, 31, 1617–1625.
69. Pang, J.P. Carbon Storage and Its Allocation of Rubber Plantation in Xishuangbanna, Southwest China. Master’s Dissertation,

Chinese Academy of Science (Xishuangbanna Tropical Botanical Garden), Yunnan, China, 2009.
70. Sha, L.Q. Carbon Storage and Soil CO2 Efflux of Tropical Seasonal Rain Forest, Rubber Tree Plantation and Paddy Soil in

Xishuangbanna, Southwest China. Ph.D. Dissertation, Chinese Academy of Science (Xishuangbanna Tropical Botanical Garden),
Yunnan, China, 2009.

71. Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, Z.P. Soil carbon stocks and their influencing factors under native vegetations in China. Acta
Pedol. Sin. 2004, 41, 687–699.

72. Forni, M.; Lippi, M. The Generalized Dynamic Factor Model: Representation Theory. Econom. Theory 2001, 17, 1113–1141.
[CrossRef]

73. Oja, E. Simplified neuron model as a principal component analyzer. J. Math. Biol. 1982, 15, 267–273. [CrossRef]
74. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng.

Sci. 2016, 374, 20150202. [CrossRef]
75. Long, J.S.; Ervin, L.H. Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model. Am. Stat. 2000, 54,

217–224.
76. Hosmer, D.W.; Hosmer, T.; Cessie, S.L.; Lemeshow, S. A Compaison of goodness-of-fit tests for the logistic regression model. Stat.

Med. 1997, 16, 965–980. [CrossRef]
77. Zhang, B. Forest coverage rate and its dynamic change in Xishuangbanna. Yunnan For. Surv. Plan. 1984, 4, 9–13.
78. Zhang, J.Q.; Mammides, C.; Corlett, R.T. Reasons for the Survival of Tropical Forest Fragments in Xishuangbanna, Southwest

China. Forests 2020, 11, 159. [CrossRef]
79. Min, S.; Bai, J.; Huang, J.; Waibel, H. Willingness of smallholder rubber farmers to participate in ecosystem protection: Effects of

household wealth and environmental awareness. For. Policy Econ. 2018, 87, 70–84. [CrossRef]
80. Hu, H.; Liu, W.; Cao, M. Impact of land use and land cover changes on ecosystem services in Menglun, Xishuangbanna, Southwest

China. Environ. Monit. Assess. 2008, 146, 147–156. [CrossRef]
81. Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P. Tropical forests were the primary sources of new agricultural

land in the 1980s and 1990s. PNAS 2010, 107, 16732–16737. [CrossRef]
82. Rudel, T.; Roper, J. Regional pattern and historical trend of tropical deforestation from 1976 to 1990: Qualitative comparative

analysis. AMBIO. 1996, 25, 160–166.
83. Chomitz, K.M. At Loggerheads?: Agricultural Expansion, Poverty Reduction, and Environment in the Tropical Forests; The International

Bank for Reconstruction and Development: Washington, DC, USA, 2007.
84. Xiao, C.W.; Li, P.; Feng, Z.; Lin, Y.; You, Z.; Yang, Y. Mapping rubber plantations in Xishuangbanna, southwest China based on the

re-normalization of two Landsat-based vegetation moisture indices and meteorological data. Geocarto Int. 2019, 36, 1923–1937.
[CrossRef]

85. Boucher, D.; Elias, P.; Lininger, K.; May-Tobin, C.; Roquemore, S.; Saxon, E. The Root of the Problem: What’s Driving Tropical
Deforestation Today? Union of Concerned Scientists: Cambridge, MA, USA, 2011; pp. 3–11.

86. Defries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the
twenty-first century. Nat. Geosci. 2010, 3, 178–181. [CrossRef]

87. Bi, X.X.; Li, Y.E.; Gao, Q.Z.; Wan, Y.F.; Qin, X.B. Views and Responding Suggestions on Reducing Emissions from Deforestation
and Forest Degradation in Developing Countries. Adv. Clim. Change Res. 2010, 6, 65–69.

88. Rademaekers, K.; Eichler, L.; Berg, J.; Obersteiner, M.; Havlik, P. Study on the Evolution of Some Deforestation Drivers and
Their Potential Impacts on the Costs of an Avoiding Deforestation Scheme; ECORYS: Rotterdam, Netherlands; IIASA: Laxenburg,
Austria, 2010.

http://doi.org/10.1111/j.1744-7429.2006.00147.x
https://www.ipcc.ch/publication/good-practice-guidance-for-land-use-land-use-change-and-forestry/
https://www.ipcc.ch/publication/good-practice-guidance-for-land-use-land-use-change-and-forestry/
http://doi.org/10.1017/S0266466601176048
http://doi.org/10.1007/BF00275687
http://doi.org/10.1098/rsta.2015.0202
http://doi.org/10.1002/(SICI)1097-0258(19970515)16:9&lt;965::AID-SIM509&gt;3.0.CO;2-O
http://doi.org/10.3390/f11020159
http://doi.org/10.1016/j.forpol.2017.11.009
http://doi.org/10.1007/s10661-007-0067-7
http://doi.org/10.1073/pnas.0910275107
http://doi.org/10.1080/10106049.2019.1687592
http://doi.org/10.1038/ngeo756


Int. J. Environ. Res. Public Health 2022, 19, 14891 20 of 20

89. Fisher, B.; Edwards, D.P. The high costs of conserving Southeast Asia’s lowland rainforests. Front. Ecol. Environ. 2011, 9, 329–334.
[CrossRef]

90. Zhang, M.H. Thinking on the Reform of China’s Forestry Management System. Ecol. Econ. 2004, 68–69+75.
91. Lestrelin, G.; Castella, J.-C.; Li, Q.; Vongvisouk, T.; Tien, N.D.; Mertz, O. A Nested Land Uses–Landscapes–Livelihoods Approach

to Assess the Real Costs of Land-Use Transitions: Insights from Southeast Asia. Land 2019, 8, 11. [CrossRef]
92. Gregersen, H.; El Lakany, H.; Karsenty, A.; White, A. Does the Opportunity Cost Approach Indicate the Real Cost of REDD+?: Rights

and Realities of Paying for REDD+; Rights and Resources Initiative: Washington, DC, USA, 2010.
93. Ecofys. Testing methodologies for REDD+: Deforestation drivers, costs and reference levels. In Technical Report; UK Department

of Energy and Climate Change: London, UK, 2012.
94. Robinson, E.J.Z.; Somerville, S.; Albers, H.J. The economics of REDD through an incidence of burdens and benefits lens. Int. Rev.

Environ. Resour. Econ. 2019, 13, 165–202. [CrossRef]
95. West, T.A.P.; Grogan, K.A.; Swisher, M.E.; Caviglia-Harris, J.L.; Sills, E.; Harris, D. A hybrid optimiza-tion-agent-based model

of REDD+ payments to households on an old deforestation frontier in the Brazilian Amazon. Environ. Model. Softw. 2018, 100,
159–174. [CrossRef]

96. Heli, L.; Guifang, L. Distributed land use modeling and sensitivity analysis for REDD. Land Use Policy 2013, 33, 54–60.
97. Portal of Yunnan Provincial People’s Government. Available online: http://www.yn.gov.cn/ (accessed on 21 May 2022).
98. Portal of the People’s Government of Xishuangbanna Dai Autonomous Prefecture. Available online: https://www.xsbn.gov.cn/

index.dhtml (accessed on 12 July 2022).
99. Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A. Landsat-5 TM reflective

band absolute radio metric calibration. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2747–2759. [CrossRef]
100. Xu, F.; Li, H.K. Interactive comparison of Landsat TM/OLI and HJ-1B CCD sensor data. Remote Sens. Inf. 2021, 36, 100–108.
101. Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open

science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [CrossRef]
102. Ding, C.; Xie, Y.; Huan, H. Cross calibration based on GF-1/WFV, MODIS and Landsat8 cameras. Mod. Electron. Technol.

2019, 42, 37–41.
103. Peng, J.D.; Ma, Z.G.; Wu, Z.H. Landsat 9 Satellite Image Preprocessing Method and Its Application: A Case Study of Nanjing

Vegetation Ecological Remote Sensing Monitoring. Straits Sci. 2022, 5, 3–7+28.
104. Li, H.M.; Ma, Y.X.; Liu, W. Clearance and fragmentation of tropical rain forest in Xishaungbanna, SW, China. Biodivers. Conserv.

2009, 18, 3421–3440. [CrossRef]
105. Zhu, X.A.; Liu, W.J.; Jiang, X.J.; Wang, P.; Li, W. Effects of land-use changes on runoff and sediment yield: Implications for soil

conservation and forest management in Xishuangbanna, Southwest China. Land Degrad. Dev. 2018, 29, 2962–2974. [CrossRef]

http://doi.org/10.1890/100079
http://doi.org/10.3390/land8010011
http://doi.org/10.1561/101.00000108
http://doi.org/10.1016/j.envsoft.2017.11.007
http://www.yn.gov.cn/
https://www.xsbn.gov.cn/index.dhtml
https://www.xsbn.gov.cn/index.dhtml
http://doi.org/10.1109/TGRS.2004.836388
http://doi.org/10.1016/j.rse.2020.111968
http://doi.org/10.1007/s10531-009-9651-1
http://doi.org/10.1002/ldr.3068

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources 
	The Procedure Scheme and Interpretation of Land Use Change 
	Socio-Economic Driving Indicators 

	Research Method 
	IPCC Greenhouse Gas Inventory Method 
	Normalization Model 
	Principal Component Model 
	Stepwise Linear Regression Model 


	Results 
	Forests Carbon Stocks 
	Results of the Principal Component Analysis 
	Results of the Stepwise Linear Regression Model 
	Forces Driving Deforestation 
	Forces Driving Forestland Transformation 
	Forces Driving Forest Degradation 


	Discussion 
	Conclusions 
	References

